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1. Introduction

In modern automation systems, Programmable 
Logic Controller (PLC) is an essential component. 
The industrial application of PLC occurs virtually 
in all the types of industrial systems. With the 
continuous improvement of the technology in the 
industrial area, the PLC function has been greatly 
improved; therefore, PLC applications continue 
to grow (Dong & Yang-Mingm, 2017; Mahato, 
Maity & Antony, 2015). Some models of PLCs 
have implemented Fuzzy Logic (FL) tools that 
facilitate the deployment of fuzzy controllers, 
being possible to configure the fuzzy system, 
defining its Member Functions (MFs) for the input 
and output variables, as well as their respective 
operational ranges and also its rule base. Such 
tools generally use the centroid method for their 
output  (Altas & Sharaf, 2007).

The fuzzy control is based on the fuzzy logic, 
which unlike logical systems is much closer to 
natural language as well as to human thinking. 
Such an approach allows one to approximate the 
inexact settings of the real world nature (Takagi & 
Sungeno, 1985). Founded on this fuzzy approach, 
there are so-called fuzzy logic controllers (FLCs) 
that based on expert knowledge into an automatic 
control strategy can provide algorithms which 
in their turn, can convert the linguistic control 
strategy. Previous research work has shown that the 
application of  FLC often exceeds the efficiency of 
conventional control algorithms. In dealing mainly 
with more complex processes for conventional 
quantitative techniques, or when the process 
information is uncertain, like most situations of 
nature, such as renewable energy applications, the 
FLC proved to be quite useful (Zhou et al., 2014).

Although diffuse rules are somewhat easy 
to develop by human specialists, diffuse 
membership functions (MFs) are difficult to 
obtain. In this context, the adjustment of MFs 
is a time-consuming exercise and often does not 
reach a good result. In order to overcome such 
difficulties, some techniques have been reported 
to automate this process of tuning MFs (Wang, 
Xia, & Zhou, 2009).

Metaheuristics such as Genetic Algorithm (GA), 
have been widely used in automatic designs 
of fuzzy controllers, especially in the areas of 
mobile robotics. In various circumstances, the 
GA was used for the purpose of adjusting both 
the fuzzy MF and the fuzzy rule bases (Zhang, 
Zhang, & Wang, 2009). Another technique used 
is the particle swarm optimization (PSO)whose 
inspiration comes from the collective natural 
behaviour of the animals. Because of its simplicity 
in implementation, the PSO is gaining popularity 
over time in engineering applications such as 
system modelling and image processing (Fang,  
Kwok, & Ha, 2008) .

In this work, the GA and PSO metaheuristics 
are used to automatically adjust the MFs of a 
Mamadani-type fuzzy controller when performing 
the control of PLC on a real industrial fan 
system. A real experiment was accomplished in 
a didactic industrial plant of a fan system, which 
is controlled by a programmable logic controller 
(PLC), located at the Energy Efficiency and Power 
Quality Laboratory of the Federal University of 
Pernambuco (Aquino et. al, 2016). The results of 
these tunings were then compared with a manual 

Studies in Informatics and Control, 28(3) 265-278, September 2019

https://doi.org/10.24846/v28i3y201903

A PLC-based Fuzzy Logic Control with 
Metaheuristic Tuning

Jeydson SILVA*, Davidson MARQUES, Ronaldo AQUINO, Otoni NÓBREGA 
DEE, Federal University of Pernambuco, Recife, Pernambuco, Brazil, 50740-530
jeydsonl@gmail.com (*Corresponding author); davidson_cm@hotmail.com;  
rrbaquino@gmail.com; otoninobrega@gmail.com

Abstract: In recent times, artificial intelligence applications in the field of dynamic systems control have proved to be an 
efficient tool for the improvement of processes. Programmable Logic Controller-based control systems are found in the 
vast majority of industrial automation systems. In this paper, a fuzzy controller approach is proposed to enhance the design 
of industrial control systems using commercial PLCs. The fuzzy controller is tuned by artificial intelligent techniques, and 
the performances of different fuzzy controller-tuning methods are compared, including the metaheuristic ones. The results 
shown in this paper validate the proposal that metaheuristics tuning methods of fuzzy controller have better performance in 
intelligent automation. 

Keywords: Artificial intelligence, Control systems, Industrial automation, PLC, Fuzzy, Metaheuristics.



https://www.sic.ici.ro

266 Jeydson Silva, Davidson Marques, Ronaldo Aquino, Otoni Nóbrega

tuning. PLC-based on FLC tuned by PSO and GA. 
The main contribution of this work refers to the use 
of PSO and Ag metaheuristics in the adjustment of 
a fuzzy controller implemented directly in PLC, 
written in Ladder programming language. This 
system is being used to control some industrial 
plant models, obtaining satisfactory practical 
results compared to the PI control.

