
443

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

A web server system is the group of clusters in
the networking environment to fulfill the web
requests-based services. Through a web server
system, any number of websites can be hosted for
the purpose of education, business or technology.
Due to intensive growth of website domain, the
number of users is growing drastically day-by-
day. As a result, the number of web requests has
been arrived in an excessive manner at the web
servers and it becomes overloaded and respond
slowly. "In 1995, the number of internet users was
lower than 1% in the world population, whereas
today it is 40%. In 2016, there were 3.5 billion
internet users while in 2005 there were 1.02 billion
internet users" (Ramana & Ponnavaikko, 2015).

Whenever any web server responses are not up to
the user’s expectations, they get less interest on
that website and then it affects the popularity and
commercialization factor of that organizational
website. All the web servers are required a
suitable architecture to manage these excessive
load of web requests. Several existing approaches
for balancing the load of web servers are already
working in the current environment, but still the
web servers are responding slowly. Therefore, an
efficient approach is required to balance the load
of the web server system so that it can respond
quickly and improve its availability to end users.

In web server cluster, load balancing includes a few
noteworthy concerns. The essential concern is the
estimation of work load. In various applications,
workload has diverse meanings. In Internet
services, the client’s request is a basic building
block of load balancing and its response with lively
connections is a simple server load index.

Present web server clusters have some difficulties
in providing services to the clients. First, in current
websites dynamic workloads are becoming crucial,
which imposes significant performance drop in
web clusters with the shortcomings of present load
balancing algorithms. When compared with the
static web pages, the dynamic content requires high
resource demands which lead to poor performance
without suitable load balancing mechanisms
in cluster-based web servers. Due to versatile
demands, sometimes the request rate is greater
than the cluster capacity. This is unpredictable with
the flash crowds using the internet.

In this research paper, a dynamic and robust load
balancing approach is proposed for content aware
dispatchers. Three contributions are provided in
the load balancing mechanism for web server
clusters. The primary contribution is calculation of
approximated load of a web server. Web requests
are classified according to service time. The second
contribution is a robust load balancing algorithm

Studies in Informatics and Control, 27(4) 443-452, December 2018

https://doi.org/10.24846/v27i4y201808

A Multi-Class Load Balancing Algorithm (MCLB) for
Heterogeneous Web Cluster

Kadiyala RAMANA1*, M. PONNAVAIKKO2

1 Department of Computer Science and Engineering, SRMIST, Chennai, India
ramana.it01@gmail.com (*Corresponding author)
2 ProVost, Vinayaka Missions University, Chennai, India
ponnav@gmail.com

Abstract: Faced with increasing demand for network services by a huge number of users, requests to the web servers have
significantly skyrocketed. Consequently, most of these servers need to run twenty-four hours a day, seven days a week with
a high reliability and availability. Thus, the tremendous growth of the Internet has led the requirement of web server cluster
management in order to deal with these issues effectively. Without using efficient mechanisms, an overloaded web server
cannot provide great performance. In clusters, this overloaded condition can be avoided using load balancing mechanisms by
sharing the load among available web servers. The existing load balancing mechanisms which were intended to handle static
contents will be deprived from substantial performance under database-driven and dynamic contents. The most serviceable
load balancing approaches to provide better results under specific conditions are Weighted Round Robin (WRR) and Client
Aware Policy (CAP). By considering this, a Multi-Class Load Balancing algorithm (MCLB) was proposed for web server
clusters and also an analytical model was proposed for calculating the load of a web server. The requests are classified based
on the service time and keep tracking the number of outstanding requests at each webserver to achieve better performance.
The service time of each request class type is used for load balancing. The experimental results demonstrate the effectiveness
of the proposed approach by improving the average response time, error rate and throughput of the web server cluster.

Keywords: Load Balancing; Web Cluster; Content Aware; Throughput; Response Time.

http://www.sic.ici.ro

444

named Multi-Class Load Balancing Algorithm.
The final contribution is instigation of a web
server cluster using the proposed load balancing
mechanism. To estimate the effectiveness of
the proposed algorithm some experiments are
conducted and compared with some of the present
algorithms. The investigational results prove that
the proposed algorithm will provide substantial
gains in error rate, throughput and average
response time.

The paper is well-organized as follows: Section
2 catalogues some of the related works. Section
3 elucidates the proposed framework of web
server cluster. Section 4 presents the multi-class
load balancing mechanism. Section 5 gives the
experimental results of the proposed algorithm.
Section 6 outlines the conclusion.

