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1. Introduction

Recently, automobile suspension systems have 
drawn much attention from both the researchers 
and the car industry due to their impact on the 
chassis performance of vehicles. Better vehicle 
suspension should ever provide adequate comfort, 
proper handling, and ability to maintain road-
holding (Wang et al., 2018a). Nowadays, to 
guarantee the ride comfort and driving safety, a 
significant numbers of automotive suspension 
models have been developed as well as controller 
design approaches (Hrovat, 1997, Savaresi et 
al., 2010, Song, J., Niu, Y. and Zou, Y., 2018).  
Moreover, the suspension systems have an 
extensive impact on the subjective impression 
of the car (Sun et al., 2014). Thus, all the forces 
between the car body and the surface of the road 
are pass and are filtered through the suspension 
systems, hence substantially controlling the 
comfort and safety of the ride. Among the common 
current modes of suspension systems, the active 
suspension system is widely accepted despite its 
high-power consumption, because the control of 
this suspension type can effectively improve the 
suspension performance over both conventional 
passive and semi-active suspension systems 
(Cao et al., 2008, Chen et al., 2015). Therefore, 
many control methods are designed to ensure the 
suspension systems stability and performance 
enhancement, such as linear quadratic-Gaussian 
control (Chen et al., 2012), adaptive control (Pan 

et al., 2017, Chen and Huang, 2005), sliding 
mode control (Yoshimura et al., 2001, Sam et al., 
2004, Pusadkar et al., 2019),  fuzzy logic control 
(Cao, J., Li, P. and Liu, H, 2010, Rao and Prahlad, 
1997),  backstepping control (Pang, H., Zhang, 
X., and Xu, Z, 2018, Yagiz and Hacioglu, 2008).

In the active suspension system, the inevitable 
existence of the model’s nonlinearities such as 
parameter changes and external perturbations 
may reduce both the ride comfort and safety. 
To solve this problem, several various control 
techniques have been proposed. It is well known 
that the sliding mode control has the ability to 
deal with uncertain systems. Thus, the sliding 
mode control is combined with other approaches 
which are introduced in detail in (Zhao et al., 2015, 
Moradi and Fekih, 2014). Moreover, intelligent 
control approaches such as fuzzy logic control, 
have confirmed the results of the robust closed-
loop systems (Demir, O., Keskin, I., and Cetin, 
S, 2012, Hafaifa, A., Laaouad, F., and Laroussi, 
K, 2010). A Takagi–Sugeno fuzzy logic based 
sliding-mode technique (Wen et al., 2017) and 
adaptive fuzzy logic based backstepping control 
has been implemented for the active suspension 
system to enhance the riding comfort and keep 
the riding safety within the safe operating limits 
(Sun et al., 2018). The feedback control design 
is reported in (Li, P., Lam, J., and Cheung, K. C, 
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2014b, Wang, G., Chen, C. and Yu, S., 2016a, Li, 
P., Lam, J., and Cheung, K. C., 2014c). In (Li, P., 
Lam, J., and Cheung, K. C., 2014b), based on cone 
complementarity linearization algorithm and linear 
matrix inequality (LMI), the output-feedback 
signal is used in Control design. In this work, the 
ride quality is measured with H∞  norm approach, 
while the generalized 2H  norm is utilized to deal 
with the hard constraints on the peak values of 
some variables. Furthermore, the output-feedback 
control approach based on the variable substitution 
and LMI are proposed for the active suspension 
model with constrained information (Wang, G., 
Chen, C. and Yu, S., 2016a).

Considering the above mentioned problem, most of 
the control procedures which have been discussed 
before might afford the best trajectory tracking 
for the linearized active suspension system, which 
requires an accurate model. However, this kind 
of approaches especially model-based one has   
various well-known limitations. Furthermore, 
these strategies need considerable calculations 
that may prevent them from being executed in 
real time. Moreover, for the active suspension 
system, the vehicle sprung, and unsprung masses 
are varying with the number of vehicle passengers 
and the payload. Nevertheless, this type of 
nonlinearities is not considered in the research 
works (Li, H., Jing, X., and Karimi, H. R., 2014b, 
Wang, G., Chen, C. and Yu, S., 2016a, Li, P., Lam, 
J., & Cheung, K. C. , 2014c). As a result in (Li et 
al., 2013), if the variations of the vehicle sprung 
and unsprung masses are not considered in the 
control-design process, the performance of the 
vehicle suspension systems will be affected. 