This paper is organized as follows: Section 2 
details the LAMOTRIZ industrial fan system used 
in the experiments. In section 3, the process of 
surveying the dynamic information of the plant 
and the acquisition of its discrete mathematical 
model, used in the work simulations, are briefly 
discussed. In section 4, the characteristics of the 
fuzzy control system are discussed. This section 
also deals with the PSO and GA methods and how 
these can be used in the MF tuning process distorted 
configuration. The results and simulation control 
show the effectiveness of the proposed MF tuning 
method. In addition, the design of the FLC control 
in the PLC and the actual used supervision system 
are illustrated. The results are discussed in section 
5, which provides the comparisons between the 
proposed FLC controller and a manual adjustment.

2. Industrial Fan System

All experiments described in this paper were 
performed in the Energy Efficiency and Power 
Quality Laboratory of the Federal University of 
Pernambuco. In this laboratory, there are several 
industrial systems, including an industrial fan 
system. This system uses Siemens’s WinCC 
Flexible® supervision software as the main user 
interface. Through this interface, it’s possible to 
perform a complete system operation. Figure 1 
displays a picture of this industrial fan system. 

A description of the fan system used in this study 
can be observed below:
Motor-Fan group
Inflow regulator (Damper)
Inflow transmitter
Pressure transmitter
Air admission
Air output
Temperature sensor of the air input
Temperature sensor of the air output
Command and control panel of the fan system 
(PLC, frequency inverter, measurer, command 
key, etc.)

Figure 1.  Prototype of an industrial fan system

3. System Modelling

3.1 System Identification 

The used model approximates the real 
process, which cannot fully incorporate all the 
characteristics of the real physical system. There 
must be a compromise between the cost of having 
the model and the level of detail of it regarding 
the benefits expected by its application (Araydah, 
Tutunji & Al-Naimi, 2017).

The identification of the plant model and its 
transfer function, were carried out experimentally. 
From a set of experiments on the physical fan 
system, it was possible to obtain the input-output 
pairs of the open-loop system. The analysis 
performed in this work focused on the airflow 
control through the frequency inverter, from 
which the process input signal is a frequency 
value in the motor, regulated by the frequency 
inverter. The supervisory system is responsible 
for providing this frequency value. The system 
output signal is  represented by the airflow in the 
fan system outlet duct. In this way, according to 
this dynamic response characteristic of the system, 
it’s possible to approximate the physical system 
by using a mathematical dynamic system of first 
order with delay. In this system, the mathematical 
model has the following characteristics (Dorf & 
Bishop, 2010; Ogata, 2009).

                                          
(1)
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3.2 Modelling of the Fan System

Through the step response of the plant, a method 
known to be useful to approximate the models 
of dynamic systems, it was possible to obtain 
the dynamic fan system’s model present in 
LAMOTRIZ. The experiment for identifying the 
system was possible by, configuring the plant 
in the open-loop mode through the supervisory 
system. In this  work, a PLC is used to send the 
control signals to the fan system.. The sensors 
of the plant, which are in communication with 
the supervisory system, collect the data from the 
experiments. From the collection of these output 
values of the experiment, it’s possible to create 
output airflow graphs with respect the time of the 
airflow control process.

By observing the response of the open-loop 
system, the industrial fan system’s transfer 
function is given according to Equation (2) below:

     	      (2)

3.3 Digital Modelling

An important aspect that must be considered while 
tuning the controllers is how the techniques of 
controllers are designed. Most of these techniques 
are designed in continuous time and it could affect 
significantly the behaviour of the controller’s 
tuning (Mekki et al., 2017). In real application 
of control systems, the digital format technique 
is more appropriated to be applied because 
it encompasses the characteristics of discrete 
signals, such as quantization and discretization,  
which are present in the digital control techniques 
of the systems.

The Zero-Order Hold (ZOH) technique was used 
to obtain an approximate correspondence between 
continuous and discrete systems. This could 
transform the transfer function from continuous 
time into discrete time with a good precision 
and with no information lost. This methodology 
is crucial because the sample rates influence the 
actual process dynamics (Du,  Ying  & Lin, 2009; 
Leondes, 1996).  By using the ZOH technique, the 
discrete-time transfer function was obtained with 
a time sampling of 1 second. It has been given the 
following equation:  

  	      
(3)

4. Methodology

In this work, the entire methodology will be 
used in a prototype of a fan system; however, the 
application of this concept can be extended for 
most industrial control processes.

