
119

ICI Bucharest © Copyright 2012-2019. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Machine Learning (ML) is beginning to have
the impact on human society that has long been
anticipated. In the past decade, we have seen ML
move from labs to production with the wide-
scale adoption of human-facing technologies in
visual recognition, speech recognition, language
translation and medical diagnosis.

Many of these breakthroughs have been enabled
by large-scale computer systems capable of
processing massive amounts of data to learn
patterns and make predictions. The success of big
data and big computation are driving organizations
to process even more data to unlock even more
value from this data. In most cases, the value is
realized from the decisions (or actions) the data
enables, such as deciding what content to display,
what medical tests or treatment to recommend,
how to respond to a voice command, and how to
flag anomalies.

At the same time, ML has started being used
to build better systems by optimizing their
architecture and performance. Examples are
designing better neural network architectures,
improved scheduling, and video delivery.

This positive feedback loop of systems improving
ML, and ML improving systems is an exciting
development that will accelerate the progress of
both systems and ML.

1.1 Human tasks

Much of the recent progress in ML has been on
“human-tasks”. By “human-tasks”, we mean

cognitive and recognition tasks, including image
and speech recognition, language translation, and
playing games, such as computer games, chess,
and go. The recent progress on solving these
â€œhuman-levelâ€ tasks has been nothing short
of extraordinary, resulting in solutions that have
matched or even outperformed humans on these
tasks [33, 38, 39].

1.2 Systems (non-human) tasks

While solving human level tasks has driven the
recent advancements in ML, going forward, we
believe that ML will have an even bigger impact
on the economy and our society by solving non-
human or systems tasks. These tasks include
improving industrial processes, optimizing
architectures and system performance, and
synthesize programs.

However, using ML to solve non-human tasks
poses new challenges. While a solution solving a
human task does not need to be provably correct as
long as it matches or exceeds the human accuracy,
this is not the case for many non-human tasks
which need to provide provably correct solutions.
Examples of such tasks are controlling industrial
processes, providing the result of a database query,
or the output of a program.

The fundamental challenge of applying ML to
system problems is thus the mismatch between
the stochastic nature of most ML techniques, and
the need for provable correctness guarantees.
To address this challenge, we need to reframe

Studies in Informatics and Control, 28(2) 119-132, June 2019

https://doi.org/10.24846/v28i2y201901

Solving System Problems with Machine Learning
Ion STOICA
Computer Science Division, University of California, Berkeley, 465 Soda Hall, CA 94720-1776, USA
istoica@cs.berkeley.edu

Abstract: Over the past decade, Machine Learning (ML) has achieved tremendous successes and has seen wide-scale
adoption for human-facing tasks, such as visual recognition, speech recognition, language translation and medical diagnosis.
However, going forward, we contend that ML has an even higher potential for impact by solving hard systems problems,
such as improving industrial processes, supply chain optimization, and automatic program generation. One challenge is
that solving many of these problems require solutions that are provably correct, which is at odds with the ML techniques
which are stochastic in nature. In this paper, we consider this challenge and propose two approaches of using ML to solve
system problems. The first approach, called correct by construction, is to generate provably correct solutions, for example,
by starting from a correct solution, and applying ML-guided transformations that preserve the solution’s correctness. The
second approach, called trust but verify, is to generate solutions whose correctness can be (efficiently) verified, and then keep
generating solutions until we find a correct one. To illustrate these approaches, we present several examples in the area of
software systems, and show how using ML can provide significant improvements over state-of-the-art solutions which were
refined over decades.

Keywords: Machine Learning, Systems, Reinforcement Learning, Optimization, Data structures, SQL.

https://www.sic.ici.ro

120 Ion Stoica

the problem. In this paper, we consider two
approaches that allows us to reframe a system
problem to leverage ML techniques without
compromising the solution’s correctness: Correct
by Construction, and Trust but Verify. Table 1
summarizes these approaches.

1.2.1 Correct by Construction

We consider two approaches to generate provable
correct solutions using ML.

The first is to start with a solution that is correct
and then apply a sequence of transformations,
selected by an ML model, so that each
transformation guarantees that the correctness
and the semantics of the solution are preserved.
The problem is then to come up with a sequence
of such transformations and the order in which
to apply these transformations, such that to
improve the solution along some dimension, such
as reducing the computation complexity or the
space complexity. An example is optimizing the
execution of an SQL query. In this case, we can
start from an unoptimized but correct query plan,
Q. Then, we optimize Q by applying one or more
transformations, such as join reordering or pushing
down predicates, to reduce its cost [6]. The key
point here is that none of these transformations
affect the correctness of Q.

The second approach is to build the solution
iteratively, such that we are guaranteed that the
final result, but not necessary the intermediate
ones, is correct. One example is deciding in which
order to join the tables in the set. Because the join
operation is both commutative and associative, we
are guaranteed that once we joined all tables the
result is correct. Obviously, as long as we have not
joined all tables the result is not guaranteed to be
correct, as we might miss data.

Table 1. Approaches of applying ML to non-human tasks to generate provably correct solutions.

 Approach Description Example

Correct by
Construction

(a) Start from a correct solution that preserve the
correctness in order to improve the solution along some
dimension, such as performance
(b) Start from a solution (not neecessarily correct) and
iteratively apply transformations to build a provably
correct solution

(a) Packet classifier (see Sec. 3.1).
(b) Join optimization (see Sec. 3.4).

Trust but Verify Continuosly generate and verify solutions until a correct
solution is found

Program synthesis (see Sec. 4.1);
learned indexes (see Sec 4.2)

Thus, the key differences between the two
approaches is that the former ensures that every
intermediate solution is correct, while the later
approach only guarantees that the final solution
is correct.

1.2.2 Trust but Verify

In this case, we use an ML model to generate
solutions until we find at least a correct one.
This approach assumes that it is possible to
(efficiently) verify a solution. One example
is synthesizing a program from input-output
examples. Upon synthesizing a program, we can
check that it computes the desired output given
the corresponding input.

A variant of this approach is to verify the
prediction of an ML prediction.

2. Background: Machine Learning
Techniques

In this section, we briefly present the two basic
techniques used to solve the systems tasks we are
considering in this paper: supervised learning and
reinforcement learning.