2. Related Work

Eager et al. projected that the idea of load sharing
was to increase the performance by reallocating
the workload between the servers available in the
system. Their work demonstrated that effortless
adaptive load sharing strategies, which mount up
extremely modest amounts of state information
and uses in very simple ways produce noteworthy
performance enhancements. It is also shown that
particular enhancements do not take their toll on
the monetary requirements. The paper concludes
that in practice, simple policies provide the
greatest potential, by reason of their mixture of
nearly ideal performance and innate stability
(Eager, Lazowska & Zahorjan, 1986).

Some of the presented works demonstrate that in
order to administer web server clusters there is
a need of load balancing algorithms, admission
control and overload, performance optimization
and architectural design, job dispatching and
redirection mechanisms. So many algorithms
are proposed for balancing the load in web
server clusters. These algorithms are classified as
content aware (layer-7) and content blind (layer-4)
algorithms (Schroeder, Goddard & Ramamurthy,
2000; Andreolini, Colajanni &Nuccio, 2003).

2.1 Content Blind Algorithms

These algorithms are broadly divided into various
subset of algorithms. Most popular approaches
among those are Round Robin, Random Server
Selection, Least Connection, Least Loaded,

Weighted Round Robin, Request Counting,
Weighted Least-Connection, Pending Request
Counting and Weighted Traffic Counting. In
case of heterogeneous servers, the requests are
allocated to servers based on their constituted
approximate capacities in WRR approach. The
system administrator stipulates the percentage of
requests to be dispatched to each server. Some
numerous additional algorithms like Locality-
based Least Connection, Source and Destination
Hashing, Never Queue and Shortest Queue
First, which are in need of out of the ordinary
acquaintance to predict the best scheduling
are discussed in a review paper (Ramana &
Ponnavaikko, 2015).

2.2 Content Aware Algorithms

Pai et al. introduced content aware policy named
Location Aware Request Distribution (LARD).
To serve a request their paper has defined a set
of servers and changed the set dynamically based
on the active connections pending at the server.
Their work also pioneered well-organized TCP
Hand-off protocol which hand-off the incoming
requests to the back end, after inspecting the
content of the request by the front end (Pai et
al., 1998). In LARD/R (LARD with Replication)
when a subsequent same request comes in,
it will be forwarded to the minimum loaded
server among the servers (Ahn et al., 2004).
Subsequently this approach does not differentiate
between the types of various requests, if the server
processes too many disk-bound or CPU-bound
requests. This may cause load imbalance and
performance deterioration of the whole cluster.
These algorithms are pursued most of the time
mainly for the reason that clients may be most
of the times dependent on the content rather than
other requirements.

To serve dynamic and secure web content,
Casalicchio & Colajanni designed a mechanism
named Client Aware Policy (CAP) by considering
the content of incoming request, which obtains
better performance (Casalicchio & Colajanni,
2001). The requests are categorized based on the
impact the client’s requests have on the server
resources. This algorithm takes dispatching
decisions according to the service type needed by
the clients. In this algorithm the state of servers
has not been considered. In cluster all servers will
server all types of services.

Kadiyala Ramana, M. Ponnavaikko

	 445

ICI Bucharest © Copyright 2012-2018. All rights reserved

In their work, Cherkasova & Karlsson proposed
the Workload Aware Request Distribution which
is a locality and content aware distribution policy
that outlines most commonly accessed files. These
particular files are accessed locally, by a server
in the cluster, while the others are provided by
different cluster nodes. To transfer a request from
one server to another the Multiple Transmission
Control Protocol (TCP) Hand-off has been used
(Cherkasova & Karlsson, 2001).

Seo et al. introduced a set of prefetch algorithms
where every node in the cluster will forecast the
next web requests using access probability and the
inter-reference time and prefetch the demanded
objects from server local disks or the other back-
end server nodes. By using Round Robin policy,
a client session is allocated to a back-end server
and a TCP connection is established among them
for the complete session (Seo et al., 2008).

Sharifian et al. proposed a scheduling policy
Intelligence Request Dispatcher, which uses
Hybrid Neuro-Fuzzy and LARD to make a choice
between serving dynamic or static requests.
Central Processing Unit (CPU) and Disk usage
are the metrics considered to assess a load weight
of every server in a fuzzy method and regain it
through feedback. Their paper concluded that this
approach will improve the cluster performance in
terms of connection per second especially in heavy
workload (Sharifian, Akbari & Motamedi, 2005).

The researchers Pao & Chen projected a load
balancing explanation by means of the remaining
capacity of replicas to regulate how the next client’
request should be accomplished. This enables
the experts to estimate the behavior primarily
to perceive the characteristics of the approach.
The capacity is computed by means of available
memory and CPU, the network transmission and
the number of active connections pending at the
server (Pao & Chen, 2006).

