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1. Introduction

Machine Learning (ML) is beginning to have 
the impact on human society that has long been 
anticipated. In the past decade, we have seen ML 
move from labs to production with the wide-
scale adoption of human-facing technologies in 
visual recognition, speech recognition, language 
translation and medical diagnosis.

Many of these breakthroughs have been enabled 
by large-scale computer systems capable of 
processing massive amounts of data to learn 
patterns and make predictions. The success of big 
data and big computation are driving organizations 
to process even more data to unlock even more 
value from this data. In most cases, the value is 
realized from the decisions (or actions) the data 
enables, such as deciding what content to display, 
what medical tests or treatment to recommend, 
how to respond to a voice command, and how to 
flag anomalies. 

At the same time, ML has started being used 
to build better systems by optimizing their 
architecture and performance. Examples are 
designing better neural network architectures, 
improved scheduling, and video delivery. 

This positive feedback loop of systems improving 
ML, and ML improving systems is an exciting 
development that will accelerate the progress of 
both systems and ML.

1.1 Human tasks

Much of the recent progress in ML has been on 
“human-tasks”. By “human-tasks”, we mean 

cognitive and recognition tasks, including image 
and speech recognition, language translation, and 
playing games, such as computer games, chess, 
and go. The recent progress on solving these 
â€œhuman-levelâ€  tasks has been nothing short 
of extraordinary, resulting in solutions that have 
matched or even outperformed humans on these 
tasks [33, 38, 39].

1.2 Systems (non-human) tasks

While solving human level tasks has driven the 
recent advancements in ML, going forward, we 
believe that ML will have an even bigger impact 
on the economy and our society by solving non-
human or systems tasks. These tasks include 
improving industrial processes, optimizing 
architectures and system performance, and 
synthesize programs. 

However, using ML to solve non-human tasks 
poses new challenges. While a solution solving a 
human task does not need to be provably correct as 
long as it matches or exceeds the human accuracy, 
this is not the case for many non-human tasks 
which need to provide provably correct solutions. 
Examples of such tasks are controlling industrial 
processes, providing the result of a database query, 
or the output of a program.

The fundamental challenge of applying ML to 
system problems is thus the mismatch between 
the stochastic nature of most ML techniques, and 
the need for provable correctness guarantees. 
To address this challenge, we need to reframe 
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the problem. In this paper, we consider two 
approaches that allows us to reframe a system 
problem to leverage ML techniques without 
compromising the solution’s correctness: Correct 
by Construction, and Trust but Verify. Table 1 
summarizes these approaches.

1.2.1 Correct by Construction

We consider two approaches to generate provable 
correct solutions using ML. 

The first is to start with a solution that is correct 
and then apply a sequence of transformations, 
selected by an ML model, so that each 
transformation guarantees that the correctness 
and the semantics of the solution are preserved. 
The problem is then to come up with a sequence 
of such transformations and the order in which 
to apply these transformations, such that to 
improve the solution along some dimension, such 
as reducing the computation complexity or the 
space complexity. An example is optimizing the 
execution of an SQL query. In this case, we can 
start from an unoptimized but correct query plan, 
Q. Then, we optimize Q by applying one or more 
transformations, such as join reordering or pushing 
down predicates, to reduce its cost [6]. The key 
point here is that none of these transformations 
affect the correctness of Q. 

The second approach is to build the solution 
iteratively, such that we are guaranteed that the 
final result, but not necessary the intermediate 
ones, is correct. One example is deciding in which 
order to join the tables in the set. Because the join 
operation is both commutative and associative, we 
are guaranteed that once we joined all tables the 
result is correct. Obviously, as long as we have not 
joined all tables the result is not guaranteed to be 
correct, as we might miss data.

Table 1. Approaches of applying ML to non-human tasks to generate provably correct solutions.

 Approach Description Example

Correct by 
Construction

(a) Start from a correct solution that preserve the 
correctness in order to improve the solution along some 
dimension, such as performance 
(b) Start from a solution (not neecessarily correct) and 
iteratively apply transformations to build a provably 
correct solution

(a) Packet classifier (see Sec. 3.1). 
(b) Join optimization (see Sec. 3.4).

Trust but Verify Continuosly generate and verify solutions until a correct 
solution is found

Program synthesis (see Sec. 4.1); 
learned indexes (see Sec 4.2)

Thus, the key differences between the two 
approaches is that the former ensures that every 
intermediate solution is correct, while the later 
approach only guarantees that the final solution 
is correct.