4.1 Fuzzy System

The fuzzy system is an important artificial 
intelligence technique. This system has been used 
widely in various control tasks, as its application 
in the control processes is necessary because 
of the nonlinearities, inefficient measurements 
and a large noise level that characterize the 
industrial processes (Zadeh, 1994). Fuzzy logic 
is a decision-making system and it helps to find 
the output for the given set of input variables. The 
strength of fuzzy logic stems from its ability to 
infer conclusions and generate responses based 
on vague, ambiguous, incomplete, or imprecise 
information (Dong & Yang-Ming, 2017). 

In that respect, fuzzy-based systems have the 
ability to reason in a similar way to humans.

In addition, its direct architecture doesn’t need 
precise mathematical models. This system is 
based on the empirical knowledge of the operator 
with which it simulates human reasoning to solve 
several types of problems. Therefore, the concepts 
of fuzzy logic can be used; this strategy can be 
represented by a set of rules.  In some cases, the 
operator develops a good control strategy only 
with the empirical knowledge.

The control scheme was based on TSK  (Takagi-
Sugeno-Kang) controller, because it allows the 
concatenation of different controllers designed 
through different strategies and gathered in the 
same set of rules (Lam et al., 2016 ).

4.2 Fuzzy Controller Design

The Fuzzy logic controllers (FLC) are based 
on the concepts of fuzzy implication and the 
compositional rules of inference by which the 
control action can be obtained from a knowledge 
set described linguistically and given by experts 
or experience operators. The design of a fuzzy 
controller requires more decisions than that 
of other controllers; this type of control can be 
described simply as control with sentences rather 
than equations (Liu, Chen & Tsao, 2001).  
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Usually the expert knowledge is in the form of 
fuzzy control rules. One of the most complicated 
processes in fuzzy controller design is the 
organization of a fuzzy rule base (Pitalúa-Díaz, 
Lagunas-Jiménez & González, 2013). Recent 
works demonstrate the versatility of fuzzy in 
several applications, such as  a robust model-free  
adaptive FLC control free of robust model based 
on the fractional order and extended  observer for 
half-car suspension system (Mustafa, Wang & 
Tian, 2019).

This paper demonstrates the use of algorithms 
based on metaheuristics to promote simple 
tunings of these diffuse rules of the FLC. A fuzzy 
controller includes empirical rules, and that is 
especially useful for the operator controlled plants. 
In the process of building the rule base, the airflow 
error and error’s change are partitioned into five 
fuzzy sets labelled as {NB (Negative Big), NS 
(Negative Small), Z (Zero), PS (Positive Small), 
PB (Positive Big)}, totalizing 25 rules.

Take for instance a typical fuzzy controller:

IF (x is A1) AND (y is B1) THEN (z is C1)

where, A1 is one of the fuzzy set X (i.e. airflow 
error), B1 is one of the fuzzy set Y (i.e. error’s 
change of airflow) and C1 is one of the fuzzy set 
Z (i.e. output gain of controller).

In this work, the FLC was modelled with 
trapezoidal membership functions (MFs)  applied 
to the inputs, as showing in Figure 2. The degree 
of membership is calculated in PLC and is based 
on the ladder diagram, using a basic instruction 
set. The metaheuristics that will be used will find 
values for these MFs, which will be better adapted 
to the dynamics of the FLC operation, based on an 
optimized evaluation equation.

For the error and error’s change MFs, their 
positioning parameters were established, by 
defining the position of the fuzzy sets (NB, NS, 
Z, PS, PB), which represent the optimization 
variables of the FLC tuning problem. A total of 
20 variables were established, 8 for the error, 8 
for the error’s change and 4 for the output gain. In 
this methodology, the trapezoidal functions used 
the information of the neighbouring functions 
to complete their positioning, thus reducing 
considerably the number of problem variables 
and allowing to use less computational memory 
to perform the optimization. In addition, this type 
of member function allowed greater stability of 

the present PLC. The limits of MFs obey the 
following characteristic rules:

(a) Error membership function

(b) Error’s change membership function

Figure 2. Trapezoidal membership functions

For the input’s values, error (E) and error’s change 
(ΔE), the antecedents of a diffuse rule are known 
as the degrees of association, obtained during 
fuzzification: μA1 (E) and μB1 (ΔE). From these 
values, the consequence of this diffuse rule is 
calculated according to the following equation:

                           (4)

The singleton form in the output membership 
function was chosen due mainly to its simplicity in 
solving the crisp output during the defuzzification. 
For the defuzzification process in this work, the 
Centroid method was used. This   method could 
provide superior control performance, and some 
previous researchers reported this aspect (Aisbett, 
& Rickard, 2013).
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As in the case of the input MFs, these MFs 
output values will also be used as variables in the 
metaheuristic optimization for the tuning of FLC. 
However, the outputs of the MFs have only 4 
variables for the optimization of the problem (see 
Figure 3), unlike the inputs, due to the fact that the 
MFs are singleton. A variable is thus defined for 
each position of the fuzzy set. 