2.1 Supervised Learning

Supervised learning is one of the most common
and most successful techniques used in machine
learning. Supervised learning is at the core of the
recent advancements in ML, in particular, in solving
human-level tasks such as image recognition,
speech recognition, and language translation.

Fundamentally, supervised learning learns a
function approximation, f(), from a set of input
items, X, to a set of labels, L. For example, in the
case of image recognition, the X consists of a set
of images, and L consists of all labels or categories
associated with images in X. Supervised learning

	 121

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

has two distinct phases: training and prediction.
During training, we learn function f() (also called
model) from a labeled dataset consisting of input/
output examples, e.g., Imagenet [21]. During
prediction, f() takes an unlabeled input, a, and
generates its label, f(a). During the past decade,
deep neural networks (DNNs) have revolutionized
supervised learning with their ability to learn
complex functions on unstructured inputs.

2.2 Reinforcement Learning

With reinforcement learning (RL) [43] , a software
agent continuously interacts with the environment
by taking actions. Each action can change the state
of the environment and generate a “reward”. The
goal of RL is to learn a policy—that is, a mapping
between the observed states of the environment
and a set of actions—to maximize the cumulative
reward. An RL algorithm that uses a DNN to
approximate the policy is referred to as a Deep
RL algorithm. Figure 1 shows the components of
the reinforcement learning system.

Recently, RL has shown the ability to solve some
of the most difficult problems to date. These
include learning to play Atari video games better
than humans [33] and defeating the Go world
champion [38]. In the case of playing Atari games,
the environment is the game engine, the action is
clicking on a particular key of the controller or
keyboard, the observation is a screen shot, and the
reward the score (shown on the screen). Similarly,
in the case of Go, the environment is the board,
the state is the position of the pieces on the board,
the action is moving a piece on the board, and the
reward is the results of the game.

As we will see next, due to its iterative nature and
power, RL also plays an important role for solving
non-human tasks.

3. Correct by Construction

There are two approaches to build correctly
provable solutions using ML.

The first is to start with a correct solution and
apply a sequence of transformations, where
each transformation preserves the correctness of
the solution. The goal is to chose a sequence of
transformations such that to improve the solution
along some dimension, like performance. Note
that this approach trivially guarantees that at every
step the solution is correct.

The second approach is to start from a solution
(not necessary correct or complete) and apply a
sequence of given transformations such we arrive to
a provable correct solution. An example is finding
the order in which we execute a set of operations,
such that to optimize the performance. If the
operations are both commutative and associative,
any execution order will provide the same result.

In the reminder of this section, we provide four
examples. The first tree illustrate the first approach
and they are: building an efficient decision tree for
packet classification, learning a order in which to
apply the optimization phases to a program so we
improve its execution speed, and optimizing the
bit rate of a video streamed over the internet. The
last example, which optimizes the join ordering
of a SQL query, illustrates the second approach.

3.1 NeuroCuts: Network Packet
Classification

3.1.1 The Problem

Packet classification is a building block for many
network functionalities, including firewalls,
access control, traffic engineering, and network
measurement [11,25,45]. The goal of packet

Figure 1. Reinforcement learning (RL) systems. An agent interacts with the environment by taking actions that can modify

the state of the environment to learn a policy that maximizes a reward.

https://www.sic.ici.ro

122 Ion Stoica

classification is to match a given packet to a rule
from a set of rules, which dictates how a router
processes that packet, e.g., forward it with high
priority, drop it, or forward it to a specific network
device. Given its importance, packet classification
has received considerable attention over the past
20 years, with many solutions being proposed.

Figure 2 illustrates the typical architecture of the
packet classifier. The packet classifier consists of a
table containing a set of rules. A rule is a mapping
between a filter on the fialds in the packet header
and an action specifying how to act on the packets
matching that filter. A filter consists of (a) two
prefixes for both the source and destionatio IP
addresses, (b) two ranges for both source and
destination port numbers, and (c) the protocol
type (e.g., TCP, UDP). A packet matches a filter
if packet’s destination/source IP address matches
the the filter’s destination/source prefixes, the
destination/source port number is contained in
the filter’s destination/source port number ranges,
and the packet’s protocol type matches the filter’s
protocol type. Since filters can overlap, the rules
entries in the table also contain a priority field that
specifies which rule should be applied when the
packet matches multiple rules.

Ideally, a packet classifier should have both
(a) low computation complexity, as we need to
classify packets at the line rate, and (b) low space
complexity, as high-speed memory is notoriously
expensive and power hungry. Unfortunately,
packet classification is similar to the point location
problem in a multi-dimensional geometric
space, which exhibits a hard tradeoff between
computation and space complexities: the fields
in the packet header represent the dimensions in
the geometric space, a packet is represented as
a point in this space, and a rule as a hypercube.
In a d-dimensional geometric space with n non-

overlapping hypercubes and d dimensions, this
problem has either (i) a lower bound of O(logn)
time and space, or (ii) a lower bound of time and
O(n) space [12]. Worse yet, packet classification
is a harder problem since, as mentioned above, it
allows rules to overlap.

Existing solutions for packet classification can
be divided into two broad categories. Solutions
in the first category are hardware-based. They
leverage Ternary Content-Addressable Memories
(TCAMs) to store all rules in an associative
memory, and then match a packet to all these
rules in parallel [22]. As a result, TCAMs provide
constant classification time, but come with
significant limitations. TCAMs are inherently
complex, and this complexity leads to high cost
and power consumption. This makes TCAM-
based solutions prohibitive for implementing large
classifiers [45].

The solutions in the second category are software
based. These solutions build sophisticated
in-memory data structuresâ ”typically
decision treesâ” to efficiently perform packet
classification [25]. While these solutions are
far more scalable than TCAM-based solutions,
they are slower, as the classification operation
needs to traverse the decision tree from the root
to the matching leaf. Most existing solutions
for packet classification aim to build a decision
tree that exhibits low classification time (i.e.,
time complexity) and memory footprint (i.e.,
space complexity) [45]. Given a decision tree,
classifying a packet reduces to walk the tree
from the root to a leaf, and then chose the highest
priority rule associated with that leaf. These
solutions employ two general techniques to build
decision trees for packet classification:

-- Node cutting: split nodes in the decision tree by
“cutting” them along one or more dimensions.