1.2.2  Trust but Verify

In this case, we use an ML model to generate 
solutions until we find at least a correct one. 
This approach assumes that it is possible to 
(efficiently) verify a solution. One example 
is synthesizing a program from input-output 
examples. Upon synthesizing a program, we can 
check that it computes the desired output given 
the corresponding input. 

A variant of this approach is to verify the 
prediction of an ML prediction. 

2. Background: Machine Learning 
Techniques

In this section, we briefly present the two basic 
techniques used to solve the systems tasks we are 
considering in this paper: supervised learning and 
reinforcement learning.

2.1 Supervised Learning

Supervised learning is one of the most common 
and most successful techniques used in machine 
learning. Supervised learning is at the core of the 
recent advancements in ML, in particular, in solving 
human-level tasks such as image recognition, 
speech recognition, and language translation.

Fundamentally, supervised learning learns a 
function approximation, f(), from a set of input 
items, X, to a set of labels, L. For example, in the 
case of image recognition, the X consists of a set 
of images, and L consists of all labels or categories 
associated with images in X. Supervised learning 
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has two distinct phases: training and prediction. 
During training, we learn function f() (also called 
model) from a labeled dataset consisting of input/
output examples, e.g., Imagenet [21]. During 
prediction, f() takes an unlabeled input, a, and 
generates its label, f(a). During the past decade, 
deep neural networks (DNNs) have revolutionized 
supervised learning with their ability to learn 
complex functions on unstructured inputs.

2.2 Reinforcement Learning

With reinforcement learning (RL) [43] , a software 
agent continuously interacts with the environment 
by taking actions. Each action can change the state 
of the environment and generate a “reward”. The 
goal of RL is to learn a policy—that is, a mapping 
between the observed states of the environment 
and a set of actions—to maximize the cumulative 
reward. An RL algorithm that uses a DNN to 
approximate the policy is referred to as a Deep 
RL algorithm. Figure 1 shows the components of 
the reinforcement learning system. 

Recently, RL has shown the ability to solve some 
of the most difficult problems to date. These 
include learning to play Atari video games better 
than humans [33] and defeating the Go world 
champion [38]. In the case of playing Atari games, 
the environment is the game engine, the action is 
clicking on a particular key of the controller or 
keyboard, the observation is a screen shot, and the 
reward the score (shown on the screen). Similarly, 
in the case of Go, the environment is the board, 
the state is the position of the pieces on the board, 
the action is moving a piece on the board, and the 
reward is the results of the game.

As we will see next, due to its iterative nature and 
power, RL also plays an important role for solving 
non-human tasks.

3. Correct by Construction

There are two approaches to build correctly 
provable solutions using ML. 

The first is to start with a correct solution and 
apply a sequence of transformations, where 
each transformation preserves the correctness of 
the solution. The goal is to chose a sequence of 
transformations such that to improve the solution 
along some dimension, like performance. Note 
that this approach trivially guarantees that at every 
step the solution is correct. 

The second approach is to start from a solution 
(not necessary correct or complete) and apply a 
sequence of given transformations such we arrive to 
a provable correct solution. An example is finding 
the order in which we execute a set of operations, 
such that to optimize the performance. If the 
operations are both commutative and associative, 
any execution order will provide the same result.

In the reminder of this section, we provide four 
examples. The first tree illustrate the first approach 
and they are: building an efficient decision tree for 
packet classification, learning a order in which to 
apply the optimization phases to a program so we 
improve its execution speed, and optimizing the 
bit rate of a video streamed over the internet. The 
last example, which optimizes the join ordering 
of a SQL query, illustrates the second approach.

3.1 NeuroCuts: Network Packet 
Classification

3.1.1 The Problem

Packet classification is a building block for many 
network functionalities, including firewalls, 
access control, traffic engineering, and network 
measurement [11,25,45]. The goal of packet 

 
Figure 1. Reinforcement learning (RL) systems. An agent interacts with the environment by taking actions that can modify 

the state of the environment to learn a policy that maximizes a reward.  
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classification is to match a given packet to a rule 
from a set of rules, which dictates how a router 
processes that packet, e.g., forward it with high 
priority, drop it, or forward it to a specific network 
device. Given its importance, packet classification 
has received considerable attention over the past 
20 years, with many solutions being proposed. 