In order to enhance the performance tracking 
and to replace the mathematical model and the 
uncertainty, a new model-free approach based 
intelligent proportional-integral-derivative (iPID) 
has been introduced in (Fliess and Join, 2008). 
Furthermore, iPID is confirmed to control various 
systems such as wind turbine systems (Fliess and 
Join, 2013, Wang et al., 2015a, Li et al., 2016). 
Excellent results were achieved when integrating 
this method with other strategies in (Wang et al., 
2016b, Han, S., Wang, H.P., and Tian, Y., 2018), 
for instance to confirm the robustness of the 
control synthesis the method is integrated with 
neural network control and time-delay estimation 
(Zhang et al., 2018) while in order to guarantee 
stability for the unknown nonlinear system the 
method is integrated with fractional order sliding 

mode control, and optimized fuzzy logic control, 
in (Mustafa et al., 2019, Wang, H.P., Mustafa, 
Ghazally I. Y., and Tian, Y., 2018b), respectively. 
The robustness of this strategy depends on the 
technique utilized to estimate the unknown 
dynamics, like time-delay estimation (Ahmed, 
S., Wang, H., and Tian, Y., 2018, Wang et al., 
2016c), ultra-local model (Wang et al., 2015b, 
Michel et al., 2010). Unfortunately, the non-zero 
estimation error always remains if the estimator 
is not selected well. In addition, the measurement 
noise diminishes the performance of the closed-
loop control system significantly. Concerning 
this error, a new adaptive fuzzy based fractional 
order is introduced. As such, compensation can be 
real-time for both uncertainties and outside in the 
active suspension model. Moreover, the benefits 
of adaptive fuzzy control considerably motivate 
the usage in nonlinear system identification 
and control. Various reasons have prompted 
large research interests in the application of 
adaptive fuzzy control for control objectives over 
conventional control techniques (Dragomir et al., 
2015, Mustafa, Ghazally I. Y., Wang, H.P., and 
Tian, Y., 2013). Amongst them the principal points 
are: first, a superior performance is obtained since 
the adaptive fuzzy controller can adapt itself to the 
various conditions. Second; by applying adaptive 
law, the dynamics of the plant can be learned 
during operation (Wang, 1993). The whole control 
strategy presented in this paper refers to the 
extended state observer (ESO) based on model-
free adaptive fuzzy logic control (MFAFLC).

The advantages of the proposed controller are 
that the information of the active suspension 
model is not needed. In this way, the complicated 
suspension dynamics is avoided thanks to model-
free control (MFC). Another advantage is the 
robustness towards the external disturbances 
thanks to the simultaneous application of the 
adaptive fuzzy logic compensator which makes 
possible to compensate the ESO estimation 
error online. Mainly the proposed controller has 
three components. First, the ESO is utilized to 
estimate the unknown uncertain dynamics via 
the knowledge of the active suspension system 
input and output signals. Second, the model-
free based iPI control is used to overcome the 
existing controller’s complexity, insert required 
performances, and reduce the high order 
derivative output. The last one is the continuous 
adaptive fuzzy logic control based on fraction 
order control term and it is used to compensate 
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the ESO estimation error in order to guarantee 
the finite-time convergence and ensure the global 
stability of the closed-loop system. The results 
demonstrate that the model-free adaptive fuzzy 
logic control (MFAFlC) outperforms iPID and 
proportional-integral-derivative (PID) controllers 
in ride comfort and ride safety.

The paper is structured into five parts as follows. 
In Section 2, the problem formulation of the 
nonlinear half vehicle active suspension system 
and the system requirements are presented. The 
detailed design steps of the model-free adaptive 
fuzzy logic control are conducted and the stability 
analysis is proved in Section 3. Section 4 presents 
the simulation results to confirm the performance 
of MFAFLC controller compared with the iPID, 
classical PID and passive model. Finally, in 
Section 5, some concluding remarks and future 
work are summarized.

