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1. Introduction

The pneumatic artificial muscle known as 
the ‘pneumatic muscle actuator’ or ‘fluidic 
muscle’ is a tube-like actuator which operates 
as a contractile or extensional device for 
actuating length when the pressurized air 
fills a pneumatic bladder (Andrikopoulos 
et al., 2014). PAM has several advantages 
in comparison with the traditional electric 
motors and pneumatic or hydraulic actuators, 
such as its lightness, large force, high power/
weight ratio, and high power/volume ratio. 
Structurally, PAM resembles a human muscle 
in power, size, and weight. This is an advantage 
for humanoid robots, soft robotics, prosthetic 
and orthotic devices, as well as rehabilitation or 
training exoskeleton systems (Liu et al., 2015; 
Ai et al., 2018) in which heavy actuators can 
significantly increase the payload.

PAM consists of a cylindrical, flexible rubber tube 
wrapped inside a membrane netting and suitable 
metal (aluminum or steel), with fittings attached 
to each extremity. The membrane material is 
made of the grid and mesh-shaped fibres with 
non-elastic guiding (Lu et al., 2016). When air 
pressure is applied to the pneumatic muscle, it 
shortens in the axial direction and expands in 
the angular direction. With this structure, PAM 
generates a large contraction force in these 
directions and both the contraction and generated 
forces rely on the strength of the applied pressure. 

The maximum contraction is approximately 25% 
of the muscle length. 

PAM’s nonlinear nature, hysteresis and unknown 
terms make it difficult to model its behavior or 
to design a controller for a high-performance 
position tracking system. These terms are 
produced by the air complexity, the friction 
inside the braided mesh and the nonlinearity of its 
geometric structure, leading to the modeling and 
control challenges outlined above. In addition, a 
survey of PAM-related applications has described 
the importance of researching an optimal solution 
for position control. 

In recent year, many approaches have proposed 
various mathematical models to describe the 
dynamic and static structures of PAM (Saga 
& Saikawa, 2008). In these models, PAM’s 
characteristics are identified as stemming from a 
physical analysis of pressure force relationships, 
its geometric structure and flexible nature 
(Ba et al., 2016). However, these studies have 
shown that PAM doesn’t easily lend itself to a 
precise description by way of these methods. 
Hence, various experimental approaches have 
been conducted to obtain more accurate PAM 
dynamics (Pujana-Arrese et al., 2010). Although 
the dynamics predicted from empirical data have 
been successfully applied to the position control, 
the common applicability of these methods is 
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limited. Nevertheless, both mathematical methods 
and experimental approaches include time-varying 
parameters and uncertainties that need to be 
rectified by the controller.

Due to the high nonlinearity inside PAM, it is not 
easy to accurately implement the position control. 
As such, a number of control algorithms have 
been proposed to deal with its uncertainties and 
theses can be divided into two categories: Model-
Based Control (MBC) theory and the Data-
Driven Control (DDC) method. When applying 
the model-based control theory, the first step is 
to model the plant and then to do the designing 
of the controller based on the plant model. Some 
of the MBC algorithms include adaptive position 
control (Zhu et al., 2008), sliding mode control 
(Cao, Xie & Das, 2018), adaptive backstepping 
control (Chang, 2010), switching model control 
(Jiang et al., 2015), nonlinear optimal predictive 
control (Todorov et al., 2010) and active model-
based control (Bleicher et al., 2011). For the 
DDC method, the controller is designed directly 
using online or offline input/output data of 
the controlled system without employing the 
mathematical model of the controlled plant. 
Examples of DDC algorithms are PID control 
(Fan et al., 2015), neural network nonlinear 
control (Chiang & Chen, 2017), fuzzy control 
(Jiang et al., 2015), model-free adaptive control 
(Ahmed, Wang & Yang, 2018) and data-driven 
predictive control. Although MBC ensures a 
higher positioning precision for PAM applications 
compared to DDC, its design process requires 
that the system be modelled and that there be an 
adequate knowledge of control theory, making it 
difficult for engineers who are unacquainted with 
the modeling and controller design to implement 
and make the controller impracticable for real-
time systems.   