Figure 2. The implementation of a packet classifier. Upon the arriving of a packet, the packet is matched to a rule in the
table, and the corresponding action in the rule is applied on the packet. The rule table can contain 100K rules, or more.

	 123

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

-- Rule partition: if a rule has a large size
along one dimension, cutting along that
dimension will result in that rule being
added to many nodes.

Figure 3 shows a simple example of a decision
tree for six rules in a space with two options.

Figure 3. An example of six rules in a two dimensional
space, and a possible decision tree

3.1.2 RL Formulation

There are two possible approaches to solve the
classification problem using ML. The first is to
use supervised learning to directly perform packet
classification. In this case, we just learn a model
whose input consists of the fields in a packet
header, and the output is the class to which the
packet belongs to. Unfortunately, this solution is
not good enough because it cannot guarantee 100%
accuracy. Given the fact that one of the main use
cases of packet classification is security, having a
packet classified incorrectly is a non starter.

Instead, one can use RL to build a decision tree
that is provably correct [27]. Figure 4 shows the
process of building the decision tree formulated
as an RL problem. In short, we define the state,
action, and reward, as follows:

-- state: The current decision tree. The initial
state consists of a single node that covers
all the rules. Upon a packet arrival, we
search for the leaf in the decision tree that
â€œcontainsâ€ that packet, and then we
linearly search across all rules belonging to
that leaf to find the rule matching the packet.

-- action: Pick a leaf node and either split
it along a dimension or duplicate it. This
basically reduces the number of rules
associated with a node, which in turn reduces
the classification complexity.

-- reward: Since we want to achieve both low
computation and space complexities, the
reward is the negative of a linear combination
between the tree depth (which determine the
computation complexity) and the tree size
(which determines the space complexity.

3.1.3 Results

Neurocuts outperforms the state-of-the-art
solutions [27]. It improves the median of the
classification time by 18% compared to existing
solutions, and improves any existing solution
by 3×, either in terms of memory capacity or
classification time.

3.2 Autophase: Program optimization

3.2.1 The Problem

High-Level Synthesis (HLS) automates the
process of creating digital hardware circuits from
algorithms written in high-level languages. Modern
HLS tools [7, 15, 46] use the same frontend as
the traditional software compilers. They rely on
traditional compiler techniques to optimize the
input program’s intermediate representation (IR)
and produce circuits in the form of register transfer
level (RTL) code. Thus, the quality of compiler
front-end optimizations directly impacts the
performance of HLS-generated circuit.

Program optimization is a notoriously difficult
task. A program must be just in “the right form”
for a compiler to recognize the optimization
opportunities. This is a task a programmer might

Figure 4. An illustration of applying RL to building a decision tree for packeet classification. The state represents the
current decision tree, the action represents which leaf node to split or duplicate, and the reward is a negative of a linear

combination between the tree depth and size.

https://www.sic.ici.ro

124 Ion Stoica

be able to perform easily, but is often difficult
for a compiler. Despite a decade of research on
developing sophisticated optimization algorithms,
an expert designer can still produce RTL that
outperforms the results of HLS.

The optimization of an HLS program consists of
applying a sequence of analysis and optimization
phases, where each phase in this sequence
consumes the output of the previous phase, and
generates a modified version of the program for
the next phase. Unfortunately, these phases are
not commutative which makes the order in which
these phases are applied critical to the performance
of the output. It is easy to construct programs in
which the order in which the optimization phases
are applied can be the difference between the
program running in O(n2) versus O(n) [3].

It is thus crucial to determine the optimal
phase ordering to maximize the circuit speeds.
Unfortunately, not only is this a difficult task, but
the optimal phase ordering may vary from program
to program. Furthermore, it turns out that finding
the optimal sequence of optimization phases is an
NP-hard problem, and exhaustively evaluating all
possible sequences is infeasible in practice. Again,
like in the case of the previous example.

3.2.2 RL Formulation

In this problem, we assume we want to apply n
passes out of a total of k≥n pasess, which give us
a search space of size [3]. Given a set of program
features and the history of the passes already
applied, the goal of RL is to learn the next best
optimization pass a to apply so that to minimize
the overall cycle count of the generated hardware
circuit. Examples of program features are the
number of memory accesses, number of returning
instruction, etc. We formulate this problem as an
RL problem as follows:

-- State / observation: The program features
and the sequence of optimization phases that
have been applied so far on the program.

-- Action: The next optimization phase to
be applied.

-- Reward: The difference between (1) the cycle
count of the previous configuration, and (2)
the cycle count of the current configuration.
Note that positive reward corresponds to a
reduction in the cycle count, and hence an
increase in performance.

3.2.3 Results

Autophase improves the performance of the best
configured compilers by 29%s, and matches other
state-of-the-art solutions, while requiring much
fewer samples [3]. More importantly, unlike
existing state-of-the-art solutions, our reinforcement
learning solution can generalize to more than
12,000 different programs after training on as few
as a hundred programs for less than ten minutes.

3.3 Pensieve: Adaptive Video Streaming

3.3.1 The Problem

HTTP-based adaptive streaming (e.g., DASH [2])
is the predominant form of video delivery today.
By transmitting video using HTTP, content
providers are able to leverage existing CDN
infrastructure and maintain simplified (stateless)
backends. Further, HTTP is compatible with many
client-side applications, including web browsers
and mobile applications.

In DASH systems, videos are stored on servers
as multiple chunks, each of which represents a
few seconds of the overall video. Each chunk
is encoded at several discrete bitrates, where a
higher bitrate corresponds to a higher quality
and thus a larger chunk size. Chunks across
bitrates are aligned to support seamless quality
transitions, i.e., a video player can switch to a
different bitrate at any chunk boundary without
fetching redundant bits or skipping parts of
the video.