2. Problem Formulation

2.1 Nonlinear Half-car Model

In this section, the model of the half-car active 
suspension is provided in details and illustrated 
in Figure 1. This model has been widely used 
in the prior research due to its symmetry which 
includes the heave and pitch motions of the car 
body (Wang, G., Chen, C. and Yu, S.,  2016a, Sun 
et al., 2014). In this figure, M  and J  stand for the 
masses of both the car body and moment of inertia 
for the pitch motion, respectively. 1tm  and 2tm  are 

the unsprung masses of the front and the rear tires, 
respectively. 1z , and 2z  are the displacements of 
the front, the rear car body, respectively. a  stands 
for the distance between the center of mass and 
the front axle, b  stands for the distance between 
the center of mass and the rear axle. dfF , drF , 

sfF , and srF  denote the forces provided by the 
springs and dampers for front and rear wheels, 
respectively, and tfF  , trF  are the elasticity forces 
of the tires. For the car body, cz  is the vertical 
displacement, θ  is the pitch angle, fz , rz  are the 
unsprung mass displacements, and 01z , 02z  are the 
road inputs to the related wheel.  1u , 2u  are the 
control signals of the active systems. The ideal 
dynamic equations of the half-car model can be 
written as follows:

1 2

1 2

1 1

2 2

( ) ( )
c df dr sf sr

df sf dr sr

t f df sf tf

t r dr sr tr

Mz F F F F u u

I a F F b F F au bu
m z F F F u
m z F F F u

θ

+ + + + = +


+ + − + = −


− − + = −
 − − + = −







          

(1)

where the forces provided by the spring, the 
damper and the tire are described as follows: 

1

1

sf f f

sr r r

F k y
F k y

= ∆


= ∆ 			                       
(2)

df f f

dr r r

F b y
F b y

= ∆


= ∆



 			                        
(3)

2 01

2 02

( )

( )
tf f f

dr r r

F k z z
F k z z

= −


= − 		                       
(4)

Model-free Adaptive Fuzzy Logic Control for a Half-car Active Suspension System

Figure 1. Half-car model with active suspension
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where 1fk  and 1rk  are the suspension stiffness 
coefficients; fb  and rb  are the suspension 
damping coefficients; 2fk  and 2rk  are the stiffness 
coefficients of the tires. fy∆  and ry∆  denote the 
front and the rear suspension deflection.

sin

sin
f c f

r c r

y z a z
y z b z

θ

θ

∆ = + −

∆ = − −  		         

(5)

By defining the state variables, 1 sinc fx z a zθ= + −  
is the suspension deflection of the front car body, 

2 sinc rx z b zθ= − −  is the suspension deflection 
of the rear car body, 3 01fx z z= −  is the front tire 
deflection, 4 02rx z z= −  is the rear tire deflection, 

5 coscx z aθ θ= +  is the vertical velocity of the 
front car body, 6 coscx z bθ θ= −  is the vertical 
velocity of the rear car body, 7 fx z=   is the 
vertical velocity of the front wheel and 8 rx z=   is 
the vertical velocity of the rear wheel.

For the half-vehicle model active suspension 
form, the state vector is selected as: 

T
1 2 3 4 5 6 7 8[ ]X x x x x x x x x=        (6)

The output vector can be expressed as:
T

1 2 1 2 1 2[ ]c f r dyn dynY z z z z z F F u uθ= − −

  (7)

where 1dynF , 2dynF  are the dynamic loads for the 
front and the rear wheels, respectively.

It is to be noted that with a change in the payload, 
there will be variation in the vehicle load, and this 
will correspondingly make a change in the vehicle 
mass M  and the wheels masses 1 2,t tm m . One can 
find various efforts that investigate into uncertain 
systems in the literature, see (Song, J., Niu, Y. & 
Zou, Y., 2018, Sun, H., et al., 2018). 

In this work, we consider that 
min maxM M M≤ ≤ , 1 min 1 1 max( ) ( )t t tm m m≤ ≤  and 

2 min 2 2 max( ) ( )t t tm m m≤ ≤ .

2.2 Problem Statement

The following aspects are considered performance 
requirements of active suspension systems:

1.	 Ride comfort: As it is widely known, the main 
task of active suspensions control is to design 
a controller capable of isolating the car body 
from external disturbances, i.e., minimizing 
the vertical and the pitch acceleration of the 
car to ensure the ride comfort.

2.	 Suspension space limit: It could be noticed 
that the suspension is exposed to induced 
vibrations on the road. Thus, the maximum 
dynamic limits of the suspension’s 
equilibrium position should be controlled 
within as follows:

1 f max

2 max

f

r r

z z z
z z z
− <


− < 			           

(8)

where f maxz  and r maxz  are the upper limits of 
suspension deflections for the both parts (front 
and rear), respectively.