Zhang et al. proposed a Server Content based
Queue (QSC) load balancing approach by
classifying the web requests and considering the
heterogeneity of web server (Zhang, Xiao-Ping &
Yuan, 2010). In this approach, the client request
is dispatched to the appropriate server which is
least loaded. The load is calculated based on load
state and server effectiveness. For each client’s
request, random distributing base probability
was used for server load distribution to choose

the appropriate server which depends on their
weights. The selection course is carried out in a
methodological approach such that there are no
glitches during the processing.

Singh & Kumar proposed a web server queuing
(WSQ) approach for improving the efficiency of
the web server. Overloaded server can’t provide
best service. In this algorithm, load collector
and status monitor are introduced as two new
components, which compute the overloading
condition of the web server. The investigation of
current serving capacity of the web server is also
achieved (Singh & Kumar, 2015).

2.3 Workload Classification

The workload measurement of web services
agrees on the load balancing on the internet. One
of the prevailing protocols of internet is HTTP
which overrides TCP to carry the web traffic.
Earlier studies on Web workloads found that some
important characteristics like reference locality,
file popular distributions, target file types, file
size and client request patterns are common in the
conventional information provider sites. When the
requests are independent and same size random
and round-robin strategies are good enough
(Kwan, McGrath & Reed, 1995).

A lot of changes in web applications subsequent
to vast developments have been made over
the past two decades. For the majority part the
most important change is the following: web
page content is changing from static to dynamic
leading to e-commerce becoming the foremost
web application; and continuous media gaining
interests. For users, dynamic pages will endow
with a distant better experience than static pages,
but they impose some additional overhead on
server resources like Disk Input/Output (I/O) and
CPU. Thus this may indulge in monetary problems.
For existing load balancing techniques these
changes in workload characteristics will impose a
challenge. Some strategies are no longer pertinent
as their versions and corresponding applications
change day by day. As an instance, size-based
strategy will not work for dynamic contents for
the reason that of its unknown size, the service
time is unpredictable (Harchol-Balter, Crovella &
Murta, 1999). This is an inherent predicament in
more or less all the types of dynamic techniques
well-known in literature. Because of the dynamic
page generations, the likelihood for caching the

A Multi-Class Load Balancing Algorithm (MCLB) for Heterogeneous Web Cluster

http://www.sic.ici.ro

446 Kadiyala Ramana, M. Ponnavaikko

requested files declines and some of the requested
files are even non-cacheable. This has to be well
addressed with proper experimental investigations
and analyses such that this constraint can be
worked out for a feasible elucidation.

Zhang projected novel load sharing policies
in their research work (Zhang, 2000), which
concerned with the efficient usage of both
Memory and CPU resources. This research has
paved the way for many fascinated researchers to
pursue the policies and look for fruitful practical
results through appropriate trialing. These policies
accomplish high performance underneath Memory
and CPU concentrated workload circumstances.

Zhang Xiayu et al. consider CPU, Memory,
Bandwidth, Disk I/O and Buffer pool slice rate to
compute the load index in a cluster. Their work
employ the operation of extension set, matter-
element theory and dependent function which are
presented in extension theory (Zhang et al., 2007).

Qin et al. planned a load balancing approach
considering CPU, Disk I/O/ and Memory
resources to calculate the load. The Input Output
Load Balancing (IOLB) algorithm provides better
memory and CPU utilization under memory and
CPU rigorous workload circumstances. This
algorithm is able to deliver the similar level of
performance as two already existing memory and
CPU aware load balancing approaches (Qin et
al., 2003).

Tiwari & Kanungo proposed a dynamic content
aware load balancing approach for web cluster
in heterogeneous environment. This algorithm
uses utilization ratio, queue length and server’s
processing capability as load indices. As the
content awareness is given importance in this
work, the processing part is maintained stringently
to augment the utilization ratio (Tiwari &
Kanungo, 2010).

In their research paper, Saeed Sharifian et al.
categorize dynamic requests into several different
classes based on their impact on web server
resources. The CPU usage is the most imperative
basis of the tailback in the conception of dynamic
contents (Sharifian, Motamedi & Akbari, 2011).

Most of the dynamic load balancing approaches
evaluate the status of the load using periodic
sampling in web servers. The most important
issue in dynamic load balancing approach is web

server load status accuracy. Several load balancing
algorithms use CPU usage, number of active
connections, disk usage and memory usage of web
servers as load descriptors to calculate load status
instantly (Schroeder, Goddard & Ramamurthy,
2000; Cardellini et al., 2001; Dahlin, 2000).
The load status which is gathered from web
server load monitoring, varies at various time
scales and rapidly becomes obsolete (Penmatsa
& Chronopoulos, 2007). So, the decisions made
based on direct server resource measurements
like CPU usage and mean web object response
time as the load status, will be hazardous if not
totally risky. In the proposed algorithm a queue
model is used to calculate the load status from the
online measurement of the queue parameters. The
algorithm employs the information of file size and
popularity distributions to depict mean response
time to the available server resources.