The novelty of the study is to explore a DDPC 
method for position tracking control of a PAM 
system by applying a DDPC algorithm for 
the first time. This algorithm is the result of a 
combination of subspace identification and 
model predictive control. Unlike the model-based 
method, a novel approach was applied using the 
results from the subspace system identification, 
being well-suited to multivariable systems for 

developing state-space models directly from 
input-output data (Favoreel, De Moor & Van 
Overschee, 2000). Studies of DDPC are generally 
simulation-based (Xia et al., 2013; Sun et al., 
2017); however, in this study, real-time control is 
performed using DDPC. Recent studies of DDPC 
for industrial and academic applications can be 
found for instance in (Smarra et al., 2018; Hou, 
Liu & Tian, 2017).

The aim of the present study is to develop 
a controller in order to achieve high-
sensitive position tracking control with 
PAM using a DDPC algorithm. When 
estimated subspace matrices are directly 
employed in a predictive control design, this 
is referred to as a ‘DDPC’. In this case, the 
QR decomposition is required for obtaining 
the prediction matrix constructed from the 
input-output measurements. Neither a model 
order assumption nor a prediction needed 
to be carried out owing to the fact that the 
state-space matrices are not retrieved here. 
Real-time experimental studies are applied 
to observe and analyze the characteristics of 
the control system using the DDPC algorithm 
under several testing and loading conditions. 
The designed method is able to confirm 
good position tracking performance with a 
fast response and a high robustness for the  
PAM system. 

The rest of the paper is organized as follows: 
Section 2 describes the experimental setup; 
Section 3 presents the designed DDPC algorithm; 
Section 4 shows the experimental results; Section 
5 concludes the study.

2. Experimental Setup

A schematic diagram of 1 axis pneumatic 
artificial muscle manipulator is shown in Figure 
1. The hardware includes a personal computer 
to send the control signal for controlling a 
5/3 way proportional valve (FESTO, MPYE-
5-1/8-HF-010 B) through a microcontroller 
(ATmega 2560) and to drive the circuit (L298N), 
converting the digital signal to an analog voltage, 
and air is injected from the pressure supply (6 
bar). A linear position sensor (Novotechnik, 
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conductive plastic potentiometer) is used to 
measure the position of the PAM (FESTO, 
MAS-20-N-500-AA-MCGK). 

Figure 1. Schematic diagram of 1 axis PAM

In this study, the first joint of the PAM is fixed, 
and the control algorithm is applied to control the 
muscle position. PAM generates pulling forces 
to pull and push the linear position sensor along 
the moving direction within a working range of 0 
to 50 mm. The outside inertia load is tested with 
three different loading conditions (2, 3 and 4 kg) 
using a double acting pneumatic cylinder. The 
experiments are conducted under a pressure of 6 
bar and the proposed controller is implemented 
on a PC using Matlab/Simulink. The technical 
details of the device used in the experimental 
studies are listed in Table 1 and a photograph of 
the experimental setup is in Figure 2.

Figure 2. PAM experimental setup

Table 1. Technical data of experimental equipment.

Equipment Description

PAM

Type: (FESTO, MAS-20-N-500-
AA-MCGK

Nominal length: 500 mm
Operation pressure: 0 … 6 bar
Force compensation: 1500 N

Proportional Valve

Type: FESTO, MPYE-5-1/8-
HF-010 B

Maximum pressure: 10 bar
Set point value: 0 … 10 V DC

Microcontroller
Type: ATmega 2560

AI and AO: 10 bit resolution
Linear 

Potentiometer
Type: Novotechnik TLH 0900

Nominal resistance: 10 KΩ

3. Control System

Due to the compressibility of the air source and 
the nonlinear nature of the PAM force, a DDPC 
is developed accordingly and applied into the 
position tracking system based on the subspace 
identification method. The key features of the 
developed controller are as follows:

1. The controller theory is designed using 
input/output data with on-line and off-line 
mechanisms and the cost function of model 
predictive control (MPC). 