Figure 2 illustrates the typical architecture of the 
packet classifier. The packet classifier consists of a 
table containing a set of rules. A rule is a mapping 
between a filter on the fialds in the packet header 
and an action specifying how to act on the packets 
matching that filter. A filter consists of (a) two 
prefixes for both the source and destionatio IP 
addresses, (b) two ranges for both source and 
destination port numbers, and (c) the protocol 
type (e.g., TCP, UDP). A packet matches a filter 
if packet’s destination/source IP address matches 
the the filter’s destination/source prefixes, the 
destination/source port number is contained in 
the filter’s destination/source port number ranges, 
and the packet’s protocol type matches the filter’s 
protocol type. Since filters can overlap, the rules 
entries in the table also contain a priority field that 
specifies which rule should be applied when the 
packet matches multiple rules.

Ideally, a packet classifier should have both 
(a) low computation complexity, as we need to 
classify packets at the line rate, and (b) low space 
complexity, as high-speed memory is notoriously 
expensive and power hungry. Unfortunately, 
packet classification is similar to the point location 
problem in a multi-dimensional geometric 
space, which exhibits a hard tradeoff between 
computation and space complexities: the fields 
in the packet header represent the dimensions in 
the geometric space, a packet is represented as 
a point in this space, and a rule as a hypercube. 
In a d-dimensional geometric space with n non-

overlapping hypercubes and d dimensions, this 
problem has either (i) a lower bound of O(logn) 
time and  space, or (ii) a lower bound of  time and 
O(n) space [12]. Worse yet, packet classification 
is a harder problem since, as mentioned above, it 
allows rules to overlap.

Existing solutions for packet classification can 
be divided into two broad categories. Solutions 
in the first category are hardware-based. They 
leverage Ternary Content-Addressable Memories 
(TCAMs) to store all rules in an associative 
memory, and then match a packet to all these 
rules in parallel [22]. As a result, TCAMs provide 
constant classification time, but come with 
significant limitations. TCAMs are inherently 
complex, and this complexity leads to high cost 
and power consumption. This makes TCAM-
based solutions prohibitive for implementing large 
classifiers [45].

The solutions in the second category are software 
based. These solutions build sophisticated 
in-memory data structuresâ ”typically 
decision treesâ” to efficiently perform packet 
classification [25]. While these solutions are 
far more scalable than TCAM-based solutions, 
they are slower, as the classification operation 
needs to traverse the decision tree from the root 
to the matching leaf. Most existing solutions 
for packet classification aim to build a decision 
tree that exhibits low classification time (i.e., 
time complexity) and memory footprint (i.e., 
space complexity) [45]. Given a decision tree, 
classifying a packet reduces to walk the tree 
from the root to a leaf, and then chose the highest 
priority rule associated with that leaf. These 
solutions employ two general techniques to build 
decision trees for packet classification: 

 - Node cutting: split nodes in the decision tree by 
“cutting” them along one or more dimensions. 

 
Figure 2. The implementation of a packet classifier. Upon the arriving of a packet, the packet is matched to a rule in the 
table, and the corresponding action in the rule is applied on the packet. The rule table can contain 100K rules, or more.
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 - Rule partition: if a rule has a large size 
along one dimension, cutting along that 
dimension will result in that rule being 
added to many nodes. 

Figure 3 shows a simple example of a decision 
tree for six rules in a space with two options.

Figure 3. An example of six rules in a two dimensional 
space, and a possible decision tree

3.1.2 RL Formulation

There are two possible approaches to solve the 
classification problem using ML. The first is to 
use supervised learning to directly perform packet 
classification. In this case, we just learn a model 
whose input consists of the fields in a packet 
header, and the output is the class to which the 
packet belongs to. Unfortunately, this solution is 
not good enough because it cannot guarantee 100% 
accuracy. Given the fact that one of the main use 
cases of packet classification is security, having a 
packet classified incorrectly is a non starter.

Instead, one can use RL to build a decision tree 
that is provably correct [27]. Figure 4 shows the 
process of building the decision tree formulated 
as an RL problem. In short, we define the state, 
action, and reward, as follows:

 - state: The current decision tree. The initial 
state consists of a single node that covers 
all the rules. Upon a packet arrival, we 
search for the leaf in the decision tree that 
â€œcontainsâ€  that packet, and then we 
linearly search across all rules belonging to 
that leaf to find the rule matching the packet.