Adaptive bitrate (ABR) is the primary technique
to optimize video quality. The algorithms based
on this technique run on client-side video players
and dynamically choose a bitrate for each video
chunk (e.g., 5-second block). ABR algorithms
make bitrate decisions based on various
observations such as the estimated network
throughput and playback buffer occupancy. Their
goal is to maximize the userâ€™s quality of
experience (QoE) by adapting the video bitrate
to the underlying network conditions. However,
selecting the right bitrate is challenging due to (1)
the variability of network throughput [13, 42, 50,
51], (2) the conflicting video QoE requirements
(e.g., high bitrate, minimal rebuffering,

	 125

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

smoothness), (3) the cascading effects of bitrate
decisions (e.g., selecting a high bitrate may drain
the playback buffer to a dangerous level and cause
rebuffering in the future), and (4) the coarse-
grained nature of ABR decisions.

The majority of existing ABR algorithms are
using a set of simple heuristics for making
bitrate decisions based on estimated network
throughput [17, 42] playback buffer size [14, 41],
or a combination of the two signals [26]. These
schemes require significant tuning and do not
generalize to different network conditions and
QoE objectives. The state-of-the-art approach,
MPC [49], makes bitrate decisions by solving
a QoE maximization problem over a horizon of
several future chunks. By optimizing directly
for the desired QoE objective, MPC can
perform better than approaches that use fixed
heuristics. However, MPC’s performance relies
on an accurate model of the system dynamics,
including the predicted network throughput. As a
result, MPC is brittle in the face of even slightly
inaccuracies of the performance model.

3.3.2 RL Formulation

It turns out that it is quite simple to formulate
the problem of optimizing the adaptive bit rate
switching as an RL problem [29]:

-- Status: The buffer occupancy and the bitrate
of the stream, as well as the available
bandwidth measurements.

-- Action: Decide the bitrate of the next chunck.

-- Reward: The quality as perceived by the user,
i.e., QoE.

3.3.3 Results

Using a broad set of network conditions and
reward metrics, [29] shows that Pensieve
matches or exceeds the best existing schemes, by
imporving the QoE by up to 25%. Furthermore,
Pensieve has the ability to generalize to unseen
network conditions and video properties.

3.4 DQ: Join Optimization in Databases

3.4.1 The Problem

Arguably, the most expensive and difficult
operation in databases is the join operation. It
is expensive because the join of two tables can
generate a result that is as large as the carthesian
product between the two tables. It is difficult
because it is very hard to predict the size of the
result without doing the join itself, and this size
can be anywhere between zero and the size of
chartesian product of the two tables.

The cost of joining multiple tables depends on the
order in which these tables are joined. Figure 5
shows a simple example of joinning three tables A,
B, and C, respectively. In this example, we trivially
assume the cost of a join plan is the total number
of rows across all tables it generates. For example,
the join plan shown in Figure 5(a) first joins A and
B to generate a table with 7 rows, and then joins

Figure 5. A simple example of joining three tables A, B, and C, respectively. There are three possible ways to join
these tables. Here we show two: (a) (A⋈B)⋈C with a cost of 9, and (b) A⋈(B⋈C) with a cost of 5. Here the cost is simply

computed as the total number of rows in all.

https://www.sic.ici.ro

126 Ion Stoica

this result table with table C to generate the final
result, which consists of 2 rows. Thus, the total
cost is 9. In contrast, if we join first B and C, as
shown in Figure 5(b), then we get a cost of only 4.
Note, that there is another possible join plan where
we first join A and C, not shown in Figure 5.

Given n tables, our goal is to find a query plan,
i.e., an order in which we join the tables, that
minimizes the cost of joining all n tables. Since
the join operation is both commutative and
associative, the order in which we join the tables
has no impact on the result. As such, to guarantee
the result’s correctness we just need to guarantee
that all n tables are joined exactly ones.

Unfortunately, there are n! possible ways in which
we can join n tables. Even for modest values of n,
evaluating all possible join orders is not feasible.
Given its difficulty and performance implications,
join optimization has been studied for more than
four decades [37] and continues to be an active
area of research [30, 34, 37]. To reduce the
problem’s combinatorial complexity, solutions
typically employ heuristics. For example, classical
System R-style dynamic programs often restrict
its search space to certain shapes (e.g., “left-deep”
join plans). Since for large joins these heuristics
are not always enough to reduce the search space
to a tractable size, query optimizers sometimes
apply further heuristics, such as genetic [1] or
randomized [34] algorithms. Unfortunately, in
edge cases, these heuristics are brittle and can
generate poor plans [24].

3.4.2 ML Formulation

In the light of the recent advances in ML, a new
trend in database research explores replacing
programmed heuristics with learned ones [4, 18,
19, 28, 30–32, 35].

Next, we present one of the most recent works
in this line of research that leverages RL to

solve the optimization problem, called Deep
Queries (DQ) [20]. The join ordering problem is
formulated as an RL problem as follows:

-- state: The set of tables joined so far.

-- action: The table to join next.

-- reward: The negative of the estimated cost.
We take the negative since the RL algorithms
typically aim to maximize the reward, while
in this case we want to minimize the cost.

Figure 6 illustrates the application of RL to the
join optimization problem. The entire state is
represented as a binary string with the length equal
to the number of tables we want to join. An 1 bit
means that the corresponding table has been already
joined, while a 0 bit means that the table has not
been joined yet. For the initial state, we randomly
select two tables to join, in this case tables T0 and
T4. Then, at each step, the RL algorithm selects the
next table to join. In our example, the RL algorithm
first selects T8, then T1, and so on until all tables
are joined. As a policiy, the solution uses DQN, an
approximation of the classic Q-learning algorithm
by a neural network [33].

With any RL algorithm, one natural question is
sample efficiency, i.e., how many query examples
we need to learn a good policy. The RL algorithms
are notoriously data-inefficient. Indeed, typical
RL settings, such as the Atari games [33], require
hundreds of thousands of training examples!
Fortunately, in our case, we can exploit the optimal
subplan structure specific to join optimization to
collect a large amount of high-quality training
data. From a single query that passes through a
native optimizer, not only are the final plan and
its total cost collected as a training example,
but all of its subplans. For instance, planning
an 18-relation join query (i.e., Query 64 in the

Figure 6. An illustration of applying RL to optimize joins. The state is represented by a binary string indicating which tables
have been already joined, the action indicates which table should be joined next, and the reward is the negative of the cost.