2. The data is taken as knowledge without 
mathematical models or implicit and 
explicit information.

The parameters of the controlled system varied 
depending on the patient or the healing process, 
making the system difficult to model, especially 
when using pneumatic muscle actuators, i.e., 
rehabilitation robots and orthotic or prosthetic 
applications. Consequently, data-driven 
algorithms are preferred over model-based 
algorithms and the control model undergoes a 
difficult and expensive process. Furthermore, 
it is not efficient for a system that will be 
applied to multi-user processes with different 
mechanical properties. The DDPC algorithm 
weight parameters can be calculated with the 
obtained subspace matrices and the system is able 
to track the reference with a control rule based 
on previous input/output data and tracking errors 
within the defined horizon. The rule based on past 
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data is able to respond quickly by following all 
the actions along the horizon.

An MPC scheme is adopted whereby at each time 
step an optimal control problem is solved through 
quadratic programming aiming at minimizing 
the deviations of the system variables from their 
equilibrium points. Because the cost function of 
the DDPC solves this problem, there is no need to 
linearized it around the equilibrium points.     

3.1 Subspace Identification Method

This subsection provides the background on 
the subspace identification matrices from the 
open loop data. These matrices will be used in 
the following section to design a data-driven 
predictive controller. Firstly, a state-space 
illustration of the system will be defined; 
hence, a Linear Discrete Time-Invariant (LTI) 
system can be written in a state-space form as 
following equations:

1k k k kx Ax Bu Ke+ = + +                                (1)

k k k ky Cx Du e= + +                                      (2)

Here m
ku ∈ , l

ky ∈ and m
kx ∈  are the 

input variables, the output variables and the 
state vector variables of the system, respectively, 
and l

ke ∈ is the white noise disturbance. This 
case is confined to a fictitious scenario in which 
the noise does not affect the measurements or 
the system. The system matrices n nA ×∈ , 

, ,n m l n l mB C D× × ×∈ ∈ ∈   and l lK ×∈  
are the state, input, output, feed-through and 
Kalman filter gain matrices, respectively.

The measurements of the inputs, ku , and the 
outputs, ky { }( )1,2, ,k N∈  , are assumed to be 
accessible for system identification and the input 
Hankel matrices for ku , represented as pU  and 

fU , are defined as:
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(4)

where the indexes ‘ f ’ and ‘ p ’ represent the 
‘future’ and ‘past’ matrices of the variables. 
Similarly, Hankel matrices for ky , represented 
as fY  and pY . The dimensions of the matrices 

are{ } { }2 1 2 1, , ,Ml N M Mm N M
p f p fY Y U U× − + × − +∈ ∈  .
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(6)

In the subspace identification method, these 
Hankel matrices are made to be rectangular. 
Thus, the undesired effects of noise on the 
identification system are minimized. This 
condition can be achieved by having a large data 
set, indicated by the variable N . Moreover, M
in equations (3)-(6) represents the order of the 
predictor equation. For successful identification, 
the order M  must be bigger than or at least 
equal to the real system order n  as demonstrated 
in the size of the state matrix A  (Van Overche 
& De Moor , 2012). The system state matrices 
are written as:

[ ]1 2 2 1p N MX x x x − + 

                  (7)

[ ]1 2 1f M M N MX x x x+ + − + 

         (8)

Consequently, the derivation of equations (1) 
and (2) can be written as below. These equations 
are known as the subspace matrix input-output 
equations (Kadali, Huang & Rossiter, 2003) used 
in subspace identification.    

d d
f M f M f N fY X H U H EΓ= + +

                (9)
d s

p M p M p N pY X H U H EΓ= + +
               

(10)
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M d s
f p M p M pX A X U E∆ ∆= + +

               
(11)

Ml n
MΓ ×∈  can be described as the extended 

observability matrix, d n Mm
M∆

×∈ as reversed 
prolonged deterministic controllability matrix, 
and s n Ml

M∆
×∈  as the reversed prolonged 

stochastic controllability matrix (Mardi, 2010). 
fY  can be written as below:

( )

( )

p†M M
f M M MM

p

†s M s s
M f M M p M fM

Y
Y A A H

U

H U A H E H E

Γ Γ ∆

∆ Γ

 
 = − +      

+ + − +
  

(12)

Since the effect of fE  is the white noise constant 
and is the reason for the constancy of a Kalman 
filter, equation (12) can be written to obtain an 
optimal prediction expression of the system output 

fŶ  as follows:

f w p u fŶ L W L U= +                                      (13)

where ,
T

p p p fW Y U U =    consists of past 
inputs, outputs, and future inputs, respectively.

