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1. Introduction

Since the increasing use of computers and 
digital signal processors (DSPs) in control 
implementation, discrete-time sliding mode 
control (DSMC) has known a growing interest 
from the automation community (Bartoszewicz & 
Latosiński, 2016; Milosavljevic, 1985; Sarpturk, 
Istefanopulos & Kaynak, 1987). However, due 
to the finite sampling rate, extending the concept 
of continuous-time sliding mode control to 
discrete-time affects the robustness properties 
of the conventional sliding mode with respect to 
parametric uncertainties, modelling errors, and 
external disturbances (Bandyopadhyay, Deepak & 
Kim, 2009; Utkin, 1977; Young, Utkin & Ozguner, 
1996). This can be explained by the fact that the 
controller is updated at each sampling time in such 
a way that it cannot be changed when the system 
trajectory crosses the sliding surface during the 
sampling period (Utkin & Drakunov, 1989).

Later, the quasi-sliding mode (QSM) notion was 
introduced by Gao, Wang and Homaifa (1995). It 
consists in bringing the state trajectory, from any 
initial state, towards the sliding surface, crossing 
it in finite-time, following a non-increasing 
zigzag motion around it, and then staying within a 
boundary layer in its vicinity. Hence, the so-called 
chattering phenomenon will be attenuated but not 
avoided. Actually, taking into consideration the 
existence of switching imperfections in practice, 
the chatter effect is caused by the discontinuity 
of the sign function used as a switching function 

in the controller design. This effect might excite 
disregarded high-frequency dynamics, badly 
affect system performance, and even damage 
control devices (Perruquetti & Barbot, 2002).

In order to overcome the above-mentioned 
drawback, several solutions were proposed in 
the literature. Furuta (1990) developed a stable 
DSMC based on a discrete Lyapunov function. 
In (Bartolini, Ferrara & Utkin, 1995), an adaptive 
sliding mode control was developed for discrete-
time linear systems. It consists in defining the 
equivalent control as a piecewise-constant control. 
Further on, in (Alanis et al., 2013; Mihoub, 
Nouri & Abdennour, 2008; Mihoub, Nouri & 
Abdennour, 2009), a discrete-time second-order 
sliding mode control was developed, by referring 
to a continuous-time second-order sliding mode 
controller, for both linear and nonlinear systems. 
Yet, the simple solution to avoid the chattering 
phenomenon is to replace the sign function by a 
smooth one such as a hyperbolic tangent function 
(Khandekar, Malwatkar & Patre, 2013; Khandekar 
& Patre, 2014) or a saturation function (Kim, Oh 
& Hedrick, 2000; Kim & Cho, 2000).

Discrete-time integral sliding mode control 
(DISMC) was proposed by Abidi, Xu and Xinghuo 
(2007) as an improved technique of DSMC 
designed on the basis of the integral sliding mode 
(ISM) concept (Utkin & Shi, 1996). Subsequently, 
it was developed to control nonlinear systems 
for better tracking performances and response 
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characteristics (Chihi et al., 2017), and uncertain 
and time-delayed linear systems for robust 
tracking and model following (Pai, 2008; Pai, 
2009; Pai, 2014). Its main advantages are the full 
order of the motion equation in the quasi-sliding 
mode, the stability of the closed-loop system, the 
elimination of the reaching phase and the excellent 
tracking performance. However, the integral term 
in the sliding function is at the origin of the error 
accumulation and hence of the so-called windup 
phenomenon. The latter can lead to inappropriate 
characteristics of system response such as high 
overshoot and settling time (Barambones, Garrido 
& Maseda, 2007; Oliveira et al., 2016).