3.	 Road holding: To ensure the ride safety, the 
wheels must come in contact with the road 
surface firmly and uninterrupted, while the 
dynamic wheels’ loads should not exceed the 
static loads as:

1 t1

2 t 2

bM9.8( m )
a b

M9.8( m )
a b

dyn

dyn

F

aF

 < + +

 < +
 +                            

(9)

4.	 Actuator saturation: Considering the 
amplitude saturation which occurs in all the 
physical devices, the actuator power limit is 
considered as:

1 1max

2 2max

u u

u u

 ≤


≤ 			          
(10)

3. Model-free Adaptive Fuzzy 
Logic Control

The comprehensive active vehicle suspension 
system using the MFAFLC is shown in Figure 2. 
In this part, the extended state observer (ESO), the 
model-free based intelligent proportional-integral-
derivative (iPID), and the model-free adaptive 
fuzzy logic control (MFAFC) are introduced.

3.1 Model-free based Intelligent Proportional-
Integral Control

For a general unknown nonlinear model, the model-
free control is defined as (Fliess and Join, 2013):

(v) (t) (t) (t)y uε α= + 		                     (11)
where ( )y t  denotes the output signal, v  is the 
derivative order which is commonly chosed as 1 
or 2, (t)ε is an unknown term which is estimated 
through the control input ( )u t  and output. 
Furthermore, (t)ε  is included the disturbances of 
the system, when α  is an assumed constant.
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The control input of iPI is defined as:

*1 ˆ( ) [ ( ) ( ) ( ) ( ) ( )]p i refu t k e t k e t d t y t tε
α

= + + −∫ 

  
(12)

where pk  and ik  are the corresponding classical 
proportional integral (PI) coefficients, * ( )refy t  
is the reference trajectory of the output, ˆ( )tε  is 
estimated value of ( )tε  and ( ) * ( ) ( )refe t y t y t= −  
is the error output. 

Substituting equation (11) into equation (10), the 
error equation can be realized as follows:

( ) ( ) ( ) 0p ie t k e t k e t dt+ + ≈∫

	                    
(13)

The steady error dynamics of the closed loop is 
determined by the parameters pk  and ik  whose 
values can be selected according to the Hurwitz 
criterion and the constrained estimation error 

ˆ(t) (t)ε ε− .

In this paper, the extended state observer (ESO) 
method is applied to determine ˆ(t)ε  value which 
is got by the knowledge of the model input 
and output signals. For further comprehensive 
discussions on the intelligent proportional-integral 
(iPI) control and ESO see (Mustafa, Ghazally I. 
Y., Wang, H.P., and Tian, Y., 2019, Wang, H.P., 
Mustafa, Ghazally I. Y., and Tian, Y., 2018b).

3.2 Model-free Adaptive Fuzzy Logic Control

An adaptive fuzzy logic control based on the 
fractional order is proposed as an additional 
input to compensate the estimation error 

and measurement noise. Figure 2 shows the 
MFAFLC structure.

The new control input of the system is defined as:

( ) (t) ( )v eu t u u tα= −    		                     (14)

where ( )eu t  is an external adaptive fuzzy logic 
compensator which will be formulated later, then, 
the new error equation is given below:

( ) ( ) ( ) ( )p i ee t k e t k e t dt u tε α+ + = +∫ 

            (15)

where ε  is the ESO estimation error which is 
defined as follows:

ˆ(t) (t) (t)ε ε ε= − 		                     (16)
Now, by defining new state variables such as 

1
0

2

( )

( )

t

x e t dt

x e t


=


 =

∫

			                      

(17)

The state-space equations can be expressed  
as follows 

1 2

2 2 1 ( ) ( )p i e

x x
x k x k x x u tε α
=

 = − − + +





	      
(18)

The error function is defined as: 
1 asgn(e)s e kDλ−= + 			        (19)

where , 0k a >  and 2 1λ> > .

From equation (19), 0if s → ,  then 
0 and 0e e→ → .

Model-free Adaptive Fuzzy Logic Control for a Half-car Active Suspension System
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Figure 2. MFAFLC control structure
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Using the universal approximation theorem 
of fuzzy system, the fuzzy system ˆ ( | )f x θ  is 
designed to approximate ( )xε .

