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1. Introduction

It is well known that the optimal control theory 
has been applied successfully in different domains 
such as economics, econometrics, cybernetics 
or operations research. Arrow (1968) applied 
the control theory to economic growth. The 
book of Seierstad & Sydsater (1987) added a 
valuable contribution to the literature on the 
optimal control of economic processes. Sethi 
& Thompson (2000) covered topics including 
production and inventory problems, optimal 
consumption of natural resources or applications 
of control theory to economics.  Caputo (2005) 
presented numerous complementary methods 
for applications of optimal control to operations 
research and management science. Weber (2011) 
provided an introduction to the use of optimal 
control techniques for deterministic continuous-
time systems in economics.

The Lie geometric methods are used in the study 
of controllability problems of control systems by 
many authors. Brocket (1973) proved that Lie 
theory and control are closely connected. In the 
book of Isidori (1995) the control affine systems 
are studied.  LaValle  (2006) presented a unified 
treatment of control theory including holonomic 
and nonholonomic systems.  Some type of control 
mechanical systems are investigated by Popescu 
(2018) or Khan, Akmeliawati & Khan (2018). 

One of the most important and powerful methods 
in the study and analysis of the solutions for the 
optimal control problem is Pontryagin’s Maximum 
Principle, which generates a first order necessary 
condition for optimality. It is assumed that a 
curve ))(),(()( tutxtc =  is an optimal solution 
if there exists a lifting of x(t) to the cotangent 
space ))(),(( tptx  satisfying the Hamilton-

Jacobi-Bellman equations. However, finding the 
optimal solution for a control problem remains 
very difficult for several reasons. First of all, the 
problem of integrating a Hamiltonian system, 
which is generally difficult to integrate, except for 
its particular dynamics and costs, is approached. 
Secondly, even if all solutions can be found, 
the problem is to select the optimal trajectories 
from among them. For these reasons, it is very 
important to find new methods and techniques that 
would simplify this study. The aim of this paper 
is to solve a problem pertaining to inventory and 
production. This type of problems is intensely 
studied. Ortega & Lin (2004) gave a review of 
control theory applications to the production-
inventory problem. A study on supply planning 
and inventory control under lead time uncertainty 
is presented by Dolgui et al. (2013). Gayon, 
Vercraene & Flapper (2017) studied optimal 
control of a production-inventory system with  
product returns. A problem of production control  
under inventory inaccuracy and time-delay is 
investigated by Li & Wang (2017). Chen (2018) 
studied a problem for optimization of production 
inventory for a single-vendor multi-buyer system 
of perishable products.

In this paper the Pontryagin Maximum Principle 
is used at the level of a new working space. The 
fact that the framework of Lie algebroids is 
more suitable than the cotangent space for the 
study of driftless control affine systems with 
holonomic distribution is proven. A Lie algebroid 
is a generalization of the notions of tangent space 
and Lie algebra. The symmetries of control 
systems using the framework of Lie algebroids 
are studied by Popescu (2017). This paper is 
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organized as  follows. In the second section, some 
necessary results from optimal control theory are 
introduced. Also, the control affine systems are 
presented and the problem of controllability is 
studied, by using the properties of Lie brackets 
in the case of holonomic distributions. Next, only 
the necessary notions about Lie algebroids and the 
geometric viewpoint of the optimal control in this 
new framework are presented. Finally, the relation 
between the Hamiltonian function H~ on dual Lie 
algebroid and the Hamiltonian function H on the 
cotangent space is given. 

In section three, that contains the novelty of the 
paper, the strategy is to apply the Pontryagin 
Maximum Principle at the level of a Lie algebroid 
for a problem of inventory and production. First, 
we present the mathematical model of our problem 
and observe that this is a driftless control affine 
system with holonomic distribution. Using the 
Lie brackets of the vectors of distribution and the 
Frobenius theorem we study the controllability 
and find the condition that the inventory level 
has to fulfill, such that the system can be brought 
from an initial state to a final state. In order to 
find the optimal solution, we can apply the 
Pontryagin Maximum Principle as in the classical 
case on the cotangent space, but we obtain a 
very difficult system of differential equations. 
We will use a different approach, involving the 
framework of Lie algebroids. Using the Hamilton-
Jacobi-Bellman equations on Lie algebroids we 
find the solution, which is optimal because the 
Hamiltonian function is convex.