In this paper, a discrete-time integral sliding 
mode controller with anti-windup (DISMC-AW) 
is developed for single-input single-output (SISO) 
linear systems subject to external disturbances in 
order to improve control performance. As in the 
case of the anti-windup method proposed with the 
continuous-time integral sliding mode controller 
(Oliveira et al., 2016), a gain based on Gaussian 
function is assigned to the integrative portion 
of the sliding function in order to set its activity 
area such that the effect of error accumulation 
on system performance and on control input in 
the initial phase is limited. Moreover, the sliding 
surface is designed on the basis of the linear 
quadratic regulator (LQR) approach in order to 
guarantee the stability of the closed-loop system 
in the quasi-sliding mode. Without requiring 
knowledge of the disturbances’ upper bound, the 
control law is designed so that the robustness in 
the presence of external disturbances, the follow-
up of the reference model, and the elimination 
of the chattering phenomenon are ensured. In 
order to demonstrate its efficiency, the developed 
controller will be compared with the conventional 
discrete-time sliding mode controller and with 
the discrete-time integral sliding mode controller 
designed using the linear matrix inequalities 
(LMI) and the LQR methods.  

This paper is organized as follows. Section 
2 presents the problem formulation of model 
following as well as the development of DSMC 
and DISMC controllers for SISO linear systems 
with external disturbances. Section 3 provides 
the proposed DISMC-AW scheme. Numerical 
simulation results are illustrated in section 4. 
Section 5 offers concluding remarks.

2. Problem Formulation 

2.1 The problem of model following

Consider the following SISO discrete-time 
linear system

( ) ( ) ( ) ( )
( ) ( )

1x k Ax k Bu k d k

y k Cx k

 + = + +


= ,           
(1)

where ( )∈nx k  is the state vector, ( )∈u k  is 
the control input, ( )∈y k  is the system output 
and ( ) nd k ∈  is the external disturbance. A , B  
and C  are matrices of appropriate dimensions.

The disturbance ( )d k  is supposed to satisfy the 
so-called matched condition so that it will be 
expressed in the form of ( ) ( )d k Bf k= .

The discrete-time reference model is given by

( ) ( )
( ) ( )

1 + =


=

m m m

m m m

x k A x k

y k C x k ,                               
(2)

where ( )∈ mn
mx k  and ( )∈my k  are the state 

vector and the output of the reference model 
respectively. ( )y k  and ( )my k must have the 
same dimension.

The follow-up of the reference model (2) 
requires the existence of matrices ×∈ mn nG  and 

1×∈ mnH  which satisfy the following relation 
(Hopp & Schmitendorf, 1990; Shyu & Chen, 1995)

0
    

=     
     

m

m

G AA B G
CC H .                                

(3)

The tracking controller has the following structure

( ) ( ) ( )= +mu k H x k v k ,                               (4)

where ( )v k  is defined as the auxiliary control.

An auxiliary state vector ( )z k  is introduced to 
facilitate further development. It is given by

( ) ( ) ( )= − mz k x k G x k .                                (5)

Hence, as mCG C=  in (3), the tracking error 
( ) ( ) ( )= − me k y k y k  can be expressed as follows

( ) ( )=e k C z k                                                 (6)
Using (1) and (5), the auxiliary system is given by

( ) ( ) ( ) ( )1z k A z k B v k d k+ = + + .             (7)
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Later on, the auxiliary control ( )v k  will be 
designed using DISMC and DISMC-AW 
controllers such that the auxiliary system (7) is 
asymptotically stable in the quasi-sliding mode.

2.2 Discrete-time Sliding Mode Control 

For the conventional discrete-time sliding mode 
controller, the sliding function is expressed  
as follows

( ) ( ) ( )( )mk S x k x kσ = −
,                            

(8)

where 1×∈ nS  is the sliding matrix chosen so 
that SB  is non-singular.

The reaching law is given by

( ) ( ) ( )
1 sat

 
+ = −  

 

k
k k

σ
σ φσ η

ϕ ,             
(9)

where 0 1< <φ , 0>η , 0>ϕ  is the boundary 
layer width of sliding manifold and sat  is the 
saturation function defined by

( )
( ) ( )

( )( )

if 1
sat

sign  else


≤  =  

  


k k
k

k

σ σ
σ ϕ ϕ
ϕ

σ
, 

(10)

where sign  is the sign function.