The limits of MFs obey the following 
characteristic rules:

Figure 3.  Output Membership function
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In fact, there are about 20 variables in this fuzzy 
tuning problem. This is not a trivial problem which 
could have been solved by using the traditional 
optimization methods, so the use of metaheuristics 
was proposed in order to find an optimal solution 
for the fuzzy sets of the FLC.

In this work the fuzzy rules were predefined 
by means of the operator tests and did not 
undergo any kind of changes in the course of the 
optimization.  There are some cases which use 
the change of the positions of the rules in order 
to obtain a better performance of the control 
method, but this situation does not apply for the 
present approach.	

The fuzzy rules are shown in Table 1:

Table 1. Fuzzy set rules

E \ ΔE NB NS Z PS PB
NB NB NB NS NS PB
NS NB NS NS PS PS
Z NB NS Z PS PB
PS NS NS PS PS PB
PB NB PS PS PB PB

The final objective of that problem is to provide 
stability for the signal of control in case that 
unexpected changes might happen in the reference 
airflow. To perform the appropriate control 
frequency adjustment for the motor to return to 
the reference flow, error signals and input error 
change are used for FLC.

4.3 Evaluation Function

To perform the optimization, it’s necessary 
to define a fitness function which will allow 
measuring the quality of the dynamic behaviour 
of the controller. The performance requirements 
function as constraints on the controller setting, 
imposing limits on the behaviour of the control 
system (Ogata, 2009).

The fitness function of this work is composed of 
the following performance indices: IAE (integral 
of absolute value error), usually a performance 
parameter for PID controller tuning, Overshoot 
(Mp), Rise time (tr) and Settling Time (ts).

In this work, the fitness function is defined  
as follows:

    (6)

The weights of Equation 6 were obtained 
empirically through the various test results 
in simulations of the system plant, which is 
represented as follows (see Figure 4):

Figure 4. LAMOTRIZ fan system control in Simulink

4.4 Genetic Algorithm

Genetic algorithms (GA) are population-based 
optimization algorithms. They are specific for the 
evolution of the animal species.  For a long time, 
the Genetic algorithms have been one of the most 
important evolutionary computing techniques; 
this metaheuristic has a conceptual basis in the 
evolution of individual structures (Goldberg, 1989).

This technique searches for the best possible 
solutions to the problem, using a strategy of 
individual survival by privileging those who 
have a greater aptitude for survival. In general, 
all individuals have a certain degree of aptitude 
for survival, but the fittest of the population tend 
to reproduce and survive the next generation, 
thereby improving future generations. In this 
method, a relatively good initial estimate of 
the problem variables is not necessary for the 
optimization process to have a good evolutionary 
behaviour (Goldberg, 1989). The accuracy of 
the individual of each population for survival 
is measured by means of a criterion chosen 
according to the problem of the evaluation 
optimization function.

In genetic science there is a term called genotype, 
which represents the set of genes that define the 
genetic makeup of the individual; such genes will 
go through the processes of the genetic operators 
of the algorithm. In most problems, this genotypic 
representation is given by a binary vector, where 
each parameter of this vector represents the presence 
of an important element of the individual. These 
characteristics combine to form the individual’s 
phenotype, its detectable characteristics.

Because of the incomplete nature of GA theory, 
most of the knowledge about the successful 
implementation of GAs comes from experiment 
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and experience. The genetic algorithm cannot 
be considered a random algorithm to search 
for solutions, even using metaheuristic and 
probabilistic methods in its iterative chain. The 
exploration of the available information occurs 
in an intelligent way, seeking solutions capable 
of further improving the performance criterion 
(Kumar, Sharma, & Gautam, 2016; Pelikan, & 
Goldberg, 2001).

The GAs commonly use algorithms to solve 
various types of problems, such as linear and 
nonlinear systems. These algorithms exploring 
the regions of the search space in depth, 
discovering better areas that can contain the 
solution of the problem, all this mainly through 
their genetic operators’ mutation, crossover and 
selection. (Pelikan, & Goldberg, 2001; Tsutsui  
& Ghosh, 1997).

As for the most of the  animals, the selection 
process in GAs aims to represent the process of 
reproduction and natural selection. At this point, 
individuals are chosen for reproduction. This 
selection allows prioritizing those individuals 
who have a better fitness value; they, in turn, will 
contribute with their genetic material to the next 
generation. Different types of selection can be used 
to choose the fittest individuals, some methods 
may be more effective than others depending on 
the type of problem involved. Please start a new 
sentence: “The tournament method, in which 
individuals compete with each other to remain 
in the population, is among the most commonly 
used. After the selection of individuals of the 
population, the remaining population undergoes 
the crossing mechanism (Goldberg, 1989).

