
265

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

A common workflow in Control Theory research
and also for students in this field is to develop the
hardware and write software to interface with and
control it. However, a lot of effort is spent in writing
the same code for different hardware: input/output
interfacing; sampling timing; data acquisition,
manipulation, storage and presentation; etc.
These issues introduce undesirable layers that
must be traversed to achieve the primary goal of
real-time controller experimentation. Moreover,
in industrial facilities, the test of new control
strategies can be a challenging task because of the
code and, eventually, hardware changes required.
This certainly limits the enthusiasm of industrial
engineers and managers to evaluate advanced
control techniques.

The rise of affordable computers makes it
possible to substitute microcontrollers circuits
with microprocessor powered devices, which
have much more processing power and memory,
and makes it easier to interface with complex
peripherals, like USB, Ethernet and WIFI.

Due to the presence of a full-stack operating
system, it’s possible to use various languages
to write control software, even interpreted ones,
which are not available in embedded devices. A
solution which consists of a control platform that
carries out those tasks and let the student focus on
learning was then proposed.

Thanks to projects like NumPy, SciPy and
Python-control, the Python language becomes
a good alternative for mathematical computing.
Those projects allow the use of well know and
tested math libraries to do high-level math with
optimized algorithms, close to the metal, while
allowing the developer to use high-level APIs and
a dynamic language to represent and coordinate
the calculations.

The academic and industrial effort to bring simple
solutions for advanced control test is not new as it
can be seen in [1,2]. In this direction, the Python
language was created to be a system language,
meaning it would coordinate complex tasks that
would be carried out by the system in a simple
way. Using Python to write controllers comes
in-line with that philosophy, as Python describes
the algorithm to be executed and the actual
computations are done by low-level optimized
math libraries. In this manner complex tasks can
be described simply in an easy-to-use language
while keeping a good performance.

Controllers that make use of evolutive
mechanisms [3], neural networks [4] a model free
discrete time neural network control is designed
for the trajectory tracking of a kind of nonlinear
processes. The introduced control has three main
characteristics: (1 or model prediction [5, 6],
for example, can be implemented easily using
Python, as the language offers various facilities

Studies in Informatics and Control, 27(3) 265-274, September 2018

https://doi.org/10.24846/v27i3y201802

Affordable Control Platform with MPC Application
Álan C. E SOUSA1, Valter J. S. LEITE1*, Ignacio RUBIO SCOLA2

1 Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG, campus Divinópolis),
Rua Alvares de Azevedo, 400, Divinópolis, 35.503-822, Brazil
2 Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, CIFASIS-CONICET,
Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
acristoffers@ieee.org, valter@ieee.org (*Corresponding author), ignacio.rubioscola@gmail.com

Abstract: This paper presents a control platform developed to interface with various hardware, allowing the design and rapid
implementation even of advanced controllers, both on academic and industrial systems. The code of the controllers is written
in the open-source Python language, facilitating the translation of code usually written in commercial software. The proposed
platform can use from Arduinos to Programmable Logic Computers (PLCs). Beyond the research and tests on industrial
facilities, the simplicity of the proposed platform allows its use also for educational and training purposes. Therefore, the
proposed platform can help students focus on system analysis and control theory instead of hardware interfacing issues, while
using low cost hardware. Developed in a client-server scheme, the platform can run in affordable computers while taking
advantage of high-level mathematical and graphical tools available in Python language, allowing rapid implementation of
advanced controllers. The use of this platform is illustrated with an implementation of a model predictive control (MPC) of
a level control in a laboratory-scale process. A PLC is used to take the level measures, to dispatch control signals, and also
for interlocking secure tasks. The controller runs on a Raspberry Pi computer that communicates with the PLC through an
ethernet link.

Keywords: Control platform, MPC, Affordable computer, Optimal control.

mailto:acristoffers@ieee.org
mailto:valter@ieee.org

http://www.sic.ici.ro

266 Álan C. E Sousa, Valter J. S. Leite, Ignacio Rubio Scola

to manipulate generic data, like easy to use lists
and dictionaries, generators, comprehensions,
and offers good support to object-oriented and
functional programming. Advanced control
techniques like state-feedback [7] or even those
with intensive computational requirements like
fuzzy-control8 and model predictive control [9,10]
can then be easily implemented.