 - action: Pick a leaf node and either split 
it along a dimension or duplicate it. This 
basically reduces the number of rules 
associated with a node, which in turn reduces 
the classification complexity.

 - reward: Since we want to achieve both low 
computation and space complexities, the 
reward is the negative of a linear combination 
between the tree depth (which determine the 
computation complexity) and the tree size 
(which determines the space complexity. 

3.1.3 Results

Neurocuts outperforms the state-of-the-art 
solutions [27]. It improves the median of the 
classification time by 18% compared to existing 
solutions, and improves any existing solution 
by 3×, either in terms of memory capacity or 
classification time.

3.2 Autophase: Program optimization

3.2.1 The Problem

High-Level Synthesis (HLS) automates the 
process of creating digital hardware circuits from 
algorithms written in high-level languages. Modern 
HLS tools [7, 15, 46] use the same frontend as 
the traditional software compilers. They rely on 
traditional compiler techniques to optimize the 
input program’s intermediate representation (IR) 
and produce circuits in the form of register transfer 
level (RTL) code. Thus, the quality of compiler 
front-end optimizations directly impacts the 
performance of HLS-generated circuit. 

Program optimization is a notoriously difficult 
task. A program must be just in “the right form” 
for a compiler to recognize the optimization 
opportunities. This is a task a programmer might 

Figure 4. An illustration of applying RL to building a decision tree for packeet classification. The state represents the 
current decision tree, the action represents which leaf node to split or duplicate, and the reward is a negative of a linear 

combination between the tree depth and size.  
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be able to perform easily, but is often difficult 
for a compiler. Despite a decade of research on 
developing sophisticated optimization algorithms, 
an expert designer can still produce RTL that 
outperforms the results of HLS. 

The optimization of an HLS program consists of 
applying a sequence of analysis and optimization 
phases, where each phase in this sequence 
consumes the output of the previous phase, and 
generates a modified version of the program for 
the next phase. Unfortunately, these phases are 
not commutative which makes the order in which 
these phases are applied critical to the performance 
of the output. It is easy to construct programs in 
which the order in which the optimization phases 
are applied can be the difference between the 
program running in O(n2) versus O(n) [3]. 

It is thus crucial to determine the optimal 
phase ordering to maximize the circuit speeds. 
Unfortunately, not only is this a difficult task, but 
the optimal phase ordering may vary from program 
to program. Furthermore, it turns out that finding 
the optimal sequence of optimization phases is an 
NP-hard problem, and exhaustively evaluating all 
possible sequences is infeasible in practice. Again, 
like in the case of the previous example.

3.2.2 RL Formulation

In this problem, we assume we want to apply n 
passes out of a total of k≥n pasess, which give us 
a search space of size  [3]. Given a set of program 
features and the history of the passes already 
applied, the goal of RL is to learn the next best 
optimization pass a to apply so that to minimize 
the overall cycle count of the generated hardware 
circuit. Examples of program features are the 
number of memory accesses, number of returning 
instruction, etc. We formulate this problem as an 
RL problem as follows:

 - State / observation: The program features 
and the sequence of optimization phases that 
have been applied so far on the program.

 - Action: The next optimization phase to  
be applied. 

 - Reward: The difference between (1) the cycle 
count of the previous configuration, and (2) 
the cycle count of the current configuration. 
Note that positive reward corresponds to a 
reduction in the cycle count, and hence an 
increase in performance. 

3.2.3  Results

Autophase improves the performance of the best 
configured compilers by 29%s, and matches other 
state-of-the-art solutions, while requiring much 
fewer samples [3]. More importantly, unlike 
existing state-of-the-art solutions, our reinforcement 
learning solution can generalize to more than 
12,000 different programs after training on as few 
as a hundred programs for less than ten minutes.

3.3 Pensieve: Adaptive Video Streaming

3.3.1 The Problem

HTTP-based adaptive streaming (e.g., DASH [2]) 
is the predominant form of video delivery today. 
By transmitting video using HTTP, content 
providers are able to leverage existing CDN 
infrastructure and maintain simplified (stateless) 
backends. Further, HTTP is compatible with many 
client-side applications, including web browsers 
and mobile applications.