The main purpose of the crossover mechanism is to 
perform the mixing of the genetic material among 
the individuals chosen through the selection stage. 
This makes it possible to explore regions close 
to previous individuals, reducing the possibility 
of local minimum points. A chromosome position 
is chosen randomly from the crossover factors 
previously defined by the operator, these values 
will then be exchanged between some other 
individuals in order to provide a different genetic 
combination of both individuals involved in the 
crossover (Goldberg, 1989).

In order to provide diversity between individuals, 
the mutation process in the population is applied 
after the crossing mechanism, which is equivalent 

to a random search of the viable solution region. 
The procedure consists in altering a part of 
the individual’s chromosome by making it 
different; such a process is based on a mutation 
rate previously defined by the operator. This 
process provides population diversity because it 
randomly changes some genes in the chromosome, 
providing the means for introducing new elements 
into the population (Goldberg, 1989). This paper 
uses the uniform mutation, the single crossing 
and three different selection methods (the 
Stochastic sampling, the Roulette selection and 
the Tournament selection) as main parameters.

4.5 Particle Swarm Optimization

Kennedy and Eberhart initially proposed a particle 
swarm optimization (PSO) which provided 
the initial proposal provided a model to solve 
nonlinear functions. This method is considered 
a population algorithm with metaheuristic 
characteristics as in the case of GA. The method is 
based on the collective behaviour of the animals, 
in their search for places that provide a quantity 
of food for the group. One of the advantages of 
this method is the high capacity of this algorithm 
for fast convergence and simplicity of execution, 
when compared to the great majority of heuristic 
optimization methods (Dorigo, Maniezzo & 
Colorni, 1996; Kennedy, Eberhart & Shi, 2001; 
Olivas, Valdez, Castillo & Melin, 2016).

The PSO works based on population of individuals 
as in GA. The individuals are called “particles” 
and the set of these particles is called “swarm”. 
Each particle that makes up the swarm has been 
associated with velocity called v and a positions 
called x. These particles move within the feasible 
search space looking for the possibly optimal 
solution of the problem. In this way, the search 
of the swarm individuals for a place with better 
food condition for the group is stimulated. (Dorigo, 
Maniezzo & Colorni, 1996; Kennedy, Eberhart & 
Shi, 2001; Olivas, Valdez, Castillo & Melin, 2016).

At the time of the movement of the particles in the 
search space, they will have their best positions 
stored in a vector, known as pbest (position best). 
The best overall position of the particles in the 
examination is known as gbest (global best). This 
position assessment is based on an evaluation 
function, which is modelled by the operator, 
founded on the prior knowledge of the problem 
and the interest of the desired solution.
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where i represents the ith particle in the system 
and d represents dth position of the swarm. 
The velocity of particles is influenced by its 
own experience, known as cognitive factor (c1), 
and by its swarm companions, known as social 
factors (c2). The constants c1 and c2 are positive, 
controlling the velocity and the displacement 
of the particle in the search space, providing an 
individual and a social search characteristic for 
each particle, respectively. The tendency should 
be to attract the particles towards the optimum 
or near the optimal solution of the problem by 
weighting the best values of the individual (pbest) 
and group (gbest) positions (Liang & Kang, 2016; 
Meng et al., 2016).

The terms  and  represent the position 
and velocity of the particle in the i-th position 
of the d-th place of the swarm dimension. 
The constants terms r1 and r2 must be random 
numbers of the interval  [0,1], contributing to a 
diversified search of possible solutions.

The term is considered as an inertial velocity 
weight and represents the influence of the actual 
speed on the speed of the next iteration of the 
particle. Higher values of w improve global search 
in new regions; otherwise, low values contribute to 
local search in a more promising region. A correct 
choice of that parameter improves or worsens the 
balance of the algorithm between the global and 
the local exploration skills. The velocity limits 
are given by − , so that the 
velocity of the particle is not very disproportionate 
with respect to its convergence.

In order to maintain certain equilibrium in the 
cognitive and social learning of the particle, the 
constants c1 and c2 were set at 2, as shown in 
previous studies (Kennedy, Eberhart & Shi, 2001; 
Clerc & Kennedy, 2002).