2. Optimal Control 

Let M be a smooth n-dimensional manifold (in 
particular, a subset of nR ). A control system on M 
given by a set of differential equations of the form

dx
dt

f x u
i

i= ( , )
, 

will be considered, where Mxxx n ∈= ),...,( 1

represents the state variables of the system and 
mm RUuuu ⊂∈= ),...,( 1

 represents its control 
variables.  Let 0x  and 1x  be two states of the 
system (two points of M).  An optimal control 
problem consists in finding the ways in which the 
system is brought from the initial state 0x  to the 
final state 1x and in minimizing the cost functional 

min ( ( ), ( )) , ( ) , ( ) ,
u

T
L x t u t dt x x x T x

0 0 10∫ = =

where L is the Lagrangian (energy, cost, time, 
distance, etc.). 

In other words, the trajectories of our control 
system which connects two points have to be 
found, so that a certain optimality condition is 
satisfied. The necessary condition for a solution to 
be optimal is given by the Pontryagin   Maximum 
Principle (Pontryagin, 1962). The Hamiltonian 
function on dual space is given by ,, LfpH −=
which leads to 

,),(),(),,(
1
∑
=

−=
n

i

i
i uxLuxfpupxH

where ),...,( 1 npp  are momentum variables. The 
maximization condition with respect to  control 
variables u, 

H x t p t u t H x t p t v
v

( ( ), ( ), ( )) max ( ( ), ( ), ),=

yields

0=
∂
∂

iu
H

(H is assumed to be smooth with respect to u) and 
the extreme trajectories satisfy the equations

dx
dt

H
p

dp
dt

H
x

i

i

i
i=

∂
∂

= −
∂
∂

,
                           

(1)

2.1 Control Affine Systems

A control affine system has the following form 
(LaValle, 2006)

x X x u X xi
i

i

m

= +
=
∑0
1

( ) ( )
                                 

(2)

where x dx
dt

=  and mXXX ,...,, 10  are smooth 
vector fields on the manifold M. Usually, 0X  is 
called the drift vector field as it describes the 
dynamics of the system in the absence of controls 
and iX , mi ,1=  are called input vector fields. A 
first aspect studied for these systems is the issue 
of controllability. 

A system is deemed controllable if for any two 
states 0x  and 1x  there exists a solution curve of 
(2) connecting 0x  to .1x  Controllability does not 
depend on the quality of the trajectory between 
two states, or on the amount of control effort. 
The presence of drift complicates the issue of 
controllability significantly. Further on, a driftless 
control affine system, or a distributional system, 
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where ,00 =X  will be considered. In this case the 
following can be obtained:

x u X xi
i

i

m

=
=
∑ ( )
1                                                

(3)

Most information about controllability is included 
in the structure of the Lie algebra generated by 
the vector fields iX , mi ,1= . A distribution∆ on 
the manifold M is a map which assigns to each 
point in M a subspace of the tangent space for the 
respective point, namely .)( MTxMx x⊂∆→∈

The distribution ∆  is considered locally finitely 
generated if there is a family of vector fields iX ,

mi ,1=  (called local generators of )∆ which spans 
∆ , i.e. 

∆( ) { ( ),..., ( )}x span X x X x T Mm x= ⊂1

The distribution∆  has the dimension k if 
kx =∆ )(dim , for all points .Mx∈  In this regard, 

the Lie bracket of two vector fields is given by 

[ , ]( ) ( ( )) ( ( ))X Y f X Y f Y X f= − .

Let },...,{ 1 mXXspan=∆ be the distribution 
generated by the family of vector fields iX ,

mi ,1= . The  distribution is called involutive if 
the Lie bracket of any two vectors from∆  belongs 
to∆ , that is if  

∆∈⇒∆∈ ],[, YXYX .
In this case every Lie bracket can be expressed as 
a linear combination of the system vector fields, 
and therefore

[ , ]X X L Xi j ij
k

k
k

m

=
=
∑
1 .