[ ] ( )0;10 Ml M l m
wL × +∈  is the subspace 

matrix corresponding to past input-output states; 
and Ml Mm

uL ×∈  is the subspace matrix 
corresponding to future inputs. In equation (13), 
future outputs can be approached as a linear 
combination of past input-output states and 
the future input of the system. Equation (13) is 
employed to define the characterization of the 
system, by restoring the identification methods 
giving the state-space definition of the system. 

The following least squares problem is solved by 
calculating N  and uL using Hankel matrices.

[ ]
2

p
f w u

f F

W
min Y L L

U
 

−  
                         (14)

This problem can be solved from shifting the 
orthogonal projection of the row space fY into the 
row space of the matrices 

T
p p pW Y U =   . 

This can be defined by equation (15) as follows:

p
f f

f

W
Ŷ Y /

U
 

=  
                                              

(15)

3.2 Data-Driven Predictive Controller

The DDPC consists of the subspace-based 
predictor defined in subsection 3.1 and the cost 
function of the model predictive control algorithm. 
The structure of the proposed control method is 
shown in Figure 3.  

In Figure 3, M and N are the length of data and
( 1), ( 1), ( )dy k y k u k M+ + − are the desired 

output, output, and input, respectively. All 
I/O data is stored in a database for reuse in the 
control method. This data is generated offline 
using Matlab and applied to PAM through 
serial communication between the computer 
and microcontroller. The collected I/O data are 
used for subspace identification in Matlab. The 
values  and  calculated in Matlab are sent to 
the microcontroller via serial communication. 
The control algorithm is then executed on 
microcontroller with those values and actual I/O 
data through control horizon.

Figure 3. Structure of the DDPC in a block diagram

The MPC algorithm cost function form (Venkat et 
al., 2008) can be written with the prediction and 
control horizon pN  and cN  equal to f as follows:

( ) ( )1

1

ˆ ˆ

)

p

p p p p

p

c

c

c

TN
t k t Q t k t kk

N T
t k R t kk

J Y r W Y r

U W U

∑

∑

+ + +=

+ +=

= − −

+ ∆ ∆
        

(16)

where QW  and RW  are the weight matrices, 
p

tr  is 
the reference signal at present t , pN  and cN  are 
the prediction and control horizon, respectively, 
with cN  being lower than or equal to the 
prediction horizon ( )p c pN N N≤  or cN f≤ .

The improvement of the basics of the DDPC 
via rewriting the cost function of the MPC 
equation (16) in quadratic form is maintained. 
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Using equation (13) and the reference signal 
p

tr , the 
cost function can be updated as follows:

( )
( )

1

1

TNc
w p u Nc t t

Nc
Q w p u Nc t t

T
Nc R Nc

J L W L U Y r

W L W L U Y r

U W U

+

+

= ∆ + ∆ + −

× ∆ + ∆ + −

+∆ ∆     

(17)

If the cost function is solved, the control rule can 
be written as follows: 

( ) ( )
( ) ( )

( )

1

1

, , 1

TNc Nc
f u Q u R

TNc
u Q w p t t

Wp Nc p e Nc t t

U L W L W

L W L W Y r

K W K Y r

−

+

∆ +

 
∆ = − + × 

 

∆ + −

= − ∆ − −
  

(18)

where ,Wp NcK∆−  and ,e NcK  are the weight of 
the past data and the tracking error, respectively.

At each time condition, the first element NcU∆
is used to compute the control input 1tU + , which 
complies with 1tU +∆ . Hence, abbreviating the 
first m rows in equation (18) leads to:

( )1 1t Wp p e t tU K W K Y r+ ∆ +∆ = − ∆ − −
      

(19)

with,

( ) ,10Wp m Wp Ncm M mK I K∆ ∆× −
 =          

(20)

( ) ,10e m e Ncm M mK I K× −
 =                     

(21)

Consequently, the control input tU  can be written 
as follows:

1t t tU U U−= + ∆                                           (22)

4. Experimental Results

The data-driven predictive control method was 
validated on a real-time system by different 
experimental studies. The experimental setup was 
explained in Section 2. The system position was 
directly measured using a linear potentiometer 
and the control algorithm was applied using 
Matlab/Simulink on a PC with a sampling time 
of 10 ms. This sampling time was chosen to 

achieve an optimal control performance and 
to be convenient for the bandwidth of the used 
proportional valve.