	 127

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

TPC-DS benchmark) using the traditional bushy
optimzier can yield up to 600,000 training data
points. This is because, in addition to the final
results, we can use every partial result in the query
plan as a training example. For instance, when we
execute the query plan in Figure 5, we learn not
only the cost of generating the result, but also the
cost of the sub-plane joining A and B.

3.4.3 Results

While simple, this solutions achieves remarkable
results [20]. Under a variety of cost models,
DQ achieves speedups in planning times (up
to >200×) relative to dynamic programming
enumeration, while essentially matching the
execution times of optimal plans computed by the
native enumeration-based optimizers. Even more
impressivley, DQ is particularly robust under
non-linear cost models such as memory limits or
materialization. On two simulated cost models
with significant non-linearities, DQ improves on
the plan quality of the next best heuristic over a
set of DQ baselines by 1.7× and 3×, respectively.
In summary, DQ approaches the optimization time
efficiency of programmed heuristics and the plan
quality of optimal enumeration.

4. Trust but Verify

The main assumption behind this approach is that
it is possible to (efficiently) verify a solution’s
correctness. There are two patterns in which to
apply this approach.

The first pattern is during the training phase. We
continuously generate solutions and verify their
correctness until at least a correct solution is found.

The second pattern is during the prediction phase.
We verify each prediction, and, if incorrect, we
possibly imvoke a provably correct but less
desirable (i.e., slow) one.

4.1 Autopandas: Program Synthesis

This example illustrates the first pattern of our
approach. We generate solutions (i.e., programs)
until we find a correct one. Here the “correctness”
is defined by checking whether the program
generates a set of expected outputs, given a set
of inputs.

4.1.1 The Problem

Developers are increasingly using powerful
APIs, often packaged in popular libraries, to
build sophisticated applications. Using such APIs
allows developers to (1) build applications faster
as they obviate the need of writing large amounts
of code, and (2) build more robust applications, as
the code behind these APIs is typically well tested.

Unfortunately, the price to pay for these powerful
and versatile APIs is a steep learning curve, as
often there are hundreds of APIs one needs to
master for each type of application or workload.
Indeed, popular Python libraries, such as NumPy
and Pandas have each hundreds of APIs, and
each of these APIs can have tens of arguments.
Furthermore, the documentation of all of these
APIs is of varying quality. Worse yet, modern
APIs are frequently updated, so tutorials, blog
posts, and other external resources on the API
can quickly fall out of date. All these factors
make it difficult for developers to learn the API
sufficiently well to use it efficiently.

As a result, developers often resort to asking their
more experienced colleagues or leverage on-line
forums, such as StackOverflow. Unfortunately,
none of these venues is ideal. It’s not always that a
developer has access to an expert when she needs
one, and questions on StackOverflow might take
days to answer.

The one alternative is to design systems to
automatically answer these questions based on the
hints provided by the users. One example of such
hints are examples of inputs and outputs. Indeed,
given an input, the developer often knows what
is the output she wants, but doesn’t know which
function calls to use to get that output.

Thus, the problem we want to address is:
generate a sequence of API calls which applied
on the given input(s) will generate the specified
output(s). This is similar to the program synthesis
problem, a notoriously difficult problem, which
has received considerable attention over the past
two decades. However, so far there has been
little progress beyond simple program examples,
typically written in domain specific languages
(DSLs). Examples of past solutions include string
processing [10, 36]. data wrangling [8, 9, 23], data
processing [40, 47], database queries [48] and bit-
vector manipulations [16].

https://www.sic.ici.ro

128 Ion Stoica

4.1.2 ML Formulation

Recently, several works have aimed to synthesis
small programs for several popular APIs
and languages. Of these, here we consider
Autopandas [5] which uses ML to generate
short sequence of APIs calls from input/output
examples for the popular Pandas library, the de
facto standard for data scientists.

The approach taken in [5] is to use a neural network
model that learns to “predict” (generate) programs
from one or more pairs of input/output examples.
For each program being generated, we then check
whether the output it creates matches the desired
output, and, if yes, we select that program. If not,
we continue to generate new programs until we
find one that computes the desired output from
the given input. Figure 7 illustrate this approach.
A variant of this approach is not to stop when
we find the first program generated the desired
output, but continue until a timeout expires. The
main reason is that the problem is in most cases
unspecified, i.e., given an input, there are many
programs computing the same output. This gives
a chance to the developers to pick one of the many
possible valid programs.

Figure 7. Using a model to generate programs until a

correct one is found. A correct program is defined as the
one generating the expected output from a given input.

The main challenge with this approach is that
the state-space is huge. For example, even if we
consider single-function programs, the number of
such programs is . In practice, this huge search
space makes it very hard, if not infeasible, to train
an accurate model to solve this problem.

Unfortunately, there is a key observation that
allows us to dramatically reduce the search space:
API functions often place constraints on the
arguments beyond type. In Python, they can also
accept multiple types for a single argument, with

different constraints for each type. Thus, many
combinations of arguments do not make sense.

Autopandas leverages this information and
combines expert knowledge with stoochastic
search to address this problem. In particular,
for each API function, Autopandas employs a
generator, written by an expert that captures the
semantics constraints of the function’s arguments.
Then, for each argument of each function it trains
a neural network to predict the arguments of that
function. This considerably reduces the search
space. For single function programs, Autopandas
reduces the search space from to a reduction!

4.1.3 Results

Using real-world banchmarks from Pandas
tutorials and StackOverflow questions,
Autopandas can efficiently provide the same
answer as the one provided by human experts in
65% of cases for single-function programs. For
two-function programs, these numbers are 40%,
and 73%, respectively. And, for three-function
programs, these numbers are 35%, and 60%,
respectively. For context, 95% of the answers in
StackOverflow are no longer than three functions.

While we are still far from solving the general
synthesis problem, these are promissing results,
especially as it targets a much broader domain
than what current state-of-the-art programming-
by-example synthesis systems handle.

4.2 Learned Index Structures

This example illustrates the second pattern
of the “trust but verify” approach, i.e., verify
every prediction, and, if incorrect, fall back on a
provably correct but less efficient one.