It should be mentioned that a foliation  
of M is a partition of  into disjoint 
connected submanifolds  called leaves.

Definition 1. A distribution ∆ of constant 
dimension on M is called integrable (holonomic) 
if there exists a foliation  on M whose 
tangent bundle is∆ , that is )(xSTx ∆= , where 
S is the leaf passing through x.

Theorem 1. (Frobenius) If ∆  is a distribution 
with constant dimension on the manifold M, then
∆  is integrable if and only if ∆  is involutive.

If this is applied in the case of driftless control 
affine system (3) and the distribution ,∆  generated 
by the input vectors iX , mi ,1=  is integrable 

(holonomic) with constant dimension, then the 
system is not controllable and ∆  determines a 
foliation on M with the property that any curve 
is contained in a single leaf of the foliation. In 
other words, any two points can be joined by an 
optimal trajectory if and only if they are situated 
on the same leaf.

Further on, some notions about Lie algebroids, 
which are useful in the study of driftless control 
affine systems will be presented.

2.2 Lie Algebroids

Let M be a real, ∞C -differentiable, n-dimensional 
manifold and MTx its tangent space at .Mx∈  
The tangent space of M is (TM, πM, M)  where 
TM T M

x M
x=

∈


 
and πM is the canonical projection 

map πM : TM → M taking a tangent vector 
X x T M TMx( )∈ ⊂  to the base point .Mx∈  

A vector bundle is a triple (E, π, M) where E and 
M are manifolds, called the total space and the 
base space and the map π: E → M is a surjective 
submersion. According to Mackenzie (1987), the 
following can be obtained:

Definition 2. A Lie algebroid over the manifold 
M is a triple (E, [.,.]E, σ) where (E, π, M) is a 
vector bundle of rank m over M, satisfying the 
following conditions: 

a) )(MC∞ -module of sections of )(EΓ  is 
endowed with a Lie algebra structure E],[ ⋅⋅ .

b)σ : E TM→  is a bundle map, usually called 
the anchor, which induces a Lie algebra 
homomorphism from the Lie algebra of 
sections of the bundle )],[),(( EE ⋅⋅Γ  to the 
Lie algebra of vector fields  
thereby satisfying the Leibniz rule

[s1, fs2]E = f[s1, s2]E +(σ(s1)f)s2 ,
).(),(, 21 MCfEss ∞∈Γ∈∀

From this definition it results that:

1.	 E],[ ⋅⋅  is a R-bilinear operation.

2.	 E],[ ⋅⋅  is skew-symmetric, i.e. 
.],[],[ 1221 EE ssss −=

3.	 E],[ ⋅⋅  verifies the Jacobi identity, 

.0]],[,[
]],[,[]],[,[

213

132321

=+
+

EE

EEEE

sss
ssssss
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For a function f on M, the differential df x Ex( ) *∈  
is given by  for .xEa∈∀  
If  is a k-form, then the exterior 
derivative  is given by

where )(Esi Γ∈ . If the local coordinates )( ix are 
taken on an open ,MU ⊂  then the local basis 
{sα} of the bundle sections generates the local 
functions   on M given by 

which are called the structure functions of  
Lie algebroid.

A control system on the Lie algebroid ),],[,( σEE ⋅⋅  
(Martinez, 2004) with the control space τ : 
A → M is given by a section ρ of E along τ. A 
trajectory of the control system ρ is an integral 
curve of the vector field σ(ρ). In relation to a cost 
function )(~ ACL ∞∈  the integral  of L~  should be 
minimized over the set of those system trajectories 
which satisfy certain optimal conditions. The 
Hamiltonian function H~  is defined by

,

whereas the associated Hamiltonian control 
system  is given by the symplectic equation 
of Lie algebroids 

,
where ωΕ is the canonical symplectic form. The 
extremal trajectories are given by the Hamilton-
Jacobi equations (Martinez, 2004)

                    

(4)

with
 

.0
~

=
∂
∂

Au
H

We can associate to any Lagrangian REL →:~

on Lie algebroid E, a Lagrangian L on  
according to (Popescu, 2009)

.