The working ranges of the PAM system were 
detected as follows:

[ ]0;50y∈  mm [ ]0;6P∈  bar, [ ]0;10u∈ V

where y , P and u are the position and pressure 
of PAM and the driving voltage range of the 
proportional valve, respectively.

To design the DDPC, the input/output data 
collected from the open-loop experiment is 
necessary to define the subspace matrices. This 
experiment is implemented with a variable 
frequency sinusoidal signal of magnitude 0.7 for 
the inputs. 

The  subspace  pred ic tor  mat r ices , 
(100 100), (100 100)w uL L× × are determined by 

using subspace identification, 100i =  (row blocks) 
and 100j = (column blocks) in the Hankel matrices. 
The sequence of the Hankel matrices was set as 

15, 100, 50cN f p= = = , while the weighting 
matrices are selected as ,Q fl R fmW I W I= = . 

Depending on the prediction horizon, the 
subspace prediction scheme was implemented 
at approximately 0.91 seconds. If the prediction 
horizon was selected any higher, it would be over 
1 second.

The designed input signal, output signal, control 
signal to drive the proportional valve, and the 
control gains WpK∆  and 0.0518eK =  are 
shown in Figure 4. With the identification data, 
the control gains can be calculated using equation 
(19). The significant coefficients from calculating 
the gains are , , , ,c Q RN f p W W . The optimum 
parameters are calculated as above and real-time 
control of the PAM is realized by applying the 
control gains to the DDPC control rule determined 
in equation (22).

The DDPC was applied to the PAM for position 
control, based on the theory given in subsection 
3.2. For position tracking, multistep and sine 
signals at various frequencies (0.5, 1, 1.5 and 0.2 
Hz) and with/without loading (2, 3, and 4 kg) were 
separately utilized. 
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Experimental study 1: The experiments were 
implemented on the PAM to track the multistep 
trajectory within the range of [5; 15] mm in a free-
load situation. The results are shown in Figure 5. 
As shown in the figure, the designed controller 
drove the system accurately at different set points. 
As the settling time is not good enough, the error 
between the change of reference orbit is high. 
The average steady-state error in the multistep 
trajectory is 0.142 mm and the maximum error 
is 1.012 mm. As a result, the suggested control 
algorithm generated a good transient response and 
steady-state performance. 

Experimental study 2: The experiments were 
implemented on the PAM to track a sine signal 
trajectory with an amplitude of 30 mm and at 
various frequencies of 0.5, 1 and 1.5 Hz under 
free-load conditions. The experimental results are 
given in Figure 6. The maximum errors of sine 
signal tracking are 1.85 mm, 2.04 mm, and 2.31 
mm at 0.5 Hz, 1 Hz, and 1.5 Hz, respectively. 
Compared to 0.5 Hz, the DDPC control error 
increased from 6.2% at 1 Hz to 12.8% at 1.5 Hz. 
Because of its robustness, the behavior of the 

controller was sustained within improved ranges 
of 0.5 Hz → ±0.48 mm (4.8%), 1 Hz → ±0.88 mm 
(8.8%), 1.5 Hz → ±1.38 mm (13%) of the control 
errors. Consequently, the controller is deemed 
to have good robustness and exhibit favorable 
hysteresis performance.       

Experimental study 3: The experiments were 
implemented to track a sine signal trajectory 
with a frequency of 0.2 Hz and an amplitude 
of 20 mm under four conditions: free-load 
and a further three loads of 2, 3 and 4 kg. The 
controller performance and error results acquired 
under each of the load conditions are shown in 
Figure 7. The maximum control errors of the sine 
signal tracking are 0.95 mm, 1.14 mm, 1.19 mm, 
and 1.21 mm under the free-load, 2, 3 and 4 kg 
load conditions, respectively. The best position 
tracking performance was achieved using a 
DDPC algorithm characterized by robustness 
and adaptability. As a result, the proposed DDPC 
algorithm is able to consistently restrict the control 
errors under the free- and 4-kg load conditions to 
within an acceptable range of 0.32 mm (3.2%) and 
0.72 mm (7.2%), respectively.