4.2.1 The problem

To improve data access performance in many
applications, such as databases and file systems,
designers use sophisticated data structures such as
B-Trees, hash tables, and Bloom filters. Because
of their importance, indexes have been some of
the most studied and optimized data structures
over the past decades. However, despite the
attention they received, the existing solutions
assume nothing about data distribution, and, as
a result, they fail to take advantage of common
access patterns and distributions.

	 129

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

4.2.2 The ML formulation

Recent work [19] has proposed to fill this gap
by using ML to learn indexes for a given data
distribution and access pattern. The intuition
behind this approach is that fundamentally an
index maps a key to the location of the record
associated to that key. This is essentially a
prediction operation: given a key, “predict” the
location of the record with that key. An ML
approach can learn a model for this mapping by
training the model against queries to the dataset.
By doing so, the model will be optimized for the
query workload and key distribution in the dataset.

We assume a setting in which data consists of
(key, value) pairs, also called records, sorted by
their keys. These records are stored in pages (or
blocks), n records per page. A page reperesents
the unit of storage access, i.e., the reads and writes
occur at the page granularity. Thus, a range-based
index, such as B-Trees, needs to predict the page
containing the record corresponding to that key.
To perform this prediction, [19] proposes using
neural networks to learn the mapping from key to
the page containing that key.

An evolution of this approach is to use a tree of
models, instead of a single model, where each
model in the tree selects one of its descendents.
Eventually, the leaf models point to pages. Using a
tree of models, enables us to specialize models for
different regions of the key space, which is highly
desirable when the density of the keys in the key
space vary widely.

Unfortunately, using a neural network model
to predict the location of a record is not 100%
accurate. This means that sometimes, we will get
a wrong page, i.e., a page that does not contain
the given key. The important point to note here
is that when this happens it will only affect the
performance and not correctness. This is because
we can easily verify whether the answer is correct.
Since ultimately the record we are looking stores
the key, we can always check that we got the
right record. If the model predicts the wrong
page, we can use a traditional index structure (or
even scan the data) to locate the desired record.
While locating the record when the prediction fails
can take significantly longer, the hope is that the
prediction operation takes much less than using
a traditional index structure, and that the model
accuracy is high enough.

4.2.3 Result

The initial results in [19] show that by using
neural nets we are able to outperform cache-
optimized B-Trees by up to 70% in speed while
saving an order-of-magnitude in memory over
several real-world data sets.

5. Conclusions

In this paper, we argue that while the ML has
achieved tremendous successes over the past
decade by solving many human-level tasks, such
as video recognition, speech recognition, and
language translation, going forward, ML has the
potential to have an even bigger impact on solving
hard systems problems by optimizing existing
algorithms that either exhibit combinatorial
complexity or employ brittle heuristics.

However, solving these problems require solutions
that are provably correct, which is difficult to
achieve by using an end-to-end ML approach,
as ML techniques, such as deep neural networks
(DNNs), are stochastic in nature. To address
this challenge, in this paper we discussed two
approaches to solve these problems.

The first approach is to generate provably
correct solutions. There are two ways to do
this: (a) start from a correct solution and apply
transformations that preserve the solution’s
correctness, and (2) chose the starting solution
and the transformations such that to guarantee
we end up with a correct solution.

The second approach is to generate solutions
whose correctness can be (efficiently) verified. In
this case, we keep generating solutions until we
find a correct one.

To illustrate these approaches, we presented
several examples in the area of software systems.
While the results are promising, we believe this
is just the beginning, and we will see a rapid
progress in applying ML to virtually any system
and engineering problem for which the current
solutions fall short. We hope this paper will inspire
the reader to apply these approaches, or come up
with new ones, to her own area of research.

https://www.sic.ici.ro

130 Ion Stoica

REFERENCES

1.	 [n. d.]. PostgreSQL: Genetic Query
Optimizer. <https://www.postgresql.org/
docs/11/static/geqo.html>.

2.	 Akamai (2016). dash.js. <https://github.
com/Dash-Industry-Forum/dash.js/>.

3.	 Ameer Haj Ali, Qijing Huang, William Moses,
John Xiang, Ion Stoica, Krste Asanovic
& John Wawrzynek (2019). AutoPhase:
Compiler Phase-Ordering for High Level
Synthesis with Deep Reinforcement
Learning, CoRR abs/1901.04615 <http://
arxiv.org/abs/1901.04615>.

4.	 Peter Bailis, Kai Sheng Tai, Pratiksha Thaker,
& Matei Zaharia (2017). Don’t Throw Out
Your Algorithms Book Just Yet: Classical
Data Structures That Can Outperform
Learned Indexes. <https://dawn.cs.stanford.
edu/2018/01/11/index-baselines/>.

5.	 Rohan Bavishi, Caroline Lemieux, Neel
Kant, Roy Fox, Koushik Sen & Ion Stoica
(2018). Neural Inference of API Functions
from Input-Output Examples, Workshop on
ML for Systems at NeurIPS.

6.	 Nicolas Bruno, YongChul Kwon &
Ming-Chuan Wu (2014). Advanced Join
Strategies for Large-scale Distributed
Computation. In Proc. VLDB Endow. 7(13)
(pp. 1484–1495). 2150-8097 <https://doi.
org/10.14778/2733004.2733020>

7.	 Andrew Canis, Jongsok Choi, Mark Aldham,
Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen D Brown & Jason
H Anderson (2013). LegUp: An open-
source high-level synthesis tool for FPGA-
based processor/accelerator systems, ACM
Transactions on Embedded Computing
Systems (TECS), 13(2), 24.

8.	 Yu Feng, Ruben Martins, Osbert Bastani,
& Isil Dillig (2018). Program Synthesis
Using Conflict-driven Learning. In
Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI 2018)
(pp. 420–435). ACM, New York, NY,
USA 978-1-4503-5698-5 <https://doi.
org/10.1145/3192366.3192382>

9.	 Yu Feng, Ruben Martins, Jacob Van
Geffen, Isil Dillig & Swarat Chaudhuri

(2017). Component-based Synthesis of
Table Consolidation and Transformation
Tasks from Examples, SIGPLAN Not.
52(6), 422–436. 0362-1340, <https://doi.
org/10.1145/3140587.3062351>.