Theorem 2. The connection between the 
Hamiltonian function H on dual space MT *  
and the Hamiltonian function H~  on the dual Lie 
algebroid *E is given by

               
(5)

Proof. The Fenchel-Legendre dual of Lagrangian 
function L is the Hamiltonian function H given by

,
and the following is obtained

where σ* :T *M → E * is the dual application. In 
local coordinates 

                                                       (6)

is obtained and the Hamiltonian function H is 
degenerate on .

3. Applications of Control Affine 
Systems to a Problem of 
Inventory and Production

It is assumed that a company manufactures three 
types of products, denoted by 1P , 2P , 3P . In a 
certain period of time T, which is fixed, it must 
produce a certain amount ),,( 321 sss  of each type of 
product. A certain quantity of   the 1P , 2P  products 
are used for manufacturing the 3P  product. Also, 
it is known that the unit production costs increase 
linearly with the production level and the cost 
of production operations for 3P   is considered 
negligible. The unit storage costs for each product 
per unit time are given by constants (β1, β2, β3) . A 
production plan is necessary to ensure the required 
quantity is produced until the specified delivery 
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date with minimum costs. 

The case of a single product is studied by  Kamien 
& Schwartz (2006).

Let us consider )(txx ii = , 3,2,1=i  the inventory at 
time t. The inventory level is the cumulated past 
production )(tpp ii = , and considering 0)0( =ix , 
the following is obtained:

It results that the rate of change of the inventory 
ix  is the production and we have .ii px =  As 

the unit production costs, denoted by ,ic  increase 
linearly with the production level, ci = αi p

i, the 
total cost of production is given by

where 21,áá  are positive constants. Thus, the total 
cost, including the costs of inventory holding is 
given by

where ]1,0[, 21 ∈kk  represent the percentages of 
quantities 21,PP  used for the manufacturing of  

.3P   If it is considered that 11 ux = , 22 ux =  are 
the control variables and if it is assumed  that 
the rate of change of the inventory level for 3P  
is given by the law 22

2
11

1
3 xukxukx += , the 

following optimal control problem is obtained:

                           

(7)

A production plan with minimum costs is  
the solution 

It can be noticed that this is a driftless control 
affine system on 3

+= RM  written in the form

where
















=

1
1

1 0
1

xk
X

, 















=

2
2

2 1
0

xk
X

 

and

 

The optimal trajectories starting from the point 
(0,0,0) to endpoint ),,( 321 sss are  sought. The 
distribution },{ 21 XXspan=∆  generated by the 
vector fields 21, XX  has a constant dimension, 

2)(dim =∆ x , for all 3Rx∈ . Also, in the natural 
basis 









∂
∂

∂
∂

∂
∂

321 ,,
xxx

of 3R  the vector fields 
have the expressions

3
1

111 x
xk

x
X

∂
∂

+
∂
∂

=
, 

,3
2

222 x
xk

x
X

∂
∂

+
∂
∂

=

and by using the formula

it can be noticed that the Lie bracket is given by

[ ] ,0,, 3
2

223
1

1121 =





∂
∂

+
∂
∂

∂
∂

+
∂
∂

=
x

xk
xx

xk
x

XX

that is the distribution ∆  is involutive. From the 
Frobenius theorem, it results that the distribution 
is integrable (holonomic) and that it determines a 
foliation on 3

+R  and two points can be joined by an 
optimal trajectory if and only if they are situated 
on the same leaf. In fact, the economic system is 
not controllable, in the sense that we cannot reach 
any final stock quantity. Indeed, from the system 
(7) the following can be obtained

,22
2

11
1

3 xxkxxkx  +=

and it results that

Rccxkxkx ∈+
+

= ,
2

)()( 22
2

21
13

,
which are the surfaces (elliptic paraboloids) of 3

+R
, which determine a foliation. Moreover, by using 

0)0( =ix the following relation can be obtained:

,
2

)()( 22
2

21
13 xkxkx +

=
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and from i
i sTx =)(  it results that the above-

mentioned problem has a solution curve 
connecting (0,0,0) to endpoint ),,( 321 sss  (the 
system is controllable) if and only if the final 
amounts satisfy the condition

