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1. Introduction

As is well known, proportional-integral-
derivative (PID) controllers have been broadly 
used in industrial process loops for over 70 
years. The popularity of PID controllers is 
due partly to their simplicity in structure and 
easiness in implementation. However, a PID 
controller has to balance three-gains for the 
overall feedback system to meet with the design 
specification. If it is not properly tuned, it will 
degrade the control performance and may lead 
to damage the whole system. 

So far, PID controllers have been tuned in a large 
number of ways (O’Dwyer, A., 2006) including 
the two tunings of Ziegler and Nichols (1942). 
In the case of open-loop tuning based on the 
S-shaped reaction curve of processes, it will not 
be possible to obtain the exact parameters from 
the curve in the presence of noises, disturbances 
as well as the process parameter variations. In the 
case of closed-loop tuning based on the point of 
marginal stability, it is difficult to obtain sustained 
oscillations in the process variable in real 
processes. An initially setting PID controller can 
be expected to perform satisfactorily as long as the 
process is running in a range close to a nominal 
operating point; however, it may be insufficient to 
maintain the desired control performance under 
varying operating points or process uncertainties. 
Therefore, PID controllers need to be retuned on-
site as operating conditions change. 

In this circumstance, various approaches have 
been suggested in the literature by means of the 
concepts of self-tuning, adaptive or intelligent 
control such as relay feedback (Åström, K. J. & 
Hägglund, T., 1984), self-tuning using pattern 
recognition (Girirajkumar et al., 2010), real time 
adaptive tuning (Myron, T. J., 1986) and intelligent 
methods combining with fuzzy logic (Khan, A. 
A. & Rapal, N., 2006), neural networks (Kumar, 
R., Srivastava, S. & Gupta, J.R.P., 2016) and 
evolutionary algorithms (Civelek et al., 2016). 
In recent years another approach towards using 
nonlinear elements within the framework of the 
conventional PID controller has been found. Most 
of studies based on this approach can be roughly 
categorized into two types: nonlinear adjustment 
of controller gains and nonlinear scaling of the 
error. The former is the NPID controller, whose 
gains are gradually changed based on error and/or 
error rate. Relating this type of studies, Isayed & 
Hawwa (2007) presented a nonlinear PID control 
scheme for hard disk actuating systems, where 
controller gains of hyperbolic functions depend on 
the system error and/or its derivative. Korkmaz, 
Aydogdu & Dogan (2012) presented a nonlinear 
PID controller whose gains are adjusted by the 
error function. In a similar fashion, Zhang & Hu 
(2012) proposed a nonlinear PID controller whose 
gains are adjusted by three nonlinear functions 
for generator excitation system control. In (So, G. 
& Jin, G., 2018), a nonlinear PID controller for 
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temperature control of a continuous stirred-tank 
reactor process with tuning gains whose parameters 
are characterized by using a set of Tagaki-Sugeno 
fuzzy rules and are continuously changed while the 
process is in operation was presented.

The latter is the nonlinear PID controller, where 
a nonlinear gain in cascade with a linear PID 
controller produces the scaled error. As concerns 
this type of studies, Seraji (1997, 1998) introduced 
a class of nonlinear PID controllers which consist 
of a nonlinear gain in cascade with a linear fixed-
gain PID controller. Three nonlinear gains such as 
the sigmoidal function, the hyperbolic function, 
and the piecewise-linear function were proposed 
and the stability of the closed-loop systems was 
investigated using the Popov stability criterion. 
In (Han, J., 2009), a nonlinear PID controller 
was designed, where the control input is decided 
by the nonlinearly weighted sum of the three 
PID controller gains. In this form, the nonlinear 
weights are designed by using a kind of special 
nonlinear functions named fal, a nonlinear 
combination of the error, its integration as well 
as the error rate.  In a similar fashion to the Han’s 
work, Kler, Rana & Kumar (2018) proposed a PID 
controller wherein its integral term gain is varied 
according to the tracking error to effectively 
attain Maximum Power Point Tracking (MPPT) 
in Photovoltaic (PV) systems. Zheng, Su & 
Mercorelli (2019) presented a simple nonlinear PD 
control design for positioning of servomechanisms 
with saturating actuator. So et al. (2018) presented 
two nonlinear PID controllers with a nonlinear 
function implemented as a Takagi-Sugeno fuzzy 
model for the glycol temperature control of a 
liquefied natural gas (LNG) regasification system. 