Considering the inputs 1x  and 2x , the five 
membership MF is designed, (assume   2n = , 
  1,  2,i =  1 2   5p p= = , and the fuzzy rules 

( 1 2    25p p× = ) can be obtained.

The fuzzy system ˆ ( | )f x θ  is constructed by the 
following steps defined below:

Step1: For the variable  ( 1,  2)ix i = , define ip  
fuzzy sets ( 1,  2,  3,  4,  5 );li

iA li =      

Step2: Use 1 2
1

25
n

i
i

p p p
=

= × =∏  fuzzy rules to 

construct fuzzy system ˆ( | )f x θ . The jth fuzzy rule 
is expressed as:

1 2 1 2(j)
1 1 2 1

ˆ:  is  and  is  then  is l l l lR if x A x A f B

Then, the fuzzy inference is designed as follows:

1.	 Using product inference engine for the premise 
of fuzzy rule, 

2

1

( )li
i

i

A xiµ
=
∏  is obtained.

2.	 Use singleton fuzzifier to get 1 2l l
fy , where 1 2l l

fy
is the point 1 2[ , ]x x at which 1 2

1 2 ( ) 1.0.l l
l l
fB

yµ =

3.	 Using product inference engine for the 
premise and conclusion of fuzzy rule, 
then 1 2

2

1

( )( )li
i

i

l l
f xiy Aµ

=
∏  is obtained, and 

using the union operator for different fuzzy 
rules, then the output of the fuzzy system can 

be obtained as: 1 2

1 2

25 5

1 1 1

( ( ))li
i

l l
f iA

l l i

y xµ
= = =
∑∑ ∏ .

4.	 Using the center average defuzzifier, the 
output of the fuzzy system can be obtained:

1 2

1 2

1 2

25 5

1 1 1
25 5

1 1 1

( ( ))
ˆ ( | )

( ( ))

li
i

li
i

l l
f iA

l l i

iA
l l i

y x
f x

x

µ
θ

µ

= = =

= = =

=
∑∑ ∏

∑∑ ∏
           

(20)

where ( )li
i

iA
xµ  is MF of ix .

Let 1 2l l
fy  be the freedom parameter, 1 25 T[ ... ]f fy yθ =  

is a parameter vector, then, by introducing the 
fuzzy basis vector ( )xξ , equation (20) becomes:  
ˆ ˆ( | ) ( )Tf x xθ θ ξ=  		                     (21)

where ( )xξ  is the fuzzy basis vector with 

1 2
1

25
n

i
i

p p p
=

= × =∏  elements, its 1 2
thl l element is 

1 2

1 2

2

1
25 5

1 1 1

( )
( )

( ( ))

li
i

li
i

iA
i

l l

iA
l l i

x
x

x

µ
ξ

µ

=

= = =

=
∏

∑∑ ∏
                          

(22)

The optimum parameter is set as:

2

* ˆarg min sup ( | ) ( )
x R

f x x
θ

θ θ ε
∈Ω

∈

 
= − 

                   
(23)

Then,
*( ) ( )Tx xε θ ξ ψ= + 		                     (24)

where ψ  is the approximation error.

Now, substituting equation (21) from equation 
(24), one has the following relation:

*ˆ ˆ( ) ( ) ( ) ( )

( )

T

T

x f x x x

x

ε θ ξ ψ θξ

θ ξ ψ

− = + −

= − +

                  
(25)

 
The Lyapunov function is defined as:

21 1
2 2

TV s θ θ
γ

= +  

                  		       
(26)

with *ˆ0 and γ θ θ θ> = − . 	
Its derivative can be calculated as 

a1 1ˆ̂ ( sgn(e) )T TV ss s e kDλθ θ θ θ
γ γ

= + = + + 

 

 

   
(27)

Substituting e  from equation (15) into the above 
equation, one has

a

( ( ) ( ) (t)

1 ˆsgn(e) )

p i e

T

V s k e t k e t dt u

kDλ

ε α

θ θ
γ

= − − + +

+ +

∫







          

(28)

The external control ( )eu t  is designed as:

1 2

ˆ( ) ( ) ( )1( )
[sgn( ) ] sgn( )

p i
e a

k e t k e t dt f x
u t

kD e s sλα η η

 + −
 =
 − − − 

∫
   

(29)
 