Using the forward expression of the sliding 
function (8) and the reaching law (9), the control 
law ( )u k  is given by

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

1

sat

.m m

k
u k SB k

SB S A x k d k A x k

σ
φσ η

ϕ
−

−

  
= −     

− + −  
                                                                        (11)
Yet, under practical considerations, the control 
law cannot be implemented in the form given in 
(11) due to the lack of priori knowledge of the 
external disturbance ( )d k .

The control law and the disturbance estimation 
law for system (1) are given, respectively, by (Pai, 
2012; Pai, 2014)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1

1

sat

ˆ ,m m

k
u k SB k

SB S A x k d k A x k

σ
φσ η

ϕ
−

−

  
= −     

− + −

                                                                        (12)
( ) ( )

( ) ( ) ( )

ˆ ˆ 1

1
1 sat ,

d k d k

k
S k k

σ
σ φσ η

ϕ
+

= −

  −
+ − − +     

                                                                        (13)

where ( )d̂ k  is the estimate of ( )d k  and S +  
denotes the pseudo-inverse of S .

Theorem 1: Consider the system (1) with the 
control law (12). If the sliding function (8), the 
reaching law (9), and the disturbance estimation 
law (13) are used, the control law (12) will drive 
the state trajectory arbitrarily close to the quasi-
sliding mode band ∆  given by

( )1
1

η δ
φ

∆ = +
− ,                                         

(14)

where δ  is the maximum changing rate of the 
disturbance defined by 

( ) ( )( )1S d k d k δ+ − <
 
for all

 
k

            
(15)

Proof: Using the system (1) and the forward 
expression of the sliding function (8) yields

( ) ( ) ( ) ( )
( )

1

.m

k SBu k Sd k SAx k

SA x k

σ + = + +

−      
(16)

Substituting (12) into (16) yields

( ) ( ) ( )

( ) ( )( )

1 sat

ˆ .

k
k k

S d k d k

σ
σ φσ η

ϕ
 

+ = −  
 

+ −
              

(17)

Therefore, substituting the backward expression 
of (17) into (13) yields

( ) ( )ˆ 1d k d k= −                                           (18)

For 1, 2k = , using (17) and (18), the sliding 
function ( )kσ  is expressed as follows:

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

0 ˆ1 0 sat 0 0 ,

1
2 1 sat 1 0 ,

S d d

S d d

σ
σ φσ η

ϕ

σ
σ φσ η

ϕ

 
= − + −  

 
 

= − + −  
 

                                                                        (19)
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where ( )ˆ 0d  is an arbitrary bounded  
estimated disturbance.

For 1k > , the sliding function ( )kσ  is written 
as follows

( ) ( ) ( )

( ) ( )( )

2
1

0

2

0

2 1
1 sat

2 1 2 .

k
k j

j

k
j

j

k j
k

S d k j d k j

σ
σ φ σ η φ

ϕ

φ

−
−

=

−

=

 − − +
= −   

 

+ − − + − − −

∑

∑
                                                                        (20)
Knowing that ( ) ( )( )1S d k d k δ+ − <  for all 
k , the above expression of ( )kσ  is bounded by 

( ) ( ) ( )
2

1

0
1

k
k j

j
kσ φ σ φ η δ

−
−

=

< + +∑
           

(21)

As 0 1< <φ , it is easy to verify that, when k  
approaches infinity,

( ) ( )1
1

kσ η δ
φ

< +
− .                                 

(22)

Therefore, the control law (12) will drive the state 
trajectory arbitrary close to the quasi-sliding mode 
band ( )1

1
η δ

φ
∆ = +

−
. The proof is completed.