Despite that these methods achieve satisfactory 
results in different control environments, there is 
also a drawback regarding them. Every method 
is process dependent and, in most cases, has its 
own limitation due to the increased number of 
tuning parameters when compared to conventional 
PID controllers. This paper proposes a simple 
nonlinear PID controller  which incorporates a 
nonlinear gain in cascade with the integral action 
of a conventional PID control architecture. It deals 
with the problem of obtaining new tuning rules for 
FOPTD models. The parameters of the controller 
that provides optimum tracking performance to 
the step change of the setpoint are derived on the 
basis of a process model and a genetic algorithm 
in terms of minimizing three performance indices. 
Three tuning rules are derived from a set of 

tuned parameters, tuning rule models and the 
least squares method. To verify the usefulness of 
the proposed method, a set of simulation works 
regarding the three processes is carried out and the 
responses of the proposed controller are compared 
with those of the existing linear PID controller.

This paper is organized as follows: Section 2 
gives a brief overview about the FOPDT model 
and two existing tuning rules. Section 3 describes 
the proposed nonlinear PID controller. Section 
4 introduces three new tuning rules. Section 5 
illustrates the simulation results and discussion. 
Finally, some concluding remarks and future work 
are presented in the last section.

2. FOPTD Model and PID Controller

2.1 First-order Plus Time Delay Model

Generally, processes with highly damped dynamics 
are represented as a first-order plus delay time 
(FOPDT) model. The FOPDT model is an 
approximation of many complex processes that is 
able to describe a broad range of process behaviours. 
It is widely used in controller tuning. Well-known 
tuning methods such as Ziegler-Nichols tuning, 
Cohen-Coon tuning, Tyreus-Luyben tuning, Chien-
Hrones-Reswick tuning and so on are based on the 
parameters of the FOPDT model (O’Dwyer, A., 
2006). Mathematically, the FOPDT model can be 
stated by the time domain expression:

( ) ( ) ( )dy t y t Ku t L
dt

τ + = −
 
,
                             

(1)

where K denotes the process gain, τ  the process 
time constant, and L the process time delay. 

2.2 Conventional PID Controller and 
Tuning Rules

In general, a parallel form of conventional PID 
controllers is given as follows:

1 ( )( ) [ ( ) ( ) ]p d
i

de tu t = K e t e t dt T
T dt

+ +∫
 ,          

(2)

where u is the control input, e is the error between 
the setpoint (SP) and the process variable (PV), 
and Kp, Ti and Td denote the proportional gain, the 
integral time and the derivative time, respectively.

For a given process, the tuning is represented by 
a proper selection of Kp, Ti and Td in such a way 
that the PID controller provides an acceptable 
performance in a certain sense and ensures 
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design requirements. Ziegler and Nichols (1942) 
proposed the two heuristic methods in the 1940s. 
They are based on the response obtained from 
experiments of a process. One of them, namely 
the open-loop method applies to a process whose 
unit-step response resembles an S-shaped reaction 
curve with no overshoot. The parameters of the 
PID controller are calculated using the parameter 
estimates (K, τ, and L) obtained from the reaction 
curve and the Ziegler-Nichols tuning rules. If a 
process model is available, the PID controller can 
be directly tuned from the model without doing 
any experiment.