In DASH systems, videos are stored on servers 
as multiple chunks, each of which represents a 
few seconds of the overall video. Each chunk 
is encoded at several discrete bitrates, where a 
higher bitrate corresponds to a higher quality 
and thus a larger chunk size. Chunks across 
bitrates are aligned to support seamless quality 
transitions, i.e., a video player can switch to a 
different bitrate at any chunk boundary without 
fetching redundant bits or skipping parts of  
the video.

Adaptive bitrate (ABR) is the primary technique 
to optimize video quality. The algorithms based 
on this technique run on client-side video players 
and dynamically choose a bitrate for each video 
chunk (e.g., 5-second block). ABR algorithms 
make bitrate decisions based on various 
observations such as the estimated network 
throughput and playback buffer occupancy. Their 
goal is to maximize the userâ€™s quality of 
experience (QoE) by adapting the video bitrate 
to the underlying network conditions. However, 
selecting the right bitrate is challenging due to (1) 
the variability of network throughput [13, 42, 50, 
51], (2) the conflicting video QoE requirements 
(e.g., high bitrate, minimal rebuffering, 
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smoothness), (3) the cascading effects of bitrate 
decisions (e.g., selecting a high bitrate may drain 
the playback buffer to a dangerous level and cause 
rebuffering in the future), and (4) the coarse-
grained nature of ABR decisions. 

The majority of existing ABR algorithms are 
using a set of simple heuristics for making 
bitrate decisions based on estimated network 
throughput [17, 42] playback buffer size [14, 41], 
or a combination of the two signals [26]. These 
schemes require significant tuning and do not 
generalize to different network conditions and 
QoE objectives. The state-of-the-art approach, 
MPC [49], makes bitrate decisions by solving 
a QoE maximization problem over a horizon of 
several future chunks. By optimizing directly 
for the desired QoE objective, MPC can 
perform better than approaches that use fixed 
heuristics. However, MPC’s performance relies 
on an accurate model of the system dynamics, 
including the predicted network throughput. As a 
result, MPC is brittle in the face of even slightly 
inaccuracies of the performance model. 

3.3.2 RL Formulation

It turns out that it is quite simple to formulate 
the problem of optimizing the adaptive bit rate 
switching as an RL problem [29]:

 - Status: The buffer occupancy and the bitrate 
of the stream, as well as the available 
bandwidth measurements.

 - Action: Decide the bitrate of the next chunck. 

 - Reward: The quality as perceived by the user, 
i.e., QoE. 

3.3.3 Results

Using a broad set of network conditions and 
reward metrics,  [29] shows that Pensieve 
matches or exceeds the best existing schemes, by 
imporving the QoE by up to 25%. Furthermore, 
Pensieve has the ability to generalize to unseen 
network conditions and video properties. 

3.4 DQ: Join Optimization in Databases

3.4.1 The Problem

Arguably, the most expensive and difficult 
operation in databases is the join operation. It 
is expensive because the join of two tables can 
generate a result that is as large as the carthesian 
product between the two tables. It is difficult 
because it is very hard to predict the size of the 
result without doing the join itself, and this size 
can be anywhere between zero and the size of 
chartesian product of the two tables. 

The cost of joining multiple tables depends on the 
order in which these tables are joined. Figure 5 
shows a simple example of joinning three tables A, 
B, and C, respectively. In this example, we trivially 
assume the cost of a join plan is the total number 
of rows across all tables it generates. For example, 
the join plan shown in Figure 5(a) first joins A and 
B to generate a table with 7 rows, and then joins 

Figure 5. A simple example of joining three tables A, B, and C, respectively. There are three possible ways to join 
these tables. Here we show two: (a) (A⋈B)⋈C with a cost of 9, and (b) A⋈(B⋈C) with a cost of 5. Here the cost is simply 

computed as the total number of rows in all.
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this result table with table C to generate the final 
result, which consists of 2 rows. Thus, the total 
cost is 9. In contrast, if we join first B and C, as 
shown in Figure 5(b), then we get a cost of only 4. 
Note, that there is another possible join plan where 
we first join A and C, not shown in Figure 5.

Given n tables, our goal is to find a query plan, 
i.e., an order in which we join the tables, that 
minimizes the cost of joining all n tables. Since 
the join operation is both commutative and 
associative, the order in which we join the tables 
has no impact on the result. As such, to guarantee 
the result’s correctness we just need to guarantee 
that all n tables are joined exactly ones.