2.3 Discrete-time Integral Sliding Mode 
Control 

The sliding function is expressed as
( ) ( ) ( ) ( )

( )
exp 0

, 0,

k S z k S k z

k

σ β

ε β

= − −

− >          
(23a)

( ) ( )
( ) ( ) ( )

1

1 , 0 0,

k k

S A BK z k

ε ε

ε

= −

+ + − =
  
(23b)

where 1×∈ nK  is the feedback matrix ensuring 
the stability of the auxiliary system (7) in the 
quasi-sliding mode, ( ) ( )exp 0−S k zβ  is the 
exponential term ensuring the elimination of 
the reaching phase, and ( )kε  is the integrative 
portion ensuring the zero-tracking error.

Using the equivalent control concept (Utkin & 
Shi, 1996), the equivalent control eqv  is obtained 
by setting ( )1 0+ =kσ . It is expressed as

( ) ( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )

1

1

1

exp 1 0

.

eqv k K z k SB S d k

SB S k z

SB k

β

ε

−

−

−

= −

+ − +

+   

(24)

In the quasi-sliding mode, solving ( ) 0=kσ  gives

( ) ( ) ( ) ( )exp 0= − −k S z k S k zε β .          (25)

Then, substituting (25) into (24) yields

( ) ( )( ) ( )

( ) ( ) ( )

1

1 ,

eqv k K SB S z k

SB S d k k

−

−

= +

− +Γ                 

(26)

with 

( ) ( )
( )( ) ( )( ) ( )

1

exp 1 exp 0 .

k SB S

k k zβ β

−Γ =

− + − −

Using the equivalent control law (26), the 
auxiliary system is expressed in the quasi-sliding 
mode as follows

( ) ( ) ( )1+ = + Γcz k A z k B k ,                     (27)

with ( ) 1
cA A B SB S BK−= + + .

Remark 1: The exponential term ( )Γ k  in (27) 
tends towards zero when k  approaches infinity, 
i.e. ( )lim 0

→∞
Γ =

k
k , so that the auxiliary system (27) 

is asymptotically stable in the quasi-sliding mode.

2.3.1 Linear matrix inequalities approach

Using the LMI method, the auxiliary system (27) 
is asymptotically stable in the quasi-sliding mode 
if there exist a positive-definite matrix n nX ×∈  
and a matrix 1×∈ nW  such that the following 
inequality is satisfied

( ) 0
 − −
  <
 − − 

T

eq eq

eq eq

X A X B W

A X B W X
,    

(28)

where ( ) 1−= +eqA A B SB S  and = −eqB B .

The feedback matrix K  is expressed by
1−=K W X                                                    (29)

2.3.2 Linear quadratic regulator approach

Using the infinite time horizon discrete-time LQR 
approach, the auxiliary system (27) is asymptotically 
stable in the quasi-sliding mode if there exist 
positive definite matrices n nQ ×∈  and ∈R  
that minimize the following objective function
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( ) ( ) ( ) ( )( )
0

T T
eq eq

k

J z k Q z k v k Rv k
∞

=

= +∑
    

(30)

The feedback matrix K  is given by

( ) 1−
= +T T

eq eq eq eqK B PB R B PA
,                    

(31)

where P  is a positive-definite matrix solution of 
the discrete-time algebraic Riccati equation

( ) 1
0.

−

−

− + + =

T
eq eq

T T T
eq eq eq eq eq eq

A PA P

A PB B PB R B PA Q

                                                                        (32)
Using the forward expression of the sliding 
function (23) and the reaching law (9), the 
auxiliary control law ( )v k  is given by

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )

1

1

1

1

sat

exp 1 0

.

k
v k SB k

K z k SB S d k

SB S k z

SB k

σ
φσ η

ϕ

β

ε

−

−

−

−

  
= −     

+ −

+ − +

+      

(33)

However, as in the case of the control law (11), the 
implementation of the auxiliary control (33) requires 
a priori knowledge of the disturbance ( )d k . 