3. Proposed Framework

In this research article, a heterogeneous web
server cluster model is considered in which a set
of servers are connected as illustrated in Figure1.
In this cluster, servers are numbered 1, 2, …., n
and the cluster is used to execute m classes of
requests admitted by clients. Each server in cluster
is composed of one exponential server having a
service rate μi (i=1, 2, …., n), and uses First Come
First Serve (FCFS) as its service policy where
each request service rate equals μi/n if the ith server
has 'n' requests.

Figure 1. System Architecture

In heterogeneous environment the servers differ
in terms of memory, disk space and speed.
The load balancer is responsible for balancing
cluster’s workload and monitoring the available
system resources. Figure 2 represents queueing
model of the system. This contains request
scheduling queue, request scheduler and n
local request queues. The scheduler queue is a
provisionally buffer sufficiently large to hold all

	 447

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Multi-Class Load Balancing Algorithm (MCLB) for Heterogeneous Web Cluster

the incoming requests. The FCFS strategy is used
for scheduling waiting requests in schedule queue,
and local queues. It assurances fairness, does not
need request’s response time in advance, huge
computing power and it is simple to implement.
The load balancer is divided between two
modules namely Supervisor and Dispatcher. For
every request in jth class, the supervisor finds all
servers in the cluster which satisfy the request
requirements and group these servers in the set
Aj. The supervisor then dispatches the set Aj to
the dispatcher to select the server from Aj which
provides the minimal predicted response time for
executing the request. Clients can submit requests
from any of the m classes to the server.

Figure 2. System queuing model

Table 1. Notations and Definitions

Notation Definition
n Server number (1≤n≤∞)

m Classes of requests number admitted
to the system (1≤m≤∞)

λi jth class request arrival rate to the server

λ Total server arrival rate from all
classes (Equation 1)

Pij

The probability in which requests
from the jth class are forwarded to the
ith server

βij
Processing rate (load) at ith node from
jth class tasks (Equation 2)

βi
Total processing rate (load) of server
i. (Equation 3)

β Server’s total request processing rate
(load) for all classes (Equation 4)

µij
Allocated service rate at ith server for
jth class of requests

µi
Total service rate of server i
(Equation 5)

µ Total Cluster service rate (Equation 6)

ρij
jth class service utilization at the ith

server (Equation 7)

ρi ith server service utilization (Equation 8)

ρ Cluster service utilization (Equation 9)

In this work the cluster’s admitted requests are
assumed to be completely autonomous and the
requests are the computationally expensive ones. It
was also assumed that requests of the jth (1≤j≤m)
class reach to the cluster according to the ergodic
process, like Poisson process, having identical,
independent distributed interarrival times with
rate λk. Synchronized arrivals are not considered.

The notations utilized throughout this work are
represented in Table 1.

The server total request arrival rate from all the
classes is denoted by λ and λi is the jth class request
arrival rate to the server. Henceforth

1

m

j
j

λ λ
=

=∑

(1)

Denote βij as ith server load from jth class.

Let Pij be the probability that ith server receives
requests from the jth class, where i = 1, 2, ..., n and
j = 1, 2, ..., m.

Hence, the ith server workload from the jth class is
calculated by

ij ij jβ λ= Ρ (2)
where i = 1, 2, …,n j = 1, 2, …,m

So, the total workload of the ith server from all the
classes can be expressed as

1 1

m m

i ij ij j
j j

β β λ
= =

= = Ρ∑ ∑

(3)

As a result, the cluster’s entire workload from all
classes, β, can be calculated as follows

1 1 1 1 1

n n m n m

i ij ij j
i i j i j

β β β λ
= = = = =

= = = Ρ∑ ∑∑ ∑∑

(4)

Denote µij as the allocated service rate at the ith
server for jth class request. So the corresponding

predictab service time is computed by
1

ijµ
. Hence

the ith server service rate can be computed by;

1

m

i ij
j

µ µ
=

=∑

(5)

Consequently, the total cluster service rate is
calculated by:

1 1 1

n n m

i ij
i i j

µ µ µ
= = =

= =∑ ∑∑

(6)

http://www.sic.ici.ro

448 Kadiyala Ramana, M. Ponnavaikko

Denote ρij as the jth class service utilization (traffic
intensity) at the ith server. It is calculated by:

ij ij j
ij

ij ij

β λ
ρ

µ µ
Ρ

= =

(7)

So, the service utilization of all requests assigned
to ith server is computed by:

1 1

m m
ij i

i ij
j j ij i

β βρ ρ
µ µ= =

= = =∑ ∑

(8)

In the same way, the total cluster service utilization
is computed by:

1 1 1 1 1 1

n n m n m n
ij i

i ij
i i j i j iij iu

β β βρ ρ ρ
µ µ= = = = = =

= = = = =∑ ∑∑ ∑∑ ∑

 (9)

4. Multi-Class Load Balancing
Algorithm

The algorithm for dispatching different classes
of requests on multiple servers is presented in
this section. The proposed algorithm considers
the clusters computational resources to be
heterogeneous and homogeneous. It balances
the systems workload among servers by fairly
distributing the service utilization in order to
diminish the mean response time. In other words,
the clusters workload is impeccably balanced
between servers by making all the servers service
utilization equal. This strategy minimizes the
per-class mean response times. It involves two
distinct decisions:

-- The request allocation to the servers

-- The request execution order at each server

The very first decision is considered an overall
problem of load balance where requests are
balanced between multiple heterogeneous servers
to reduce the mean response time of each class.
For the request allocation strategy the load
balancer allocates arriving requests to servers
instantly upon arrival in a probabilistic manner i.e.
a request is dispatched to a server based on routing
probability {Pij}1≤i≤n, 1≤j≤m. The projected
allocation algorithm finds that the response time
for all classes is minimized. This algorithm
selects the server that minimizes the average class
response time, and should not be overloaded to

compute the request at the same time. In order
to achieve this, the proposed algorithm uses the
following service utilization measure Li to detect
the relative workload of each server i:

i
iSLC

n

ρ
ρ

=
 
 
 

(10)

where ρi is the ith server service utilization given
by Equation (8) and (ρ/n) is the clusters average
server utilization given by equation (9). The
proposed strategy aims to keep SLCi very close
to 1 which represents that the cluster’s servers
service utilization is fairly distributed.

Multi-Class Load Balancing Algorithm
Step -1 Publishing Phase (At Web Server)
Takes place periodically
1.	 For each web server, the load calculator calculates

based on the equation (10)
2.	 Report the Server Load Capacity (SLC) to

the Supervisor
Step-2 Selection Phase (At Dispatcher)
For each client request received from the classifier based
on its class
1.	 Receive Load Capacity from all web servers

periodically and initialize load values
2.	 Least Loaded Server, LLSMin= Min (SLC1, SLC2,

SLC3, ……, SLCn), where n
indicates the number of available web server nodes.

3.	 The ith server such that LLSi = SLCMin is
considered as the least loaded server to process
the current request.

4.	 Dispatch the request to the ith Server
Step-3 Processing Phase (At Web Server)
In ith server:
if (Number of requests in First In First Out (FIFO)
request queue of ith server < queue capacity)
then
Add current request into FIFO request queue of ith server.
else
Drop the current request
else the ith server processes the current request.

The second decision is local at each server and
consist in solving the best sequencing problem:
given a various type of requests at a server, find
the best queued request service order to minimize
the average response time per class. It is assumed
that the admitted requests to the cluster are totally
autonomous and the requests are the costly ones.
The FCFS strategy is used for queue applications.
It guarantees definite fairness, requires no time
to execute requests in advance, does not require
enormous computer power and its implementation
is easy (El-Zoghdy, 2012).

4.1 Workload Classification

Generally, web server serves different types
of web objects, which are classified as static
and dynamic requests. Static request mainly
comprises of static data. This type of request is

	 449

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Multi-Class Load Balancing Algorithm (MCLB) for Heterogeneous Web Cluster

the simplest one, which includes html or other
unified documents. The static request service
time is directly proportional to the file size, so
the static requests are categorized based on the
file sizes. The static request requires small amount
of CPU demands.

To provide a rich set of web applications recent
web sites supports dynamic contents. By using
server side scripting languages like Java Server
Pages, PERL and PHP or by using enterprise web
applications like ASP.NET and EJB, the dynamic
content is generated in dynamic requests. The
dynamic contents cannot be cached completely,
cannot be known in prior and they can be fetched
from database and web servers.

As stated above, to better estimate the impact of
every client’s request on the web server load, the
requests are classified into various classes based
on the impact they have on server resources and
on the service time.

Table 2. Classification of Requests

Class
Type File Name Mean Service

Time
C1 Home.html 100µs
C2 Load_balancing.pdf 10 ms
C3 Dynamicload.jsp 20 ms
C4 Loadbalancing.mp4 50 ms

4.2 Experimental Setup

The implementation of the investigational test
entails software and hardware configurations as
mentioned below.