Unfortunately, there are n! possible ways in which 
we can join n tables. Even for modest values of n, 
evaluating all possible join orders is not feasible. 
Given its difficulty and performance implications, 
join optimization has been studied for more than 
four decades [37] and continues to be an active 
area of research [30, 34, 37]. To reduce the 
problem’s combinatorial complexity, solutions 
typically employ heuristics. For example, classical 
System R-style dynamic programs often restrict 
its search space to certain shapes (e.g., “left-deep” 
join plans). Since for large joins these heuristics 
are not always enough to reduce the search space 
to a tractable size, query optimizers sometimes 
apply further heuristics, such as genetic [1] or 
randomized [34] algorithms. Unfortunately, in 
edge cases, these heuristics are brittle and can 
generate poor plans [24]. 

3.4.2 ML Formulation

In the light of the recent advances in ML, a new 
trend in database research explores replacing 
programmed heuristics with learned ones [4, 18, 
19, 28, 30–32, 35].

Next, we present one of the most recent works 
in this line of research that leverages RL to 

solve the optimization problem, called Deep 
Queries (DQ) [20]. The join ordering problem is 
formulated as an RL problem as follows:

 - state: The set of tables joined so far. 

 - action: The table to join next. 

 - reward: The negative of the estimated cost. 
We take the negative since the RL algorithms 
typically aim to maximize the reward, while 
in this case we want to minimize the cost. 

Figure 6 illustrates the application of RL to the 
join optimization problem. The entire state is 
represented as a binary string with the length equal 
to the number of tables we want to join. An 1 bit 
means that the corresponding table has been already 
joined, while a 0 bit means that the table has not 
been joined yet. For the initial state, we randomly 
select two tables to join, in this case tables T0 and 
T4. Then, at each step, the RL algorithm selects the 
next table to join. In our example, the RL algorithm 
first selects T8, then T1, and so on until all tables 
are joined. As a policiy, the solution uses DQN, an 
approximation of the classic Q-learning algorithm 
by a neural network [33]. 

With any RL algorithm, one natural question is 
sample efficiency, i.e., how many query examples 
we need to learn a good policy. The RL algorithms 
are notoriously data-inefficient. Indeed, typical 
RL settings, such as the Atari games [33], require 
hundreds of thousands of training examples! 
Fortunately, in our case, we can exploit the optimal 
subplan structure specific to join optimization to 
collect a large amount of high-quality training 
data. From a single query that passes through a 
native optimizer, not only are the final plan and 
its total cost collected as a training example, 
but all of its subplans. For instance, planning 
an 18-relation join query (i.e., Query 64 in the 

Figure 6. An illustration of applying RL to optimize joins. The state is represented by a binary string indicating which tables 
have been already joined, the action indicates which table should be joined next, and the reward is the negative of the cost.
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TPC-DS benchmark) using the traditional bushy 
optimzier can yield up to 600,000 training data 
points. This is because, in addition to the final 
results, we can use every partial result in the query 
plan as a training example. For instance, when we 
execute the query plan in Figure 5, we learn not 
only the cost of generating the result, but also the 
cost of the sub-plane joining A and B. 

3.4.3 Results

While simple, this solutions achieves remarkable 
results [20]. Under a variety of cost models, 
DQ achieves speedups in planning times (up 
to >200×) relative to dynamic programming 
enumeration, while essentially matching the 
execution times of optimal plans computed by the 
native enumeration-based optimizers. Even more 
impressivley, DQ is particularly robust under 
non-linear cost models such as memory limits or 
materialization. On two simulated cost models 
with significant non-linearities, DQ improves on 
the plan quality of the next best heuristic over a 
set of DQ baselines by 1.7× and 3×, respectively. 
In summary, DQ approaches the optimization time 
efficiency of programmed heuristics and the plan 
quality of optimal enumeration.

4. Trust but Verify

The main assumption behind this approach is that 
it is possible to (efficiently) verify a solution’s 
correctness. There are two patterns in which to 
apply this approach. 

The first pattern is during the training phase. We 
continuously generate solutions and verify their 
correctness until at least a correct solution is found.

The second pattern is during the prediction phase. 
We verify each prediction, and, if incorrect, we 
possibly imvoke a provably correct but less 
desirable (i.e., slow) one.

4.1 Autopandas: Program Synthesis

This example illustrates the first pattern of our 
approach. We generate solutions (i.e., programs) 
until we find a correct one. Here the “correctness” 
is defined by checking whether the program 
generates a set of expected outputs, given a set 
of inputs. 