For a good convergence of this type of problem 
the values of w must be around 0.6. Such value 
was obtained empirically through studies and 
simulations of this problem. Although a relatively 
recent finding, when compared to other types of 
metaheuristics, the PSO  based on the social and 
cognitive behavior of the flocks of animals has 
shown to be quite promising, because its great 

simplicity allows it to be applied in order to solve 
diverse types of problems (Tanweer, Suresh & 
Sundararajan, 2015; Wang, Wang & Wu, 2013). 

4.6 PLC and Supervisory Control System

For the  design of the FLC in the PLC, it is 
necessary to write the mathematical rules of fuzzy 
logic in the ladder programming language. From 
the fuzzy rules of Table 1 and from the centroid 
method of the trapezoidal MFs, it is possible to 
write the Functions Blocks (FB) in the ladder 
language of the PLC. The example of rule 21, its 
code in Matlab® and its FB written in the ladder 
language are shown in Figure 5:
% FR21: If E = PB AND dE is NB THEN output = yNB;
    
     if (E > E4~5)				  
	        
        if (E <= E miEPB = (E - E4~5)/(E5 - 
E4~5);                   
            
        else
            miEPB = 1;
        end
        if (dE < dE12)
            if (dE <= dE1)
                midENB = 1;
            else
                midENB = (dE12 - dE)/(dE12 - 
dE1);
            end
        rule21 = min(miEPG, midENB);
        mis = [mis mi21];
        yout=yNB;
        end

Figure 5. Ladder diagrams of the rule 21 on PLC 

The fan system in this work is operated through 
a supervisory system, which is the main key to 
controlling the plant’s variables. The software 
responsible for this task is WinCC® Flexible that 
allows the complete operation of the system, by 
using a valve opening in order to adjust the motor 
speed, taking into account the system variables 
such as airflow, pressure, air temperature, rotation 
and torque of the motor, electrical variables, etc.

All the system’s components are modelled 
in the WinCC® computer program including 
valves, sensors, motor-fan group and others. The 
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supervisory software communicates with the 
control system via INDUSTRIAL-ETHERNET 
network and the interface between the PLC and 
the measuring and control devices communicates 
via PROFIBUS-DP network.

Figure 6 shows the main screen illustrated through 
the supervisory software WinCC®, which represents 
the industrial fan system, used in this work.

Figure 6. Main screen of industrial fan system on 
supervisory system

As can be seen in Figure 6 all the items of 
equipment are represented in the supervisory 
system by the exhibited tags. The tag F-3A-01 
represents the fan, TE-3A-01 and TE-3A-02 
represent the thermostats which show the air 
temperature on the air entrance and air output, 
FCE-3A-02 represents the damper which allow 
the airflow control, FT-3A-01 represents the speed 
transducer, WT-3A-01 represents the torque and 
rotation sensor and PT-3A-01 represents the 
pressure transducer.

The interface of the supervisory system  with the 
trapezoidal inference functions of the FLC logic 
structure is presented in Figure  7.

Figure 7. Screen of the Membership functions of 
FLC  on the supervisory system

The PLC used in this work is the S7-300 produced 
by Siemens and is integrated with the CPU 313C-
2 DP. The PLC was programmed through the 
Step-7 programming software, by using the ladder 
programming language.

5. Results 

Due to the difficulty of this problem, metaheuristic 
optimization algorithms (PSO/GA) have been 
used to determine the variables that allow 
better operating conditions than the FLC 
manual adjustment for real systems. The total is 
represented by 20 variables that must be found 
in this problem (inputs error, change of inputs 
error and outputs gain). As there are no methods 
defined to find the solution to this type of problem, 
metaheuristics are quite appropriate. 

The global structure of the FLC, implemented on 
Simulink/MATLAB® and on PLC, is shown in 
Figure 8.

Figure 8.  FLC control associated with metaheuristic

where R is the reference signal value, Y is the 
output value of the process, E the error, ∆E is the 
error’s change and u is the control signal provided 
by the FLC.

The manual adjustment of the parameters of the 
input MFs was obtained empirically through the 
knowledge of the operator. The trial and error 
method was used  and, therefore, an initial control 
point was obtained for the FLC. The positions are 
out of scale for better visualization of MFs.

The manual setting of the parameters of MFs of 
the inputs is shown below (see Figure 9).

(a) Error membership function
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(b) Error’s change membership function

Figure 9. Input membership functions

In addition to the input values, the initial values 
of the gains in the outputs were also obtained 
by trial and error according to the previous 
knowledge of the operator. The output MFs is 
shown in Figure 10.

Figure 10. Output membership function

In order to minimize the evaluation function J for 
the tuning of the FLC parameters, both PSO and 
GA metaheuristics were used; the results of these 
metaheuristic methods were compared in order 
to corroborate the outcomes of the optimization 
process. In addition, the FLC adjustments were 
analysed both quantitatively and qualitatively.