As another useful method, Tavakoli proposed 
an optimal method for tuning the PID controller 
for FOPDT models. Using the dimensional 
analysis and numerical optimization techniques, 
three formulas for integral of square error (ISE), 
integral of absolute error (IAE), and integral of 
time-weighted absolute error (ITAE) performance 
indices are given in Table 1 (Tavakoli, S. & 
Tavakoli M., 2003):

Table 1. Tuning formulas for step setpoint tracking 
proposed by Tavakoli

Performance
Index

Dimensionless parameters

KKp Ti / τ Td / τ

ISE
0 3 0 75

0 05

τ

τ

+

+

L. .

L .

2 4

0 4

.
L .
τ
+

1

90 L
τ

IAE
1

0.2+
τ
L

0 3 1 2

0 08

τ

τ

+

+

L. .

L .

1

90 L
τ

ITAE
0 8

0 1
τ
+

.
L .

10 3.
L
τ

+
0.06

0.04+
τ
L

3. Proposed Nonlinear PID Controller

3.1 Structure of the Nonlinear PID 
Controller

Once a large change in setpoint occurs or a large 
disturbance applies, the proportional action and 
the derivative action operate in proportion to the 
error and the error rate, respectively. The integral 
action continuously accumulates the current and 
the past of the error to get rid of steady-state 
error. Excessive integral action introduces other 
problems such as overshoot, integral windup 
during transient response and reduction of stability 

margin. Therefore, when the error is considerable, 
the integral of the error is preferred to take low 
values to improve the transient response and 
when the error is irrelevant, the integral of the 
error is preferred to take high values to remove 
offset quickly. In this way, the integral action 
needs to be continuously adjusted so as to meet 
both conditions. Consequently, a nonlinear PID 
controller whose architecture is similar to the 
conventional PID controller is proposed, but only 
the integral action contains a nonlinear function 
while the other actions are linear. Hence, the 
error input to the integral action is scaled by a 
nonlinear function in the form of the product of 
the error and a nonlinear gain. The block diagram 
of the proposed nonlinear PID (NPID) controller 
is shown in Figure 1. Hereafter, this is called the 
NPID controller.

Figure 1. The proposed NPID controller topology 

In Figure 1, ys and y denote the SP and PV, 
respectively. upd and ui denote the outputs of 
the PD action and the I action, respectively. 
The equation of the NPID controller is of the 
following form: 

( ) ( ) ( ) ( )v t e k e e tΦ= =  ,                                    (3)
1 ( )( ) [ ( ) ( ) ]p d

i

de tu t = K e t v t dt T
T dt

+ +∫
,          

(4)

where v(t) is a scaled error, Φ(e) a nonlinear 
function which provides a nonlinearly-scaled error 
according to e, and k(e) a nonlinear gain. k(e) is 
described as:

2

2( ) exp( )
2 s

ek e
y

= −
∆  ,                                           

(5)

where Δys (≠0) is the difference between the 
current SP, ys(n), and the previous SP, ys(n-1) and 
n denotes the discrete instant of time.

Figure 2 shows typical shapes of k(e) versus e 
according to the change of Δys. Note that k(e) is 
an even function. Given the input e, the shape 
of the nonlinear gain k(e) depends on e and Δys. 
The lower the magnitude of Δys, the narrower the 
width becomes, and the larger the magnitude of 
Δys, the wider the width. Moreover, it can  also 
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be noticed that k(e) converges to the lower limit 0 
when e goes to infinity, and converges to the upper 
limit 1 when e approaches 0. It is clearly seen 
from Figure 2 that, for large e which is caused 
by the SP change or/and disturbances, k(e) scales 
down the error in order to avoid excessive control 
effort. This favourable property of k(e) produces 
good transient responses.