4.1.1 The Problem

Developers are increasingly using powerful 
APIs, often packaged in popular libraries, to 
build sophisticated applications. Using such APIs 
allows developers to (1) build applications faster 
as they obviate the need of writing large amounts 
of code, and (2) build more robust applications, as 
the code behind these APIs is typically well tested. 

Unfortunately, the price to pay for these powerful 
and versatile APIs is a steep learning curve, as 
often there are hundreds of APIs one needs to 
master for each type of application or workload. 
Indeed, popular Python libraries, such as NumPy 
and Pandas have each hundreds of APIs, and 
each of these APIs can have tens of arguments. 
Furthermore, the documentation of all of these 
APIs is of varying quality. Worse yet, modern 
APIs are frequently updated, so tutorials, blog 
posts, and other external resources on the API 
can quickly fall out of date. All these factors 
make it difficult for developers to learn the API 
sufficiently well to use it efficiently. 

As a result, developers often resort to asking their 
more experienced colleagues or leverage on-line 
forums, such as StackOverflow. Unfortunately, 
none of these venues is ideal. It’s not always that a 
developer has access to an expert when she needs 
one, and questions on StackOverflow might take 
days to answer. 

The one alternative is to design systems to 
automatically answer these questions based on the 
hints provided by the users. One example of such 
hints are examples of inputs and outputs. Indeed, 
given an input, the developer often knows what 
is the output she wants, but doesn’t know which 
function calls to use to get that output. 

Thus, the problem we want to address is: 
generate a sequence of API calls which applied 
on the given input(s) will generate the specified 
output(s). This is similar to the program synthesis 
problem, a notoriously difficult problem, which 
has received considerable attention over the past 
two decades. However, so far there has been 
little progress beyond simple program examples, 
typically written in domain specific languages 
(DSLs). Examples of past solutions include string 
processing [10, 36]. data wrangling [8, 9, 23], data 
processing [40, 47], database queries [48] and bit-
vector manipulations [16]. 
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4.1.2 ML Formulation

Recently, several works have aimed to synthesis 
small programs for several popular APIs 
and languages. Of these, here we consider 
Autopandas [5] which uses ML to generate 
short sequence of APIs calls from input/output 
examples for the popular Pandas library, the de 
facto standard for data scientists.

The approach taken in [5] is to use a neural network 
model that learns to “predict” (generate) programs 
from one or more pairs of input/output examples. 
For each program being generated, we then check 
whether the output it creates matches the desired 
output, and, if yes, we select that program. If not, 
we continue to generate new programs until we 
find one that computes the desired output from 
the given input. Figure 7 illustrate this approach. 
A variant of this approach is not to stop when 
we find the first program generated the desired 
output, but continue until a timeout expires. The 
main reason is that the problem is in most cases 
unspecified, i.e., given an input, there are many 
programs computing the same output. This gives 
a chance to the developers to pick one of the many 
possible valid programs. 

 
Figure 7. Using a model to generate programs until a 

correct one is found. A correct program is defined as the 
one generating the expected output from a given input.

The main challenge with this approach is that 
the state-space is huge. For example, even if we 
consider single-function programs, the number of 
such programs is . In practice, this huge search 
space makes it very hard, if not infeasible, to train 
an accurate model to solve this problem. 

Unfortunately, there is a key observation that 
allows us to dramatically reduce the search space: 
API functions often place constraints on the 
arguments beyond type. In Python, they can also 
accept multiple types for a single argument, with 

different constraints for each type. Thus, many 
combinations of arguments do not make sense.

Autopandas leverages this information and 
combines expert knowledge with stoochastic 
search to address this problem. In particular, 
for each API function, Autopandas employs a 
generator, written by an expert that captures the 
semantics constraints of the function’s arguments. 
Then, for each argument of each function it trains 
a neural network to predict the arguments of that 
function. This considerably reduces the search 
space. For single function programs, Autopandas 
reduces the search space from to a reduction!

4.1.3 Results

Using real-world banchmarks from Pandas 
tutorials and StackOverflow questions, 
Autopandas can efficiently provide the same 
answer as the one provided by human experts in 
65% of cases for single-function programs. For 
two-function programs, these numbers are 40%, 
and 73%, respectively. And, for three-function 
programs, these numbers are 35%, and 60%, 
respectively. For context, 95% of the answers in 
StackOverflow are no longer than three functions. 