4.2.1 Software Configuration

All the systems in the cluster run Windows 8.1
as their operating system. The web server uses
apache v.2.3.9 configured with JSP 2.0 as the
server-side scripting language. In order to avoid
the connection rejections from server when
many clients concurrently request services the
extreme number of requests for every apache
instance is increased up to 512. Because of this
value the number of apache processes is never a
limit on performance. MySQL v.5.1 is used as
database server and configured with MyISAM
table as non-transactional database tables,
which provides higher performance in read only
database interactions. Httpref tool is used to
generate client workload for the experiments.
Httpref is a synthetic workload generator and a
web performance measurement tool. The load is
varied on the web site by changing the number of
simultaneous clients.

4.2.2 Hardware Configuration

The web server cluster consists of 20 systems.
One system is used as the load balancer, and the
remaining 19 systems are used as web server
nodes. These nodes are Intel core i5 3.2 and 3 GHz
CPUs with 8 GB, 4 GB and 2 GB of DDR RAMs.
The load balancer node is an Intel core i5-4460
3.2 GHz CPU with 8 GB of DDR RAM. By using
high-speed gigabit LAN switch these web server
nodes are connected. Enough 3 GHz Intel core i5
systems are used as the client systems to guarantee
that they would never become a bottleneck in any
of the experiments. The distributed architecture
of the web server cluster was hidden from the
clients using a unique virtual IP address of the
load balancer.

5. Experimental Results

In the subsequent sections, the outcomes of
the experiments are explained with regards to
average response time, throughput and error
rate. Mostly, the approach which achieves high
throughput, lower mean response time and lower
error rate better uses the cluster resources and
equally balances the load among servers. The
parameters discussed are of main significance in
order to understand the expected outcomes and
to make the proposed algorithm a better one.
Under overloaded circumstances, when a web
server obtains a greater number of requests than
its extreme capacity, the web server response
time starts to vary and increases rapidly with the
number of clients. In these experiments the low
load and overload conditions are considered.

5.1 Mean Response Time

Figure 3 represents the average response time of
web server cluster for the CAP, WRR and MCLB
approaches under the generated workload. Under
the low load circumstances, the mean response
time is marginally lower for the multi-class load
balancing approach when compared with other
algorithms. To serve 3,300 client’s requests the
WRR approach takes 2 seconds, where as in the
same mean response time the CAP approach
serves 5,650 requests. At the same time, the
multi-class load balancing algorithm served 7,400
clients in 2 seconds.

Due to the absence of an admission control
mechanism, the overload condition starts at the
dew-point, where the mean response time of CAP
and WRR approaches becomes a bottleneck and
increases aggressively. It can be determined that
the proposed multi-class load balancing approach

http://www.sic.ici.ro

450 Kadiyala Ramana, M. Ponnavaikko

improves the performance of the web server
cluster to process more clients than the remaining
two algorithms.

5.2 Throughput

Figure 4 represents the throughput of all the
above mentioned three algorithms on the web
server cluster with regards to the number of user’s
requests per second. Under light load conditions,
the throughput raises linearly with the increasing
number of client’s requests.

The multi-class load balancing algorithm attains
higher throughput to a certain extent when
compared with the remaining two approaches.
In multi-class load balancing algorithm, when
serving 9,200 client’s requests, the throughput
reaches its peak value at the processing level of
1,294 requests per second.

For CAP algorithm, for 8,000 requests the
saturation point is at 1,035 requests per second
and for WRR approach for 5,000 clients it is at 616
requests per second. When one or more servers
in the web cluster reach their dew-point is the
primary reason for decrease in throughput for CAP
and WRR approaches. When there are is greater
number of client’s requests in the web server,
many of them will face time-out subsequently.
Because of this, requests are not served by any of
the server. This unexploited time is the reason for
dropping in throughput of the web cluster, while
the resource usage continues at 100%.

These outcomes clearly demonstrate that the
load balancer of the multi-class load balancing
algorithm works better than that of CAP and WRR
algorithms. Also, under overload circumstances,
the multi-class load balancing algorithm delivers
constant throughput, while the other two
approaches face bottleneck conditions and their
throughputs of WRR and CAP are decreased.
Finally, the conclusion is that the average request
rate which can be served by the multiclass load
balancing approach is about 1.24 times greater than
with CAP and 2.08 times greater than with WRR.

5.3 Error Rate

Figure 5 shows the error rate of all the above
mentioned three algorithms throughout the present

experiments. After reaching the saturation point,
the CAP and WRR algorithms error rates are
increased sharply. Error Rate is a noteworthy
metric because it measures “performance failure”
in the application. It tells us how many failed
requests are happening at a certain point during
the time of load tests. In many load tests, this
climb in Error Rate can be extreme. This speedy
rise in errors shows the point, where the target
system is stressed beyond its capability to deliver
acceptable performance. Due to this, the error
rate will increase and also the throughput of the
server cluster will drastically decrease when the
resource usage is 100%. Figure 5 illustrates the
high error rates of WRR and CAP approaches with
in accoradance with to the failed requests which
require high service times. It can be determined
that the multi-class load balancing approach
improves the the capacity of the web server cluster
by accepting an increased number of clients when
compared with the remaining two algorithms and
also maintains lower error rate.