-6 -4 -2 0 2 4 6
0

0.5

1

 

 
∆ys= 1.5

∆ys= 1

∆ys= 0.5

Figure 2. Shapes of k(e) versus e according to the 
change of ys 

3.2 Dimensional analysis 

As seen in Equation (1), the FOPTD model has 
three parameters. The unit of τ  and L is time and 
the unit of K depends on the input and output 
of the process. It is quite difficult to derive any 
optimum controller setting in terms of these three 
parameters. Therefore, the dimensionless approach 
which can make the optimum setting problem by 
simply reducing some of the parameters used and 
which can analyse the process behaviour without 
physical dimension is applied.

Defining dimensionless variable t’= t/τ and letting 
y(τt’)= y (t’) in order to simplify notation, then 
the derivative term dy(t)/dt can be written in the 
dimensionless form by 

( ) ( ) 1 ( )dy t dy t' dt' dy t'
dt dt' dt dt'

τ
τ

= =
 .                        (6)

Also a delay of L can be expressed by a delay of 
L/τ in the new time variable t’ by defining u(τt’)= 
u (t’): 

( ) [ ( )] ( )L Lu t L u t' u t'τ
τ τ

− = − = −
 .                (7)

Then, Equation (1) can be written in the 
dimensionless form

( ) ( ) ( )dy t' Ly t' Ku t'
dt' τ

+ = −
 .                          (8)

Similarly, by defining variables and applying the 
dimensional analysis to the controller equation, 
Equation (4) can be also rewritten in terms of t’ as

( )( ) [ ( ) ( ) ]d
p

i

T de t'u t' K e t' v t' dt'
T dt'
τ

τ
= + +∫

 .  (9)
Taking the Laplace transform for Equations (8) 
and (9), it yields the overall block diagram with 
unity feedback, as depicted in Figure 3.

Figure 3. The dimensionless NPID control system

As it can be seen in Figure 3, the controlled object 
is described only as a function of the dimensionless 
parameter L/τ by combining the process gain with 
the proportional gain of the controller. A major 
advantage of the proposed NPID controller is that 
it is characterized by the three parameters KKp, 
Ti/τ, and Td/τ as the conventional PID controller. 

4. Tuning of the NPID Controller

The NPID controller designed in the previous 
section can be applied to various types of systems. 
However, as mentioned earlier, many industrial 
processes can be modelled as FOPTD, so this 
section deals with the tuning problem of the NPID 
controller for the FOPTD model. 

The NPID controller parameters are determined 
using the dimensionless model shown in Figure 
3 and a genetic algorithm (GA). This method is 
based on minimizing three performance indices 
such as ISE, IAE, and ITAE. Their formulas in 
the dimensionless form are as follows:

ISE= 2
0

( )e t' dt'
∞

∫  ,                                         (10)

IAE= 0
( )e t' dt'

∞

∫  ,                                        (11)

ITAE= 0
( )t' e t' dt'

∞

∫  .                                   (12)
ISE is often used for optimal control because it is 
easy to analyse. However, it penalizes the error 
larger than one larger, and conversely smaller 
than one smaller, which makes it insensitive to the 
change of parameters near the optimal solution. 
IAE exhibits better sensitivity than ISE by using 
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the absolute magnitude of the error, while ITAE 
gives a time penalty for the long transient, thus 
having greater discrimination than IAE or ISE. 

In this study, only cases in which L/τ of the 
controlled objects is in the range between 0.01 
to 3 are considered as in the previous studies 
(O’Dwyer, A., 2006). Therefore, the proposed 
settings are valid only for processes that can 
be modelled as FOPTD and for which of L/τ is 
between 0.01 and 3. For each performance index, 
the program runs 10 times with different random 
seeds to obtain the solution sets (KKp, Ti/τ, and 
Td/τ) which minimize the performance index to 
the setpoint change while changing the value of 
L/τ from 0.01 to 3. Then, the results are averaged. 
The calculated parameters of the NPID controller 
for the changes of L/τ for each index are shown as 
data at different points in Figures 4-6. 
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Figure 4. The tuned parameters for the changes of L/τ 
for ISE
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Figure 5. The tuned parameters for the changes of L/τ 
for IAE
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Figure 6. The tuned parameters for the changes of L/τ 
for ITAE