In the previous experiments, the search space 
of each variable of the problem was delimited, 
reducing the optimization time of the algorithm and 
avoiding local minimums points. Next, the PSO’s 
behaviour is presented with a swarm containing 
100 particles for each of the 20 variables.  

Figure 11. Particle’s position of the gain in the PSO

During the first iteration, it can be noticed that the 
particles are dispersed within the boundary of the 
research, at the end of the iterations; most of the 
particles are concentrated around the minimum 
solution point of the optimization problem, 
demonstrating the convergence characteristic of 
the particles to the same point at the end. Figure 

12 and Figure 13 present the values of the FLC 
parameters found by the PSO with 50 particles 
in 100 iterations. These values (particles) were 
plotted in pairs in order to give an idea of their 
linear decoupling.

Figure 12. Particle’s position of the error in the PSO

 Figure 13. Particle’s position of the change of error  
in the PSO

The graphs were presented in pairs, in some 
cases the scale of the graph was altered in order 
to visualize more clearly the positioning of the 
particle in its search space, since some particles 
differ from the search range of others.

From the moment that some particles find a 
more promising region within the search space, 
there are both individual and collective learning 
characteristics on their part, at the same time.; all 
particles receive a portion of influence from the 
one that found the most promising region as from 
their own search region.

The movements of the particles in the swarm are 
also presented in relation to the variable errors 
(E) and to the error’s change (ΔE), as the particles 
converge to a point which represents the minimum 
value of the objective function. 
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Despite the difficulty of finding the 20 variables of 
the problem, which can allow the good dynamic 
behaviour of the FLC, the metaheuristic PSO 
obtained a considerable performance in this 
search, its characteristic of exploration of the 
space of search of several directions at the same 
time allowed the precision in the determination 
of the solution. 

As in PSO, GA can also be considered a 
population-based metaheuristic method, but there 
is a wider range of parameters to be defined that 
makes it more difficult to work properly for the 
problem. However, in general, the adjusted GA 
parameters obtained a good final result. The two 
algorithms were chosen because they presented 
much similarity in their dynamics. The following 
are the results obtained by GA, as showing in 
Figure 14.

Figure 14. GA results of the selected individuals

According to the evolutionary characteristics of the 
algorithm, each individual (solution) has an initial 
fitness value, restricted to the search space. In the 
course of the generations, the best individuals are 
selected to generate children, which, in turn, are 
also evaluated according to the function of the 
evaluation within the optimization process. 

Each individual is composed of the FLC 
parameters tuning of 20 variables of the FLC 
tuning. In this work, 200 individuals were used 
in the process; in addition, the used stop criterion 
was of maximum 200 generations. 

The results below show the behaviour of GA 
in relation to the individual fitness value, in 

addition to the number of children generated by 
the individuals.   

Although the PSO algorithm has a swarm 
population smaller than the population of 
individuals in GA, it results in a lower J value than 
that found by GA, which has 200 individuals in its 
population (see Figure 15). This can be explained 
by a greater difficulty of defining the various GA 
parameters when compared to defining those 
required by the PSO. Overall, both algorithms had 
very satisfactory results. 

Figure 15. Behavior of the evaluation function (J) 
for each metaheuristic

The parameters of the manual, PSO and GA 
settings are shown below in Table 2.

TABLE 2. FLC parameters tuning

FLC 
parameters Manual PSO GA

E1 -500,0 -226,0 -195,0

E1-2 -100,0 -61,0 -80,0

E2 -60,0 -20,0 -18,0

E2-3 -2,0 -2,0 -2,0

E3 0 0 0

E3-4 2,0 2,0 2,0

E4 60,0 20,0 22,0

E4-5 100,0 80,0 80,0

E5 500,0 310,0 294,0

ΔE1 -20,0 -48,0 -42,0

ΔE1-2 -15,0 -25,0 -20,0

ΔE2 -8,0 -10,0 -13,0

ΔE2-3 -1,0 -2,0 -2,0

ΔE3 0 0 0

ΔE3-4 1,0 2,0 2,0

ΔE4 8,0 10,0 12,0

ΔE4-5 15,0 20,0 18,0

ΔE5 20,0 40,0 34,0

yNP -0,6 -1,0 -1,0

yNG -7,0 -6,0 -6,0

yPP 0,6 0,5 0,650

yPG 7,0 8,0 7,0
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It was verified experimentally that the central 
variables of the FLC (E2-3, E3 and E3-4) are very 
sensitive to small variations of the values; a small 
perturbation in these variables could make the 
system unstable. In order to overcome this situation, 
these were eliminated from the optimization 
variables and kept constant in the tunings.