6. Conclusion

In this research article, the problem of dispatching
various classes of user’s request on heterogeneous
web server cluster is considered. A multi-class
load balancing algorithm aiming to diminish the
mean per-class response time is designed. The
performance of the proposed multi-class load
balancing algorithm is compared with that of the
Weighted Round Robin (WRR) and Client Aware
Policy (CAP) load balancing strategies. The
investigational results prove that, the proposed
dispatching strategy overtakes the WRR and
CAP load balancing strategies with regards to
average system response time, throughput and
error rate. This particular improvement is obvious
for moderate system workload. When the cluster
workload is light or heavy, the performance of the
three discussed dispatching strategies converges.
In the future, an extension of the proposed multi-
class load balancing strategy can be tested and
investigated for more complex hierarchical
models that replicate the real models.

	 451

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Multi-Class Load Balancing Algorithm (MCLB) for Heterogeneous Web Cluster

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 00

M
E

A
N

 R
E

S
P

O
N

SE
 T

IM
E

NUMBER OF REQUESTS GENERATED

MEAN RESPONSE TIME (MSEC)
WRR CAP MCLB

Figure 3. Mean response time variation Vs number of requests

0

200

400

600

800

1000

1200

1400

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 00

T
H

R
O

U
G

H
P

U
T

NUMBER OF REQUESTS GENERATED

THROUGHPUT (REQ/SEC)
WRR CAP MCLB

Figure 4. Throughput variation Vs number of requests

0

5

10

15

20

25

30

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 00

E
R

R
O

R
 R

A
T

E

NUMBER OF REQUESTS GENERATED

ERROR RATE (%)
WRR CAP MCLB

Figure 5. Error rate variation Vs number of requests

REFERENCES

1.	 Ahn, W. H., Kim, W. J. & Park, D. (2004).
Content-aware cooperative caching for cluster-
based web servers, Journal of Systems and
Software, 69(1-2), 75-86.

2.	 Andreolini, M., Colajanni, M. & Nuccio, M.
(2003). Scalability of content-aware server
switches for cluster-based Web information

systems. In The Twelfth International World
Wide Web Conference (pp. 270-280).

3.	 Cardellini, V., Casalicchio, E., Colajanni,
M. & Tucci, S. (2001). Mechanisms for
quality of service in Web clusters, Computer
Networks, 37(6), 761-771.

http://www.sic.ici.ro

452 Kadiyala Ramana, M. Ponnavaikko

4.	 Casalicchio, E. & Colajanni, M. (2001,
April). A client-aware dispatching algorithm
for web clusters providing multiple services.
In Proceedings of the 10th international
conference on World Wide Web (pp. 535-
544). ACM.

5.	 Cherkasova, L. & Karlsson, M. (2001).
Scalable web server cluster design with
workload-aware request distribution strategy
WARD. In Third International Workshop On
Advanced Issues of E-Commerce and Web-
Based Information Systems, WECWIS 2001
(pp. 212-221). IEEE.

6.	 Dahlin, M. (2000). Interpreting stale load
information, IEEE Transactions on parallel
and distributed systems, 11(10), 1033-1047.

7.	 Eager, D. L., Lazowska, E. D. & Zahorjan, J.
(1986). Adaptive load sharing in homogeneous
distributed systems, IEEE transactions on
software engineering, (5), 662-675.

8.	 El-Zoghdy, S. F. (2012). A hierarchical
load balancing policy for grid computing
environment, International Journal of
Computer Network and Information
Security, 4(5), 1-12.

9.	 Harchol-Balter, M., Crovella, M. E. & Murta,
C. D. (1999). On choosing a task assignment
policy for a distributed server system, Journal
of Parallel and Distributed Computing, 59(2),
204-228.

10.	 Kwan, T. T., McGrath, R. E. & Reed, D. A.
(1995). NCSA’s world wide web server: Design
and performance, Computer, 28(11), 68-74.

11.	 Pai, V. S., Aron, M., Banga, G., Svendsen, M.,
Druschel, P., Zwaenepoel, W. & Nahum, E.
(1998). Locality-aware request distribution in
cluster-based network servers, ACM Sigplan
Notices, 33(11), 205-216.