The following tuning rule models to do curve 
fitting for both linear regression and nonlinear 
regression are considered:

1
1( )b

p
LKK a
τ

=
 ,                                           (13a)

2 2 ( )iT La b
τ τ
= +

 ,                                        (13b)
3

3 ( )bdT La
τ τ

=
,                                              (13c)

where a1, b1, a2, b2, a3, b3 are unknown parameters. 
Formula (13) can be thought of a form of existing 
rules (O’Dwyer, A., 2006). Given the data sets 
and each model, a specialized software can be 
used for curve fits. Nonlinear regression models 
of formulas (13a) and (13c) are converted to a 
linear regression model by taking the logarithm 
of both sides. The tuning rules obtained for 
each performance index are listed in Tables 2-3 
and their curve fittings are shown in Figures 
4-6. The curve fitting plots shown in (b) are the 
continuation of the plots shown in (a).

Table 2. ISE, IAE and ITAE tuning rules for step 
setpoint tracking (0.01≤ L/τ ≤0.9)

Performance
Index

Dimensionless parameters

KKp Ti / τ Td / τ

ISE 0.91821.2886( )L −
τ

0 9217 0 2375 L. .
τ

+ 0.96450.4302( )L
τ

IAE 0.93271.0350( )L −
τ

0 9465 0 1398 L. .
τ

+ 0.94060.3527( )L
τ

ITAE 0 94571 0019( ) .L.
τ

− 0 8723 0 1848 L. .
τ

+ 0.97990.3401( )L
τ

Table 3. ISE, IAE and ITAE tuning rules for step 
setpoint tracking (1≤ L/τ ≤3)

Performance
Index

Dimensionless parameters

KKp Ti / τ Td / τ

ISE 0.54881.3362( )L −
τ

0 8419 0 3190 L. .
τ

+ 0.750.4137( )L
τ

IAE 0.54951.0822( )L −
τ

0 8237 0 2692 L. .
τ

+ 0.68310.3331( )L
τ

ITAE 0.51981.0093( )L −
τ

0 7813 0 2781 L. .
τ

+ 0.73170.2878( )L
τ

5. Simulation Results

This section illustrates the effectiveness of the 
proposed NPID controller and three tuning rules 
through a set of simulation works. The responses 
of the NPID controller are compared with those 
of the linear PID controller tuned by the Ziegler-
Nichols open-loop method (hereafter referred 
to as LPID-ZN) and the Tavakoli’s method 
(hereafter referred to as LPID-ISE, LPID-IAE, 
and LPID-ITAE). 

5.1 Process I 

Firstly, the process is given by the following 
second-order model

2

( )
(1 )(1 10 )

s

p
eG s

s s

−

=
+ + .                                (14)

The FOPTD model parameters of the given 
process were determined by using the GA-
based model reduction technique. An input is 
simultaneously applied to both the process and 
the model which are connected in parallel. 

The adjustable parameters K, τ, and L of the model 
are changed by a genetic algorithm that minimizes 
a performance index of the difference between the 
process output and the model output (Lee, H. & 
Jin, G., 1998). This technique gives the values 
K= 1, τ = 10.002, and L= 3.06. It can be seen 
that in this case L/τ≈ 0.31(<1). Table 4 lists the 
parameters of the PID controller and the NPID 
controller obtained from the estimated parameters.