The auxiliary control law (33) for the auxiliary 
system (7) is given by

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )

1

1

1

1

sat

ˆ

exp 1 0

.

k
v k SB k

K z k SB S d k

SB S k z

SB k

σ
φσ η

ϕ

β

ε

−

−

−

−

  
= −     

+ −

+ − +

+      

(34)

where ( )d̂ k  is the estimate of ( )d k  given by the 
disturbance estimation law (13).

Theorem 2: Consider the auxiliary system 
(7) with the auxiliary control law (34). If the 
sliding function (23), the reaching law (9), 
and the disturbance estimation law (13) are 
used, the control law (34) will derive the state 
trajectory arbitrarily close to the quasi-sliding 
mode band (14).

Proof: Using the auxiliary system (7) and the 
forward expression of the sliding function (23) yields

( ) ( ) ( ) ( )
( ) ( )( ) ( )

1

exp 1 0 .

k SBv k Sd k SBK z k

k S k z

σ

ε β

+ = + −

− − − +    
(35)

Substituting (34) into (35) yields the same forward 
expression of the sliding function given in (17). 
Then, substituting the backward expression of 
the latter into the disturbance estimation law (13) 
leads to the same estimate of ( )d k  given in (18). 
One can follow the same development from (19) 
to (22). 

Thus, the auxiliary control law (34) will drive the 
state trajectory arbitrary close to the quasi-sliding 
mode band (14). The proof is completed.

3. Discrete-time Integral Sliding 
Mode Control with Anti-windup 

For the discrete-time integral sliding mode 
controller with anti-windup, the sliding function 
is defined as follows

( ) ( ) ( ) ( )
( ) ( )

exp 0

, 0,

k S z k S k z

k k

σ β

α ε β

= − −

− >          
(36a)

( ) ( )
( ) ( ) ( )

1

1 , 0 0,

k k

S A BK z k

ε ε

ε

= −

+ + − =  
(36b)

( ) ( )( )2

exp , 0,
k

k
ε

α µ
µ

 −
 = >
 
               

(36c)

where ( )kα  is a positive function assigned to 
the integrative portion ( )kε  in order to set its 
activity area.

Setting ( )1 0+ =kσ , the equivalent control 
( )eqv k  is given by

( ) ( )( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

1

1

1

1

1 1

1

exp 1 0

1 .

eqv k k SB SAz k

k Kz k SB S d k

SB S k z

SB k k

α

α

β

α ε

−

−

−

−

= − − +

+ + −

+ − +

+ +    

(37)

Remark 2: The auxiliary system (7) is 
asymptotically stable in the quasi-sliding mode 
if the integrative portion ( )kε  is bounded when 
k  approaches infinity, i.e. ( )lim

→∞
<

k
kε ρ with 

0>ρ . Hence, the gain ( )kα  tends towards a 
non-zero value, i.e. ( )lim 0

→∞
≠

k
kα .

Discrete-time Integral Sliding Mode Control with Anti-windup



http://www.sic.ici.ro

418

Solving ( ) 0=kσ  leads to

( ) ( ) ( ) ( ) ( )( )1 exp 0= − −k S z k S k z
k

ε β
α

                                                                        (38)
Substituting (38) into (37) yields

( ) ( )( )( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1

1

1

1 1

1

1

.

eqv k k SB SAz k

k
SB Sz k

k

k Kz k SB S d k

kα

α

α
α

α

−

−

−

= − − +

+
+

+ + −

+Γ    

(39)

with 

( ) ( )

( )( ) ( )
( ) ( ) ( )

1

1
exp 1 exp 0 .

k SB S

k
k k z

k

α

α
β β

α

−Γ =

 +
− + − −  

 

Hence, substituting (39) into (7), the auxiliary 
system (7) in the quasi-sliding mode is expressed 
as follows

( ) ( ) ( ) ( )1 cz k A k z k B kα α+ = + Γ ,           (40)
with

( ) ( )( ) ( )
( )
( ) ( ) ( )

1

1

1 1

1
1 .

cA k A k B SB SA

k
B SB S k BK

k

α α

α
α

α

−

−

= − − +

+
+ + +

Let’s suppose that in the quasi-sliding mode
( )lim

→∞
=

k
kα γ , 0>γ . Thus, the matrix 

( )cA kα  and the exponential term ( )kαΓ  
in (40) tend towards the constant term 

( ) ( ) ( )1 11A B SB SA B SB S BKγ γ− −− − + +  and 
zero, respectively, when k approaches infinity, i.e.