.
2

2
22

2
11

3
sksks +

=

Next, the Pontryagin Maximum Principle can be 
used in order to find the optimal solution. The 
Hamiltonian function on dual space is given by 

FxpH
i

i
i −=∑

=

3

1



 
which leads to

where 321 ,, ppp are momentum variables on 
dual space. The condition 0=

∂
∂

u
H  leads to the 

following equations

Now, the expressions of the control variables 
21,uu  will be replaced into the expression of the 

Hamiltonian  function and by direct computation 
it results that

               

(8)

Using the Hamilton-Jacobi-Bellman equations (1) 
the following can be obtained:

,

,

,

,

which is a complicated system of  
differential equations.

In order to find the optimal solution, a different 
approach, which involves the framework of 
Lie algebroids, will be used. The Pontryagin 
Maximum Principle will be applied for the Lie 
algebroid ∆=E  (holonomic distribution with 
constant rank), the state space is ,3

+= RM  the 
anchor σ :E  → TM is the inclusion and ],[ ⋅⋅  the 
induced Lie bracket. In this case, the anchor σ has 
the components

and a regular Lagrangian function on Lie algebroid 
E will be obtained in the form

Indeed, 

and it results that

Using the Legendre transformation induced by the 
regular Lagrangian

the Hamiltonian function is obtained:

For the (x,u) coordinates the following is obtained:

  
and the relations 
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lead to the expression of the Hamiltonian function 
on the dual algebroid 

Using the relation (6) the following expression 
can by obtained: 

and from  it can be  noticed 
that the expression of the Hamiltonian H on the 
cotangent bundle is the same as in (8). From the 
relation  it can be obtained 
that  which leads to the Hamilton-Jacobi 
equations on the Lie algebroid (4) in the form 

In this case the following system of differential 
equations is obtained:

,

,

,

,

,
Moreover, from 

,
it results that

           
(9)

which is a linear nonhomogeneous second 
order differential equation. From the linear 
homogeneous differential equation  

and from the characteristic equation 

 ,with solutions ,
 

the general solution of the homogeneous 
differential equation can be obtained:

.
Hence, the general solution of the 
nonhomogeneous  equation (9) is given by

   
(10)

Using the initial conditions ,001 =)(x 1
1 s(T)x =  

the following system is obtained:

 

where  with the solution

 

In the same way, using
  

,
 

    
(11)

is obtained, where 

Finally, following equation is obtained 

)12(
2

)()()()()(
22

2
21

13 txktxktx +
=

      
(12)
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Moreover, by introducing the expression (10) into 
the equation  the following 
equation is obtained

which leads to 

Also, by using the same computation it results that

and the following control variables are obtained:

Moreover, from the relation

the following equation is obtained:

which leads to 

and it results that

In the same way, the following can be obtained:

Finally, the following control variables are obtained:

The solution above is optimal because the 
Hamiltonian function is convex.

Next, the following numerical example will  
be considered:

,2,2,2 321 === sss  ,2,4,4 321 === βββ  
,2,2 21 == αα  ,5.0,5.0 21 == kk  2=T

and by using (10), (11), (12) the optimal solution 
is obtained, as illustrated in Figure 1.
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Figure 1. The optimal solution for the  
numerical example

For this example the control variables )()( 21 tutu =  
are obtained and are represented for ]2,0[∈t  in 
Figure 2.
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Figure 2. The control variables for ].2,0[∈t

Figure 3 is obtained for the control variables in 
the case .

2 4 6 8 10
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Figure 3. The control variables for 

4. Conclusion

In this paper, a problem of inventory and 
production was solved by using the optimal 
control techniques for driftless control affine 
systems. Apart from its economic applications, the 
novelty of this paper consists in the application of 
the Pontryagin Maximum Principle at the level 
of a new framework, called the Lie algebroid, 
which in this case is an integrable distribution of 
the tangent space. Moreover, the controllability of 
the above-mentioned systems is solved by using 
the properties of the Lie brackets for the vector 
fields of distribution and involves restrictions on 
the final quantities required. Finally, a numerical 
example is given.
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