In order to evaluate the SP tracking performance of 
the NPID controller tuned by the proposed tuning 
rules, the responses for a unit step SP change were 
obtained and the results were compared with those 
of the two methods. Figure 7 shows the closed-
loop responses resulted from applying the three 
methods to the model (14). Figure 7(a) and 7(b) 
are the responses of the linear PID controller and 
the proposed NPID controller, respectively.
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Table 4. PID and NPID controller tunings for Process I

Controller
Type

Tuning 
Method

Parameters
Kp Ti Td

PID

LPID-ZN 3.9224 6.1200 1.5300
LPID-ISE 2.3650 10.4032 0.1111
LPID-IAE 1.9765 10.2422 0.1111
LPID-ITAE 1.9707 10.9200 0.5307

NPID
NPID-ISE 3.8230 9.9456 1.3729
NPID-IAE 3.1238 9.8947 1.1579
NPID-ITAE 3.0709 9.2902 1.0658

0 10 20 30 40
0

0.5

1

                (a) PID controller                   t

y(
t)

 

 

LPID-ZN
LPID-ISE
LPID-IAE
LPID-ITAE

0 10 20 30 40
0

0.5

1

                (b) NPID controller                   t

y(
t)

 

 

NPID-ISE
NPID-IAE
NPID-ITAE

Figure 7. Responses for the unit step input of Process I

As can be seen, Figure 7 shows that the proposed 
method produces good transient responses in terms 
of both swiftness and closeness of the response. 
The Z-N method has the poorest response, where 
it shows a large overshoot. For a quantitative 
comparison of the responses, the performance 
indices such as rise time tr = t95-t5, overshoot Mp, 
2 % settling time ts, and integral of absolute error 
(IAE) were obtained and summarized in Table 5.

Table 5. Quantitative comparison of the SP tracking 
responses for Process I

Tuning 
Method

SP tracking performance
tr Mp ts IAE

LPID-ZN 2.8144 32.4842 20.2026 6.6986
LPID-ISE 4.8337 15.7218 22.1004 6.1206
LPID-IAE 6.0636 8.4150 18.1562 6.2059
LPID-ITAE 6.9033 3.5027 18.1018 6.1417
NPID-ISE 3.4739 6.0375 16.5593 4.6084
NPID-IAE 4.5600 2.0088 9.5668 4.8222
NPID-ITAE 4.4751 4.4037 12.5920 4.9683

As it can be noticed in Table 5, it becomes 
clear  that the proposed method offers better 
overall performance than the Z-N method and 

the Tavakoli’s method. Especially, NPID-IAE 
and NPID-ITAE tunings offer a significant 
improvement. In the case of IAE tuning, tr, Mp, ts 
and IAE of NPID-IAE tuning are approximately 
4.6 seconds, 2%, 9.6 seconds and 4.8, respectively 
while for LPID-IAE tuning are 1.3, 4.2, 1.9, 1.3 
times bigger or longer, respectively. Among the 
proposed tunings, as expected, NPID-ISE tuning 
provides shorter tr and smaller IAE than both 
NPID-IAE and NPID-ITAE tunings at the expense 
of bigger Mp and longer ts. 

5.2 Process II 

Secondly, the third-order process model was 
considered:

( )
(1 0.5 )(1 )(1 2 )

−

=
+ + +

s

p
eG s

s s s ,                    (15)
where, K= 1.001, T= 2.306 and L= 2.32 were 
obtained as the FOPDT model parameters. 
It can be seen that L/T≈ 1 in this process. The 
PID controller and the NPID controller give the 
following tunings as listed in Table 6. Figure 8 
depicts the unit step responses.

Table 6. PID and NPID controller tunings for Process II

Controller
Type

Tuning 
Method

Parameters
Kp Ti Td

PID

LPID-ZN 1.1916 4.6400 1.1600
LPID-ISE 0.9950 3.9600 0.0256
LPID-IAE 0.8283 3.2081 0.0256
LPID-ITAE 0.7226 3.0020 0.1331

NPID
NPID-ISE 1.3304 2.6815 0.9583
NPID-IAE 1.0775 2.5240 0.7713
NPID-ITAE 1.0051 2.4469 0.6666
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Figure 8. Responses for the unit step input of Process II 
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The improvement obtained using the proposed 
method is again clear. The comparison between 
the LPID-IAE and the NPID-IAE tunings from 
Table 7 shows that the proposed method provides 
more improved quantitative performance.