Regarding the variables E and ΔE, it was 
necessary to approximate the values of the 
FLC tuning, resulting from the computational 
optimization, to an integer, necessary for the 
programming of the PLC.

Figure 16 presents the the FLC dynamics tuning 
of this work, both in the computational simulation 
environment, as well as in the real fan system 
present in LAMOTRIZ.

(a) Computational environment

(b) Real environment

Figure 16. Dynamical behavior of the fan system in 
different environments

TABLE 3.  FLC tuning performance comparison for 
different tunings 

FLC 
Tuner

Evaluation 
function

Overshoot 
(%)

Rise Time
(Sec.)

Settling 
Time
(Sec.)

1st 
step   

3rd 
step

1st 
step   

3rd 
step

1st 
step   

3rd 
step

Man. 8.5612e+06 5.6 0.4 7.8 16.3 41.2 29.3

PSO 2.9798 e+06 2.5 1.7 7.2 6.4 22.5 16.1

GA 3.12594e+06 3.0 3.1 7.7 6.1 26.7 15.2

Table 3 presents a qualitative comparison of the 
three tunings applied to the FLC, displaying some 
of the main parameters in the control evaluation 
of a dynamic system.

It can be observed that the metaheuristics were able 
to find better conditions for the FLC, comparing to 
the manual adjustment, evidenced by the results of 
the main criteria of dynamic control of the system. 
The overshoot, rise time and settling time were 
smaller in both metaheuristics, i.e., faster transient 
response and more stability in the setpoint.

Despite the good result obtained manually for 
FLC, this method, based on the attempt error, 
requires a lot of effort from  the part of the 
operator, since in this FLC are at least 20 variables 
to find at the same time. The manual adjustment 
of the FLC presented a slow dynamic behaviour 
in the transient response of the setpoint change. 
The time period that the control signal needed to 
stabilize the reference value was considered long 
in relation to the time of other applied tunings.

Another important analysis is a comparison 
between the FLC, adjusted by the metaheuristic, 
and a control widely used in the industry, as in 
the case of Proportional Integral (PI), standard 
controller adopted by the CLP. Figure 17 shows the 
behavior of the system for this comparison. Note 
that the results were very similar, with a slight 
improvement of the FLC in the initial overshoot. 
This demonstrates that FLC can be applied in the 
control of plants with these characteristics in order 
to have a behavior similar to that obtained with 
the PI, and may even be better depending on the 
adjustment of the FLC parameters.

Figure 17. Dynamical behavior of the fan system 
with PI and FLC controllers

In addition, using the same methodology previously 
applied to the industrial fan system present in 
LAMOTRIZ, an FLC was made for two other 
systems, in order to expand and demonstrate its 
applicability in different situations. Two different 
systems, a Foucault brake system (see 18 (a)) and 
a pumping system (see Figure 18 (b).) The PI and 
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the FLC with metaheuristic adjustment are used 
again in both plants of the systems, it is possible 
to observe the controllers in the different plants of 
the systems have very similar characteristics.

Figure 18. Dynamical behavior of the different 
systems with PI and FLC controllers

The parameters of the FLC tuning by means of the 
optimization techniques have the ability to adapt 
to the required parameter setting requirements, 
virtually eliminating the requirement additional 
adjustments when compared to the conventional 
tuning methods (Lam et al., 2016 ). 

In this work, the application of metaheuristics 
PSO/GA to adjust the FLC was used only for 
the positions of parameters of the inferences 

of the error and error’s change, plus the output 
functions, not acting on the fuzzy rules system, 
which was predefined by the operator; despite 
the difficulty of  finding the 20 variables for the 
FLC, the dynamic behaviour resulting from the 
optimization showed significant improvements in 
the dynamic performance of the FLC.

6. Conclusion  

The FLC developed in ladder programming codes 
for PLC, using trapezoidal functions for MFs, 
was able to obtain good quality practical results. 
Similar methods of metaheuristic optimization 
based on population characteristics, particle 
swarm optimization and genetic algorithms were 
used with the main objective of improving the 
dynamic performance of the FLC, obtaining a 
higher performance in controlling the airflow of 
an industrial fan present in LAMOTRIZ. 

The total was 20 variables submitted to the 
optimization process, error, error’s change and 
output gains. The results obtained from the 
optimization were compared with the manually 
adjusted FLC performance.

Those results demonstrated the effectiveness of 
the metaheuristics techniques in the optimization 
of the FLC’s MFs parameters applying to PLC 
system, resulting in a control with a faster and 
stable response, without the necessity of any 
additional adjustment when implemented in the 
real control system. In general, it is possible to 
expand the application of this type of tuning to 
other control models, different types of plants, 
among other applications in the area of control 
and automation of industrial plants.
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