( ) ( ) ( )

( )

1

1

lim 1ck
A k A B SB SA

B SB S BK

α γ

γ

−

→∞

−

= − −

+ +

and ( )lim 0
k

kα→∞
Γ = .

Lemma: If there exists a gain matrix K  that 
ensures the stability of the auxiliary system (40) in 
the quasi-sliding mode, the auxiliary state vector 
( )z k  tends towards zero when k  approaches 

infinity, i.e.

( )lim 0
→∞

=
k

z k
                                              

(41)

Proof: The gain matrix K  ensures the stability 
of the auxiliary system (40) in the quasi-sliding 
mode. Then, the norm of all eigenvalues of 
matrix cA α  in (40) is lower than one, i.e. 1jλ <
, 1, ,= j n . In other words, the matrix cA α  can 
be expressed using the similarity transformation 
matrix T  by 

1
cA TDTα

−= ,                                                (42)

with ( )1 2diag , , ,=  nD λ λ λ . Subsequently, the 
auxiliary system (40) can be rewritten as

( ) ( )1 0−= kz k TD T z ,                                    (43)

and ( )lim 0
→∞

=
k

z k . The proof is completed.

Remark 3: Since ( )lim 0
→∞

=
k

z k , the integral 
term ( )kε  given in (38) tends towards 
zero as →∞k , i.e. ( )lim 0

→∞
=

k
kε , so that 

the gain ( )kα  tends towards one when 
k  approaches infinity, i.e. ( )lim 1

→∞
=

k
kα . 

Therefore, the matrix ( )cA kα  of the auxiliary 
system (40) tends towards the constant term 

( ) 1−+ +A B SB S BK  in the quasi-sliding mode, 
i.e. ( ) ( ) ( ) 1lim c ck

A k A k A B SB S BKα
−

→∞
= = + + . 

Using the LQR method, the feedback matrix K  
is the same as that given in (31).

The parameter µ  in (36) is adjusted such that the 
gain ( )kα  tends towards zero for the significant 
error accumulation and then tends to one when 
the state trajectory of the system reaches the 
sliding surface as shown in Figure 1. Hence, the 
effect of the integrative portion ( )kε  on system 
performance and on control input in the initial 
phase is limited.

-10 -8 -6 -4 -2 0 2 4 6 8 10

ε(k)

0

0.2

0.4

0.6

0.8

1

(k
)

 = 10

 = 3

 = 0.1

Figure 1. Variation of the gain ( )kα  with different 
values of µ
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Remark 4: Since ( ) ( )e k C z k< , < ∞C  
and ( )lim 0

→∞
=

k
z k , the tracking error ( )e k  

converges to zero when k  approaches infinity, 
i.e. ( )lim 0

→∞
=

k
e k , so that the zero-tracking error 

is guaranteed in the quasi-sliding mode.

Using the forward expression of the sliding 
function (36) and the reaching law (9), the 
auxiliary control law is given by

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )

1

1 1

1

1

sat

exp 1 0

1 1 .

k
v k SB k

SB SA z k SB S d k

SB S k z

SB k k

σ
φσ η

ϕ

β

α ε

−

− −

−

−

  
= −     

− −

+ − +

+ + +      

(44)

As in the case of DSMC and DISMC controllers, 
the disturbance ( )d k  in (44) is replaced by 
its estimate ( )d̂ k  given by the disturbance 
estimation law (13). Hence, the auxiliary control 
law (44) is rewritten as follows

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )
( ) ( ) ( )

1

1 1

1

1

sat

ˆ

exp 1 0

1 1 .

k
v k SB k

SB SA z k SB S d k

SB S k z

SB k k

σ
φσ η

ϕ

β

α ε

−

− −

−

−

  
= −      

− −

+ − +

+ + +        

(45)

Theorem 3: Consider the auxiliary system 
(7) with the auxiliary control law (45). If the 
sliding function (36), the reaching law (9), and 
the disturbance estimation law (13) are used, the 
auxiliary control law (45) will derive the state 
trajectory arbitrarily close to the quasi-sliding 
mode band (14).