(a) (b)

(c) (d)

Figure 4. Identification data for PAM and control gains. (a) Sine input signal for identification. (b) Measured 
output signal (c) Control input voltage (d) Control gains:  and 



https://www.sic.ici.ro

196 Osman Ulkir, Gazi Akgun, Erkan Kaplanoglu

(a) (b)

(c) (d)

(e)
  

(f)

Figure 6. Data from experimental study 2 (a) Sine tracking results at 0.5 Hz (b) Sine tracking errors at 0.5 
Hz (c) Sine tracking results at 1 Hz (d) Sine tracking errors at 1 Hz (e) Sine tracking results at 1.5 Hz (f) Sine 

tracking errors at 1.5 Hz

(a) (b)

(c) (d)

Figure 5. Data from experimental study 1 (a) Multistep tracking results (b) Zoomed-in tracking results from 
2.5 s to 6.6 s (c) Tracking errors in the multistep test (d) Zoomed-in tracking errors from 2.5 s to 6.6 s
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(a) (b)

(c)
  

(d)

(e) (f)

  
(g)

  
(h)

Figure 7. Data from experimental study 3 (a) Sine tracking results at 0.2 Hz (b) Tracking errors at 0.2 Hz (c) 
Sine tracking results at 0.2 Hz with 2 kg (d) Tracking errors at 0.2 Hz with 2 kg (e) Sine tracking results at 0.2 
Hz with 3 kg (f) Tracking errors at 0.2 Hz with 3 kg (g) Sine tracking results at 0.2 Hz with 4 kg (h) Tracking 

errors at 0.2 Hz with 4 kg.
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Compared to the model-based controller described 
in the literature using a similar PAM (Chang, 
2010), the proposed controller demonstrated 
significant positioning accuracy and fast response 
with a low overshoot and high level of robustness.

The root mean square (RMS) errors of the data-
driven predictive controller in all the case studies 
are given in Table 2. These results show the 
robustness and effectiveness of the DDPC.

5. Conclusion

In order to solve the problem of modelling and 
position tracking control of a nonlinear PAM 
system, a data-driven predictive control strategy 
was proposed using subspace identification 
and model predictive control theory. Subspace 
matrices were developed using the identification 
method as a predictor and adopting open-loop 
experiments. The estimated subspace matrices 
were employed for a predictive control design 
referred to as ‘DDPC’ and applied to a PAM for 

the first time within this field of research. Due to 
its data-driven nature, DDPC was unstable and 
could be easily adapted to other types of systems 
without knowledge of the mathematical models 
of the plant.

An experimental setup was developed to observe 
the position tracking performance of the PAM 
system. Subsequently, the real-time experimental 
results relating to the different reference signals 
and load conditions were approved having good 
dynamic properties, robustness and effectiveness, 
indicating feasibility of the proposed control 
method for real-time applications, including for 
linear and nonlinear systems.   

In future studies, optimization of the DDPC 
algorithm will be realized to solve the rising 
and setting time problems in the PAM system. 
Furthermore, the DDPC will be compared to 
PID and sliding mode controllers in order to 
evaluate its performance. A forthcoming work 
aims to achieve an accurate position control of a 
pneumatic ankle-foot orthosis device based on the 
proposed DDPC algorithm. 

Table 2. Performances of all the experimental studies

RMS Error

Experiment Trajectory DDPC
Experiment 1

Free-Load
Multistep signal   0.278

Experiment 2
Free-Load

   Sin 30 mm       0.5 Hz
                       1 Hz

                          1.5 Hz

  0.485
  0.848
1.34

Experiment 3
Free-Load

 Sin 20 mm       0.2 Hz   0.357

Experiment 3
Load 2 kg

 Sin 20 mm       0.2 Hz   0.408

Experiment 3
Load 3 kg

 Sin 20 mm       0.2 Hz   0.425

Experiment 3
Load 4 kg

 Sin 20 mm       0.2 Hz   0.463
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