10.	 Sumit Gulwani (2011). Automating String
Processing in Spreadsheets Using Input-
output Examples. In Proceedings of the 38th
Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages
(POPL ’11) (pp. 317–330). ACM, New York,
NY, USA. 978-1-4503-0490-0, <https://doi.
org/10.1145/1926385.1926423>.

11.	 Pankaj Gupta & Nick McKeown (1999).
Packet classification using hierarchical
intelligent cuttings. In Hot Interconnects.

12.	 Pankaj Gupta & Nick McKeown (2001).
Algorithms for packet classification.

13.	 Te-Yuan Huang, Nikhil Handigol, Brandon
Heller, Nick McKeown & Ramesh Johari
(2012). Confused, Timid, and Unstable:
Picking a Video Streaming Rate is Hard.

14.	 [Te-Yuan Huang, Ramesh Johari, Nick
McKeown, Matthew Trunnell & Mark
Watson (2014). A Buffer-based Approach
to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of
the 2014 ACM Conference on SIGCOMM
(SIGCOMM ’14) (pp. 187–198). ACM, New
York, NY, USA, 978-1-4503-2836-4, <https://
doi.org/10.1145/2619239.2626296>.

15.	 Intel. [n. d.]. Intel FPGA SDK for OpenCL.
<https://www.intel.com/content/www/us/
en/programmable/products/design-software/
embedded-software-developers/opencl/
developer-zone.html>.

16.	 Susmit Jha, Sumit Gulwani, Sanjit A.
Seshia & Ashish Tiwari (2010). Oracle-
guided Component-based Program
Synthesis. In Proceedings of the 32Nd
ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE
’10) (pp. 215–224). ACM, New York, NY,
USA, 978-1-60558-719-6 <https://doi.
org/10.1145/1806799.1806833>.

17.	 J. Jiang, V. Sekar & H. Zhang (2012).
Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming
with FESTIVE.

	 131

ICI Bucharest © Copyright 2012-2019. All rights reserved

Solving System Problems with Machine Learning

18.	 Andreas Kipf, Thomas Kipf, Bernhard Radke,
Viktor Leis, Peter Boncz & Alfons Kemper
(2018). Learned Cardinalities: Estimating
Correlated Joins with Deep Learning, arXiv
preprint arXiv:1809.00677.

19.	 Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey
Dean & Neoklis Polyzotis (2018). The Case
for Learned Index Structures. In Proceedings
of the 2018 International Conference on
Management of Data (SIGMOD ’18) (pp.
489–504). New York, NY, USA, 978-1-
4503-4703-7.

20.	 Sanjay Krishnan, Zongheng Yang, Ken
Goldberg, Joseph M. Hellerstein & Ion
Stoica (2018). Learning to Optimize Join
QueriesWith Deep Reinforcement Learning.
CoRR abs/1808.03196 <http://arxiv.org/
abs/1808.03196>.

21.	 Alex Krizhevsky, Ilya Sutskever & Geoffrey
E Hinton (2012). ImageNet Classification
with Deep Convolutional Neural Networks,
NIPS, 1106-1114.

22.	 Karthik Lakshminarayanan, Anand
Rangarajan, & Srinivasan Venkatachary
(2005). Algorithms for advanced packet
classification with ternary CAMs. In
SIGCOMM CCR.

23.	 Le14 Vu Le & Sumit Gulwani (2014).
FlashExtract: A Framework for Data
Extraction by Examples. In Proceedings
of the 35th ACM SIGPLAN Conference
on Programming Language Design
and Implementation (PLDI ’14) (pp.
542–553). ACM, New York, NY, USA,
978-1-4503-2784-8, <https://doi.
org/10.1145/2594291.2594333>.

24.	 Viktor Leis, Andrey Gubichev, Atanas
Mirchev, Peter Boncz, Alfons Kemper &
Thomas Neumann (2015). How good are
query optimizers, really? In Proceedings of
the VLDB Endowment 9(3) (pp. 204–215).

25.	 Wenjun Li, Xianfeng Li, Hui Li & Gaogang
Xie (2018). CutSplit: A Decision-Tree
Combining Cutting and Splitting for Scalable
Packet Classification. In IEEE INFOCOM.

26.	 Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C.
Begen & D. Oran (2014). Probe and Adapt:
Rate Adaptation for HTTP Video Streaming
At Scale, IEEE Journal on Selected Areas in
Communications, 32(4), 719-733.

27.	 Eric Liang, Hang Zhu, Xin Jin & Ion
Stoica (2019). Neural Packet Classification.
CoRR abs/1902.10319, <http://arxiv.org/
abs/1902.10319>.

28.	 Lin Ma, Dana Van Aken, Ahmed Hefny,
Gustavo Mezerhane, Andrew Pavlo &
Geoffrey J Gordon (2018). Query-based
Workload Forecasting for Self-Driving
Database Management Systems. In
Proceedings of the 2018 International
Conference on Management of Data (pp.
631-645). ACM.

29.	 Hongzi Mao, Ravi Netravali & Mohammad
Alizadeh (2017). Neural Adaptive Video
Streaming with Pensieve. In Proceedings of
the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM
’17) (pp. 197-210). New York, NY, USA.

30.	 Ryan Marcus & Olga Papaemmanouil
(2018a). Deep reinforcement learning for
join order enumeration, arXiv preprint
arXiv:1803.00055.

31.	 Ryan Marcus & Olga Papaemmanouil
(2018b). Towards a Hands-Free Query
Optimizer through Deep Learning, arXiv
preprint arXiv:1809.10212.

32.	 Michael Mitzenmacher (2018). A Model
for Learned Bloom Filters and Related
Structures, arXiv preprint arXiv:1802.00884.

33.	 Volodymyr Mnih, Koray Kavukcuoglu, David
Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg &
Demis Hassabis. (2015). Human-level
control through deep reinforcement learning,
Nature, 518(7540), 529-533. 0028-0836,
<http://dx.doi.org/10.1038/nature14236>.

34.	 Thomas Neumann & Bernhard Radke
(2018). Adaptive Optimization of Very Large
Join Queries. In Proceedings of the 2018
International Conference on Management of
Data (pp. 677-692). ACM.