Table 7. Quantitative comparison of the SP tracking 
responses for Process II

Tuning 
Method

SP tracking performance
tr Mp ts IAE

LPID-ZN 7.0113 - 10.6807 3.8839
LPID-ISE 3.5471 7.2059 15.5931 4.2545
LPID-IAE 3.9637 7.4227 16.0999 4.2553
LPID-ITAE 4.6614 3.5598 15.4307 4.3244
NPID-ISE 3.1020 5.1367 11.3887 3.4821
NPID-IAE 3.8304 4.6129 11.1456 3.7697
NPID-ITAE 4.0093 5.0046 11.1250 3.8845

5.3 Process III 

Finally, the following third-order process model 
was considered:

5

2( )
(1 ) (1 2 )

−

=
+ +

s

p
eG s

s s ,                             (16)
where, K= 1.002, τ= 2.497, L= 6.64 were obtained 
as the FOPDT model parameters, and it can be 
seen that L/τ≈ 2.7>1 in this process. The three 
settings are summarized in Table 8. 

Table 8. PID and NPID controller tunings for Process III

Controller
Type

Tuning 
Method

Parameters
Kp Ti Td

PID

LPID-ZN 0.4504 13.2800 3.3200
LPID-ISE 0.5702 5.2092 0.0277
LPID-IAE 0.3491 4.8427 0.0277
LPID-ITAE 0.2894 4.4890 0.1476

NPID
NPID-ISE 0.7797 4.2204 2.1511
NPID-IAE 0.6310 3.8443 1.6223
NPID-ITAE 0.6059 3.7975 1.4699

The unit step responses obtained using the 
three settings are compared in Figure 9. A clear 
enhancement in the performance is observed from 
Figure 9 and Table 9 when the proposed method is 
employed. Its responses exhibit smaller overshoot 
and remarkably reduced rise time and settling 
time than the other methods. The tuning methods 
based on the linear PID controller suffer from poor 
performance in the case of Process III with L/ τ > 

1. Among the proposed tunings, NPID-IAE and 
NPID-ITAE tunings result in relatively smaller 
overshoot, shorter settling time and smaller IAE 
than those using NPID-ISE.
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Figure 9. Responses for the unit step input of Process 
III 

Table 9. Quantitative comparison of the SP tracking 
responses for Process III

Tuning 
Method

SP tracking performance
tr Mp ts IAE

LPID-ZN - - - 26.7754
LPID-ISE 6.5109 17.8481 43.8427 11.8062
LPID-IAE 27.1644 - 42.0165 13.8580
LPID-ITAE 29.6095 - 46.2831 15.4925
NPID-ISE 5.1644 12.7912 31.9624 9.8009
NPID-IAE 6.6818 4.2582 19.4872 9.6143
NPID-ITAE 7.1121 3.4249 20.1375 9.7327

6. Conclusion

In this paper, a NPID controller with a nonlinear 
gain coupled in series with the integral action of 
a conventional PID controller and three model-
based tuning rules was proposed. This new 
approach incorporated a dimensional analysis 
and genetic algorithms. For step setpoint tracking, 
the nonlinear PID controller parameters are tuned 
optimally based on the first-order plus time delay 
model and a genetic algorithm. Three performance 
indices (ISE, IAE and ITAE) were used to measure 
the performance of the proposed controller. Then, 
three tuning rules were derived with a set of 
tuned parameters, potential rule models and the 
least squares method. The effectiveness of the 
proposed controller and its rules was verified 
through a set of simulation works performed on 
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three experimental processes. On the basis of the 
simulation results, it has been demonstrated that 
the proposed NPID controller and tuning approach 
lead to satisfactory closed-loop responses and 
provide more improved performance than the 
linear PID controllers tuned by the two tuning 
methods. Future studies will focus on proving 
the absolute stability of the closed-loop system 
by using the Fade approximation of the FOPTD 
model and the circle criterion.
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