While we are still far from solving the general 
synthesis problem, these are promissing results, 
especially as it targets a much broader domain 
than what current state-of-the-art programming-
by-example synthesis systems handle.

4.2 Learned Index Structures

This example illustrates the second pattern 
of the “trust but verify” approach, i.e., verify 
every prediction, and, if incorrect, fall back on a 
provably correct but less efficient one. 

4.2.1 The problem

To improve data access performance in many 
applications, such as databases and file systems, 
designers use sophisticated data structures such as 
B-Trees, hash tables, and Bloom filters. Because 
of their importance, indexes have been some of 
the most studied and optimized data structures 
over the past decades. However, despite the 
attention they received, the existing solutions 
assume nothing about data distribution, and, as 
a result, they fail to take advantage of common 
access patterns and distributions. 
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4.2.2 The ML formulation

Recent work [19] has proposed to fill this gap 
by using ML to learn indexes for a given data 
distribution and access pattern. The intuition 
behind this approach is that fundamentally an 
index maps a key to the location of the record 
associated to that key. This is essentially a 
prediction operation: given a key, “predict” the 
location of the record with that key. An ML 
approach can learn a model for this mapping by 
training the model against queries to the dataset. 
By doing so, the model will be optimized for the 
query workload and key distribution in the dataset.

We assume a setting in which data consists of 
(key, value) pairs, also called records, sorted by 
their keys. These records are stored in pages (or 
blocks), n records per page. A page reperesents 
the unit of storage access, i.e., the reads and writes 
occur at the page granularity. Thus, a range-based 
index, such as B-Trees, needs to predict the page 
containing the record corresponding to that key. 
To perform this prediction,  [19] proposes using 
neural networks to learn the mapping from key to 
the page containing that key. 

An evolution of this approach is to use a tree of 
models, instead of a single model, where each 
model in the tree selects one of its descendents. 
Eventually, the leaf models point to pages. Using a 
tree of models, enables us to specialize models for 
different regions of the key space, which is highly 
desirable when the density of the keys in the key 
space vary widely. 

Unfortunately, using a neural network model 
to predict the location of a record is not 100% 
accurate. This means that sometimes, we will get 
a wrong page, i.e., a page that does not contain 
the given key. The important point to note here 
is that when this happens it will only affect the 
performance and not correctness. This is because 
we can easily verify whether the answer is correct. 
Since ultimately the record we are looking stores 
the key, we can always check that we got the 
right record. If the model predicts the wrong 
page, we can use a traditional index structure (or 
even scan the data) to locate the desired record. 
While locating the record when the prediction fails 
can take significantly longer, the hope is that the 
prediction operation takes much less than using 
a traditional index structure, and that the model 
accuracy is high enough.

4.2.3 Result

The initial results in  [19] show that by using 
neural nets we are able to outperform cache-
optimized B-Trees by up to 70% in speed while 
saving an order-of-magnitude in memory over 
several real-world data sets.

5. Conclusions

In this paper, we argue that while the ML has 
achieved tremendous successes over the past 
decade by solving many human-level tasks, such 
as video recognition, speech recognition, and 
language translation, going forward, ML has the 
potential to have an even bigger impact on solving 
hard systems problems by optimizing existing 
algorithms that either exhibit combinatorial 
complexity or employ brittle heuristics.

However, solving these problems require solutions 
that are provably correct, which is difficult to 
achieve by using an end-to-end ML approach, 
as ML techniques, such as deep neural networks 
(DNNs), are stochastic in nature. To address 
this challenge, in this paper we discussed two 
approaches to solve these problems. 

The first approach is to generate provably 
correct solutions. There are two ways to do 
this: (a) start from a correct solution and apply 
transformations that preserve the solution’s 
correctness, and (2) chose the starting solution 
and the transformations such that to guarantee 
we end up with a correct solution.

The second approach is to generate solutions 
whose correctness can be (efficiently) verified. In 
this case, we keep generating solutions until we 
find a correct one. 

To illustrate these approaches, we presented 
several examples in the area of software systems. 
While the results are promising, we believe this 
is just the beginning, and we will see a rapid 
progress in applying ML to virtually any system 
and engineering problem for which the current 
solutions fall short. We hope this paper will inspire 
the reader to apply these approaches, or come up 
with new ones, to her own area of research. 
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