Proof: Using the auxiliary system (7) and the 
forward expression of the sliding surface (36) yields
( ) ( ) ( ) ( )

( ) ( )
( )( ) ( )

1

1 1

exp 1 0 .

k SBv k Sd k SA z k

k k

S k z

σ

α ε

β

+ = + +

− + +

− − +     

(46)

Substituting (45) into (46) yields the same forward 
expression of the sliding function (17), and then 
substituting its backward expression into (13) 
yields the same disturbance estimate ( )d̂ k  (18). 
One can follow the same development from (19) 
to (22). 

Hence, the auxiliary control law (45) will drive the 
state trajectory arbitrary close to the quasi-sliding 
mode band (14). The proof is completed.

4. Numerical Simulation Results

Consider the nominal system sampled with a 
sampling period 0.02s=sT  (Oucheriah, 1999; 
Pai, 2014)

( ) ( )

( ) ( )

( ) [ ] ( )

0.9802 0.04
1

0 1.0202

0.0004
0.0202

1 0

x k x k

u k d k

y k x k

  
+ =  

 
   + +  

 
 =
         

(47)

with ( ) ( )( )0.0004
0.1 sin

0.0202
d k k

 
= × 
 

.

The reference model is given by

( ) ( )

( ) [ ] ( )

0.9998 0.02
1

0.02 0.9958

1 0

  
+ =  − 

 =

m m

m m

x k x k

y k x k
   

(48)

The initial conditions for (47) and (48) are chosen 
as follows

( ) [ ] ( ) [ ]0 1 0 , 0 0 1= − =T T
mx x             (49)

The obtained matrices G  and H , solutions of 
(3), are

[ ]1 0
, 1.0011 0.1102 .

0.5 0.5011
G H

 
= = − 
     

(50)

For all controllers, the sliding matrix is selected 
as follows

[ ]3 1=S                                                      (51)
The reaching law parameters in (9) are given by

0.9, 0.5, 0.5= = =φ η ϕ                                (52)
The design parameters for the sliding functions 
(23) and (36) are

0.9, 1.13β µ= =                                           (53)

Solving the LMI (28), the obtained solutions are

[ ]

0.9271 0.2371
,

0.2371 1.0729

119.3733 67.8097 .

− 
=  − 
= − −

X

W                    

(54)

Hence, the feedback matrix K  is given by

[ ]153.6018 97.1424= − −K                     
(55)
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Concerning the LQR approach, the weighting 
matrices R  and Q  are selected as follows

1 0
1,

0 1
 

= =  
 

R Q
                                        (56)

Then, the obtained feedback matrix K  is given by

[ ]202.7857 77.4525= − −K                   (57)
The implementation of all algorithms was done 
with Matlab 2016a on Windows 7 using an Intel® 
Core™ i5-2430M CPU running at 2.4GHz with 
6GB in RAM.

Figure 2 shows the numerical simulation results for 
the discrete-time integral sliding mode controller 
with anti-windup using the LQR approach. Figure 
2(a) illustrates the system output ( )y k  and the 
reference model output ( )my k . It shows that the 
proposed algorithm ensures the stability of the 
closed-loop system in the quasi-sliding mode 
as well as the robust tracking and the follow-up 
of the reference model. Figure 2(b) depicts the 
tracking error ( )e k . It shows that the developed 
controller guarantees the zero-tracking error in 
the presence of external disturbance. Figure 2(c) 
presents the control input ( )u k . It shows that 
the chattering phenomenon is avoided using the 
saturation function as a smooth switching function 
in the control law design. Figure 2(d) depicts the 
sliding function ( )kσ . It shows that the reaching 
phase is eliminated due to the exponential term in 
the sliding function, and that the state trajectory 

converges to the sliding surface and therefore the 
existence of the quasi-sliding mode.