12.	 Pao, T. L. & Chen, J. B. (2006, December).
The scalability of heterogeneous dispatcher-
based web server load balancing architecture.
In Seventh International Conference
on Parallel and Distributed Computing,
Applications and Technologies, 2006,
PDCAT’06 (pp. 213-216). IEEE.

13.	 Penmatsa, S. & Chronopoulos, A. T.
(2007, March). Dynamic multi-user load
balancing in distributed systems. In IEEE
International Parallel and Distributed
Processing Symposium, 2007, IPDPS 2007
(pp. 1-10). IEEE.

14.	 Qin, X., Jiang, H., Zhu, Y. & Swanson, D. R.
(2003, August). Dynamic load balancing for
I/O-and memory-intensive workload in clusters
using a feedback control mechanism. In
European Conference on Parallel Processing
(pp. 224-229). Springer, Berlin, Heidelberg.

15.	 Ramana, K. & Ponnavaikko, M. (2015). Web
Cluster Load Balancing Techniques: A Survey,
International Journal of Applied Engineering
Research, 10(19), 39983-39998.

16.	 Schroeder, T., Goddard, S. & Ramamurthy,
B. (2000). Scalable Web server clustering
technologies, IEEE Network: The Magazine of
Global Internetworking, 14(3), 38-45.

17.	 Seo, E., Jeong, J., Park, S. & Lee, J. (2008).
Energy efficient scheduling of real-time tasks
on multicore processors, IEEE transactions
on parallel and distributed systems, 19(11),
1540-1552.

18.	 Sharifian, S., Akbari, M. K. & Motamedi,
S. A. (2005). An Intelligence Layer-7
Switch for Web Server Clusters. In 3rd
International Conference: Sciences of
Electronic, Technologies of Information and
Telecommunications SETIT (p. 8).

19.	 Sharifian, S., Motamedi, S. A. & Akbari, M.
K. (2011). A predictive and probabilistic load-
balancing algorithm for cluster-based web
servers, Applied soft computing, 11(1), 970-981.

20.	 Singh, H. & Kumar, S. (2015). WSQ: web
server queueing algorithm for dynamic
load balancing, Wireless Personal
Communications, 80(1), 229-245.

21.	 Tiwari, A. & Kanungo, P. (2010, December).
Dynamic load balancing algorithm for scalable
heterogeneous web server cluster with content
awareness. In Trendz in Information Sciences
& Computing (TISC), 2010 (pp. 143-148). IEEE.

22.	 Zhang, L., Xiao-Ping, L. & Yuan, S. (2010).
A content-based dynamic load-balancing
algorithm for heterogeneous web server
cluster, Computer Science and Information
Systems, 7(1), 153-162.

23.	 Zhang, W. (2000, July). Linux virtual server
for scalable network services. In Ottawa Linux
Symposium (Vol. 2000).

24.	 Zhang, X., Yu, Y., Chen, B., Ye, F. & Xingxing,
T. (2007, November). An extension-based
dynamic load balancing model of heterogeneous
server cluster. In IEEE International Conference
on Granular Computing, 2007, GRC 2007 (pp.
675-675). IEEE.

	_Hlk527361761
	_GoBack
	_GoBack
	OLE_LINK4
	OLE_LINK5
	bau005
	bau010
	bau015
	_GoBack
	baut0005
	baut0010
	baut0015
	_Hlk523163837
	_Hlk523164161
	_Hlk523164237
	_Hlk523164303
	_Hlk523164371
	_Hlk528855163
	_Hlk528855104
	_Hlk528854772
	_Hlk528854634
	_Hlk528854705
	_Hlk528854916
	_Hlk528855702
	_Hlk528854842
	_Hlk528855226
	_Hlk528855533
	_GoBack
	_Hlk527631678
	_GoBack
	_GoBack
	_GoBack
	_Hlk528514076
	_Hlk527368084
	_Ref528521393
	_Ref528521106
	MTBlankEqn
	_Ref528611286
	_Ref528611711
	_Ref528612036
	_GoBack
	_GoBack
	MTBlankEqn
	_Hlk530553768
	_Hlk530553790
	_Hlk530553918
	_Hlk530554021
	_Hlk530554118
	_Hlk530554236
	_Hlk530554343
	_Hlk530554522
	_Hlk530554390
	MTToggleStart
	MTToggleEnd
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK25
	OLE_LINK26
	OLE_LINK27
	OLE_LINK7
	OLE_LINK30
	OLE_LINK31
	_GoBack
	MTBlankEqn
	OLE_LINK2
	OLE_LINK1
	_Hlk530523563
	OLE_LINK3
	_Hlk530523758
	_Hlk530660742
	_Hlk530662129
	_Hlk530667018
	_GoBack
	_Hlk530667358
	_Hlk531418885
	_Hlk531418636
	_GoBack