35.	 Jennifer Ortiz, Magdalena Balazinska,
Johannes Gehrke & S. Sathiya Keerthi (2018).
Learning State Representations for Query
Optimization with Deep Reinforcement
Learning. In Proceedings of the Second
Workshop on Data Management for End-

https://www.sic.ici.ro

132 Ion Stoica

To-End Machine Learning (DEEM’18),
Article 4 (4 pages). ACM, New York, NY,
USA, 978-1-4503-5828-6, <https://doi.
org/10.1145/3209889.3209890>.

36.	 Emilio Parisotto, Abdelrahman Mohamed,
Rishabh Singh, Lihong Li, Denny Zhou &
Pushmeet Kohli (2017). Neuro-Symbolic
Program Synthesis. In ICLR 2017. <https://
www.microsof t .com/en-us / research/
publication/neuro-symbolic-program-
synthesis-2/>.

37.	 P Griffiths Selinger, Morton M Astrahan,
Donald D Chamberlin, Raymond A Lorie &
Thomas G Price (1979). Access path selection
in a relational database management system.
In Proceedings of the 1979 ACM SIGMOD
international conference on Management of
data (pp. 23-34). ACM.

38.	 David Silver, Aja Huang, Chris J Maddison,
Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc
Lanctot et. al (2016). Mastering the game
of Go with deep neural networks and tree
search, Nature, 529(7587), 484-489.

39.	 David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel,
Timothy P. Lillicrap, Karen Simonyan &
Demis Hassabis (2017). Mastering Chess
and Shogi by Self-Play with a General
Reinforcement Learning Algorithm, NIPS.
arXiv:1712.01815, <http://arxiv.org/
abs/1712.01815>.

40.	 Calvin Smith & Aws Albarghouthi (2016).
MapReduce Program Synthesis. In
Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI ’16)
(pp. 326–340). ACM, New York, NY,
USA, 978-1-4503-4261-2, <https://doi.
org/10.1145/2908080.2908102>.

41.	 Kevin Spiteri, Rahul Urgaonkar &
Ramesh‘ K. Sitaraman (2016). BOLA:
Near-optimal bitrate adaptation for online
videos, 1-9. <https://doi.org/10.1109/
INFOCOM.2016.7524428>.

42.	 Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas
Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu
& Bruno Sinopoli (2016). CS2P: Improving
Video Bitrate Selection and Adaptation with
Data-Driven Throughput Prediction.

43.	 Richard S Sutton & Andrew G Barto (1998).
Introduction to reinforcement learning, Vol.
135. MIT press Cambridge.

44.	 Immanuel Trummer & Christoph Koch
(2017). Solving the Join Ordering Problem
via Mixed Integer Linear Programming. In
Proceedings of the 2017 ACM International
Conference on Management of Data (pp.
1025-1040). ACM.

45.	 Balajee Vamanan, Gwendolyn Voskuilen & T.
N. Vijaykumar (2010). EffiCuts: Optimizing
Packet Classification for Memory and
Throughput. In ACM SIGCOMM.

46.	 Xilinx (2015). Vivado Design Suite User
Guide - High-Level Synthesis. <http://www.
xilinx.com/support/documentation/sw_
manuals/xilinx2015_2/ug902-vivado-high-
level-synthesis.pdf>.

47.	 Navid Yaghmazadeh, Xinyu Wang & Isil
Dillig (2018). Automated Migration of
Hierarchical Data to Relational Tables Using
Programming-by-example. In Proc. VLDB
Endow, 11(5) (pp. 580-593). 2150-8097,
<https://doi.org/10.1145/3187009.3177735>.

48.	 Navid Yaghmazadeh, Yuepeng Wang, Isil
Dillig, & Thomas Dillig (2017). SQLizer:
Query Synthesis from Natural Language.
In Proc. ACM Program. Lang. 1, OOPSLA,
Article 63 (26 pages). 2475-1421, <https://
doi.org/10.1145/3133887>.

49.	 Xiaoqi Yin, Abhishek Jindal, Vyas Sekar &
Bruno Sinopoli (2015). A Control-Theoretic
Approach for Dynamic Adaptive Video
Streaming over HTTP. In Proceedings of the
2015 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM
’15) (pp. 325-338). New York, NY, USA,
978-1-4503-3542-3.

50.	 Yasir Zaki, Thomas Potsch, Jay Chen,
Lakshminarayanan Subramanian &
Carmelita Gorg (2015). Adaptive congestion
control for unpredictable cellular networks.

51.	 X. K. Zou (2015). Can Accurate Predictions
Improve Video Streaming in Cellular
Networks?

	_GoBack
	_GoBack
	_Ref439685352
	_Ref439685356
	_Ref477624326
	_Ref441562379
	_Ref441562364
	_Ref441562357
	_Ref488758243
	_Ref488759802
	_Ref1907769
	_Ref510112322
	_Ref1741791
	_Ref1741787
	_Ref441562609
	_Ref441759850
	_Ref441759858
	_Ref5630541
	MTBlankEqn
	_Ref9342713
	_Ref442346591
	_Ref442346886
	_Ref442346600
	_GoBack
	_GoBack
	_GoBack
	_Hlk9368366
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_Hlk534476555
	OLE_LINK11
	OLE_LINK12
	_GoBack
	OLE_LINK18
	OLE_LINK14
	OLE_LINK25
	OLE_LINK9
	OLE_LINK10
	OLE_LINK2
	OLE_LINK6
	OLE_LINK3
	OLE_LINK5
	OLE_LINK7
	OLE_LINK8
	OLE_LINK13
	OLE_LINK19
	OLE_LINK20
	OLE_LINK15
	OLE_LINK16
	OLE_LINK24
	OLE_LINK17
	OLE_LINK4
	OLE_LINK22
	OLE_LINK21
	_ENREF_2
	_ENREF_9
	_ENREF_12
	_ENREF_25
	_GoBack
	_ENREF_28
	_GoBack
	_GoBack
	BMsec_ml
	BMsec_sl
	BMsec_rl
	BMsec_neurocuts
	BMfig_program_synthesis
	BMsec_conclusions
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_Hlk10617319
	_Hlk11312520
	_Hlk11314568
	_Hlk11315256
	_Hlk10617736
	_Hlk10617860
	_Hlk11316214
	_Hlk11316753
	_Hlk10493701
	_Hlk10710145
	_GoBack
	_GoBack
	_GoBack