Figure 3 provides a comparison between four 
algorithms: conventional DSMC, DISMC using 
the LMI and LQR approaches and the developed 
DISMC-AW using the LQR approach. Figure 3(a) 
depicts the time variation of the sliding functions 
of all controllers. It shows that all state trajectories 
converge to the sliding surface and that the reaching 
phase is eliminated for DISMC and DISMC-AW 
controllers due to the exponential term in the sliding 
functions. Figure 3(b) illustrates a comparison 
of tracking errors. It shows that, contrary to the 
conventional DSMC, DISMC and DISMC-AW 
controllers guarantee the zero-tracking error in the 
quasi-sliding mode, which is due to the integral 
term ( )kε  of the sliding surface. Moreover, it 
shows that the proposed DISMC-AW controller 
has the fastest response compared to DISMC 
controller. Figure 3(c) presents a comparison 
of control inputs. It shows that the chattering 
phenomenon is eliminated for all controllers 
using the saturation function in their designs. 
Furthermore, the control input corresponding 
to DISMC-AW has lower values than DISMC 
in the initial phase. These improvements can 
be attributed to the gain ( )kα , assigned to the  
integrative portion ( )kε , which initially tends 
towards zero because of the significant error 
accumulation and therefore the impact of the 
latter on system performance and on control input 
is restricted.

Olfa Jedda, Ali Douik

(a) System output ( )my k  and reference model 
output ( )my k

(b) Tracking error ( )e k

(c) Control input ( )u k (d) Sliding function ( )kσ

Figure 2. Simulation results for DISMC-AW using the LQR method
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(a) Comparison of the variation of sliding functions

(b) Comparison of tracking errors

(c) Comparison of control inputs

Figure 3. Comparison between conventional DSMC, 
DISMC using the LMI and LQR approaches and 

DISMC-AW using the LQR method

Table 1. Summary table of numerical resutls

Rise 
time 
(s)

Settling 
time  
(s)

umin umax

DISMC-LMI 1.82 2.88 -60.6 135.8
DISMC-LQR 0.44 0.72 -32.7 175.1
DISMC-AW-LQR 0.32 0.38 -11.1 104.5

For summarizing the results, Table 1 allows 
the comparison of the proposed scheme with 
the existing ones. It shows that best results are 
obtained for DISMC-AW controller with the 
least rise and settling times of 0.32s  and 0.38s  
respectively, and with the lowest minimum and 
maximum values of control input of  11.1−  and 
104.5  respectively. Figure 3 and Table 1 prove 
that DISMC-AW controller outperforms DSMC 
and DISMC controllers.

5. Conclusion

This work presents a discrete-time integral 
sliding mode control with anti-windup for 
SISO linear systems with matched disturbance. 
The proposed algorithm ensures the stability 
of the closed-loop system in the quasi-sliding 

mode and the robustness in the presence of 
external disturbance. Moreover, it guarantees the 
elimination of the reaching phase as well as the 
robust tracking and the follow-up of the reference 
model. The chattering phenomenon is avoided 
using the saturation function in the controller 
design. According to numerical simulation 
results, the developed algorithm offers not only 
a faster response than the discrete-time integral 
sliding mode controller, but also lower values 
of the control input in the initial phase. This is 
due to the anti-windup method which is used to 
limit the effect of error accumulation on system 
performance and control input. Future work will 
focus on developing the DISMC-AW controller 
for uncertain, time-delayed and multi-input 
multi-output linear systems. Furthermore, the 
effectiveness of the proposed algorithm will be 
verified by experiments.
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