Then, 

1 2

1 2

2
1 2

1ˆ ˆ( ( ) ( ) sgn(s))

1 ˆ( ( ) sgn(s))

1 ˆ( ( ))

T

T T

T

V s x f x s

s x s

s s s s x

ε η η θ θ
γ

θ ξ ψ η η θ θ
γ

ψ η η θ θ ξ
γ

= − − − +

= − + − − +

= − − + −









 





    

(30)

Taking 2 0 0max
. 0η ψ η η> + > , the adaptive law 

is defined as:
ˆ ( )s xθ γ ξ= 	                                              (31)
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Then, 

2
1 2 0 0V s s s sψ η η η= − − ≤ − ≤

                   (32)

From the above analysis, it can be noticed 
that fuzzy system approximation error can be 
overcome by the robust term 2 (s)sgnη .

From equation (32), one has

0 0
0 0 0

, i.e. ( ) (0)
t t t

Vdt s dt V t V s dtη η≤ − − ≤ −∫ ∫ ∫

    
(33)

 

Since (0)V  is limited and ( )V t  is non increasing 
and limited, s , s  and θ  are all limited, it can be 
concluded that 

0

s dt
∞

∫  is limited. From Barbalat 
Lemma (Ioannou and Sun, 1996), when t →∞ , 
one has 0s → , then 0e → , 0e → . Finally, the 
MFAFLC design ensures the asymptotic stability 
of the system and makes the tracking error 
converge to zero in finite time.

4. Simulation Results and Discussions

In this part, the proposed control scheme is 
implemented to the half-car active suspension 
system shown in figure (2). The performances 
of MFAFLC are compared with the classical 
PID, and iPID controllers. Their corresponding 
numerical results are presented to confirm the 
effectiveness of the proposed controller.

The parameters of the half-car model are taken 
from (Wang, G., Chen, C. and Yu, S., 2016a) 
whose values are presented in Table 1. With 
the sprung mass M  and the unsprung masses 

1tm , 2tm  (front and rear), it is supposed that M  
belongs to the range [450 kg, 550 kg], 1tm  and 

2tm  belong to the range [27 kg, 33 kg].

The parameters of MFAFLC controller were set 
as follows:

18.1409pk = , 
18.1413ik = , 

5000γ =
 

and
 

0.0021dk = .

To clarify the advantages of the MFAFLC 
concerning the ride comfort and ride safety the 
simulation tests for three different road profiles is 
conducted below:

Case 1: the classic bump road profile is 
represented as follows:

01

2 V 1(1 cos( t)), 0 t
(t) 2

0,

h
z l V

else

π − ≤ ≤= 
 	      

(34)

where  0.05h m=  is the bump height, 3 l m=  is 
the bump length,  15 /V m s=  is the velocity of 
the passing vehicle, and 02 01(t) (t )a bz z

V
+

= − .

Case 2: To test the performance near the system 
resonance frequency, the sinusoidal road profile is 
considered as introduced in (Pan et al., 2016) as:

01(t) 0.006sin(2 t)z π= 	                                 (35)

with
 

02 01(t) (t )a bz z
V
+

= −
.

Case 3: the random profile, in this work class D 
road profile is selected; equation (21) represents 
the random road input as (Li, H., Jing, X., and 
Karimi, H. R., 2014a):

0 0 0(t) 2 (t) 2 ( ) (t)g g qx f vx n G n vwπ π= − +

   (36) 
where 0f  represents the space cutoff frequency 
of road, v  represents vehicle speed, 0n  is the 
spatial reference frequency, 0( )qG n  is the power 
spectral density of road profiles, and (t)w  is the 
input white noise. Figure 7 illustrates the random 
road input.

4.1 The Bump Road Results and Discussions

The dynamic responses of the car vertical and 
angular accelerations, using passive model, 
classical PID, iPID and MFAFFC controllers are 
shown in Figures 3 and 4, while the front and the 
rear responses of the suspension deflections, the 
dynamic wheel loads, and inputs force using the 
proposed method are shown in Figures 5-7.

Model-free Adaptive Fuzzy Logic Control for a Half-car Active Suspension System

Table 1. The parameters of the half-car model

J a b kf1 kr2 kf2

910 kg m2 1.5 m 1.5 m 10000 N/m 10000 N/m 100000 N/m
kr2 bf br Z1 max Z2 max u1,2 max

100000 N/m 1000 N s/m 1000 N s/m 0.1 m 0.1 m 2500 N



https://www.sic.ici.ro

20 Ghazally I. Y. Mustafa, Haoping Wang, Yang Tian

Figures 3 and 4 show the vertical and the angular 
body acceleration responses; it is clearly noticed 
that the MFAFLC has lower amplitude and 
smaller settling time response in comparison with 
others controllers, which implies that the proposed 
method achieves significantly better performance 
on ride comfort over the others controllers.

Figure 3. The vertical body acceleration response

The suspension deflections measured in Meters, 
the dynamic wheels load ratios and the force 
inputs responses measured in Newtons are shown 
in Figures 5-7, respectively. Also, from these 
figures it can be noticed that all the achieved 
results have values which are lower than the 
permissible limits as mentioned above in the 
suspension performances requirements.

Figure 4. The angular body acceleration response

Figure 5. The suspension deflections

Figure 6. The dynamic wheels load ratios

Figure 7. The response of the input forces

4.2 The Sinusoidal Road Profile

For a vehicle which passes over the sinusoidal 
road excitation, the dynamic responses of vertical 
and angular accelerations, using passive model, 
classical PID, iPID and MFAFFC controllers 
are shown in Figures 8-9. Numerically, the 
maximum values of body angular acceleration 
are 0.5478 rad/sec2 with proposed MFAFLC 
controller, 0.862 rad/sec2 with iPID, 1.4373 
rad/sec2 with PID, and 1.7193 rad/sec2 with 
passive system. Furthermore, the MFAFLC 
diminishes the overshoot value of the vertical 
body acceleration by 61.1% in comparison with 
the passive system, while reaching 54.23% and 
33.15% with respect to PID and iPID. It can be 
remarked that the amplitude of the body vertical 
and angular accelerations diminishes much faster 
in the proposed controller when compared with 
the other controllers; this will ensure much better 
ride comfort.

Figures 10-12 show the dynamic responses of the 
suspension deflections, the dynamic wheel’s load 
ratios, and the force inputs, respectively. From 
these figures it can be noticed that from these 
figures, all the obtained results have values which 
are smaller than the permissible boundaries as 
mentioned above in the suspension performances’ 
conditions.

Figure 8. The vertical body acceleration response
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Figure 9. The angular body acceleration response

Figure 10. The suspension deflections

Figure 11. The dynamic wheels load ratios

Figure 12. The response of the input forces

4.3 The Random Road Results and Discussions

To improve the quality of the ride, it is important 
to separate the car body from road excitements and 
to reduce the peak resonance of the vehicle body 
mass close to 1 Hz which has been identified to be 

a sensitive response to the human body (Metered, 
H., Bonello, P., and Oyadiji, S., 2010, Shehata, A., 
Metered, H., and Oraby, W. A., 2015). In Figures 
13-14 the Fast Fourier Transform modulus (FFT) 
is presented for both vertical and angular body 
accelerations behaviors. The proposed controller 
shows the lowest resonance peaks in comparison 
with other controllers.

Figure 13. The vertical body acceleration response

Figure 14. The angular body acceleration response

The results of the present analysis confirm 
that the MFAFLC strategy gives significant 
performance enhancements for the comfort of the 
ride and also for the ride safety. The proposed 
controller achieved a good result which keeps 
the boundaries of the dynamic responses of the 
suspension deflections, the dynamic wheel’s load, 
and the force inputs for all the road profiles are 
taken into consideration.

5. Conclusion and Future Work

In this paper, the robust model-free adaptive 
fuzzy logic control based on the fractional order 
and the extended state observer for half-car 
active suspension systems meant to enhance the 
ride comfort and keep acceptable boundaries for 
the suspensions deflections, the dynamic wheels 
loads, and input forces are presented. The model 
with parameter variation and three types of road 
profiles have been considered in this work. To 
confirm the advantage of the proposed controller 

Model-free Adaptive Fuzzy Logic Control for a Half-car Active Suspension System
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the simulation results were analyzed and compared 
with iPID and classical PID controllers. 
It can be concluded that the proposed controller 
improved the riding comfort when compared with 
other approaches and kept acceptable limitations 
for the suspension deflections, the road holding 
and actuator saturation. Moreover, experimen-
tal verification of the model-free adaptive fuzzy 
logic control could be considered an immersive 
starting point in future work.
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