A control platform is proposed to circumvent
the issues associated with the controller
experimentation by yielding an easy and rapid
way to evaluate new control strategies or control
algorithms. The platform, developed in Python, is
composed of two applications working in a client-
server structure, which allows modularity. The
backend can be installed in affordable computers,
like the Raspberry Pi, and execute complex control
strategies implemented in a simple yet powerful
language. The system was design to aid in system
analysis and control design classes, as well as in
advanced control tests in industrial environment.
A use is to connect an affordable computer to
already installed PLCs through standard network
in order to replace conventional industrial
controllers during advanced control evaluation.
This scheme is of interest in the implementation of
advanced control techniques as they require some
processing power and their algorithms are easy to
implement in a high-level language like Python.

2. Control Platform

The main contribution of this work is to provide
a low-cost solution to the following scenario: a
control platform that allows the development
and testing of controllers as well as running
open-loop tests to aid in learning and to offer a
simple and safe way for advanced control tests
in industrial environment.

The server, called Moirai [11], is written in
Python and makes use of a small library, called
AHIO [12], to interface with various hardware,
like Arduino, Raspberry’s GPIO and Siemens S7
PLC series. This application is responsible for the
timing and processing of the supplied controller,
as well as for controlling the reading and the
writing of sensors and actuators. Mathematical
calibration expressions can be given to convert
sensors and actuators values before writing or
after reading. Interlocking conditions can be used
to set outputs when the conditions are met. It can
be used, for example, to prevent overflow of a

tank. The language was chosen for being a high-
level general-purpose language with high quality
mathematical support through the SciPy libraries.

The client, named Lachesis [13], communicates
with the server through a simple HTTP API and
works as a front-end, allowing the user to configure
the server, save controllers and tests, start/stop
tasks, see the resulting graphics while the test is
running and to export the data of finished tasks to
JSON, CSV or MAT formats, therefore facilitating
the data analysis in a number of software. The
client-server approach was chosen to allow the
backend to use all hardware resources running the
controller, while the front-end can be installed in a
faster computer to draw the live graphics.

In what follows, we describe each of the three
modules developed to provide a solution for
affordable computation in control and a simple and
safe way to test advanced controllers in industry.

AHIO [12]

AHIO is a python library that exposes a single
interface to interact with different hardware. It’s
designed to work with drivers, so you can choose
which driver to use, configure its inputs and
outputs, without worrying anymore about driver-
specific details. When changing the interfacing
hardware for the same application, it suffices
to change the preamble to configure the new
hardware. The rest of the code stays unchanged.

Moirai [11]

The objective of this application is to interface
with the hardware and the database, control the
sampling time and code execution, so that the
user’s provided controller is executed in the
right moment and all scanned inputs, outputs and
logged variables are saved in the database.

It uses Flask to setup a JSON web-service which
can read and write all configurations to the
database and can return the results of tests, as
well as execute CRUD operations on controllers,
graphs and system response tests.

Because it needs to execute the controller in a
fixed interval with precision, threads were needed.
However, Python does not offer a real thread
API. All of its thread functionality is emulated
by the interpreter. To work around this issue the
application was split into three submodules: one
for the main process, one for the hardware and one

	 267

ICI Bucharest © Copyright 2012-2018. All rights reserved

Affordable Control Platform with MPC Application

for the web-server. The main process module will
spawn two new processes for the other modules.
In this manner the operating system can distribute
the processes across the processor’s cores and
make them run truly in parallel. The main process
acts as a link between the other processes, which
communicate using pipes to start the execution
of a controller or test and to signal the processes
to quit.

A test is another feature this application offers. It
can set one output of the physical system and log
the inputs. This eases the execution of open-loop
tests, like step, ramp, stairs, pulse, etc.

The database of choice is MongoDB. It is a
NoSQL document store which is fast and stores
documents in a JSON like format named BSON.
The objects used to interface with the database are
Python dictionaries, lists and basic types, so there
is little to no overhead when using the objects or
converting them to JSON. As the platform was
developed to work with affordable computers,
it needs to support the 32-bit ARM architecture,
which is the most used in that hardware. Because
MongoDB dropped support to its 32-bit versions
last year, it was necessary to find an alternative.
As the system was already developed to work with
MongoDB, it was decided not to change that and,
instead, add an alternative to systems where it
cannot be installed. The chosen alternative was
MySQL, which can be easily installed in most
systems. But there’s a performance penalty since
the data structure returned by the database needs to
be converted to and from the JSON structure used
by the web-service. This overhead is noticeable
when retrieving points from the database (used by
Lachesis to plot) and when exporting the results
to JSON, CSV or MAT. There’s no significant
difference when saving data during controller/
test execution.

Because execution timing is important, two
methods of controlling it were tested. In the first
method the controller code execution is timed, and
the wait-time is calculated as sampling time minus
execution time. The second method calculates the
next multiple of the sampling time based on when
the users commanded the start of the test, and then
computes the wait time as that time minus current
time, using the time.time() function. With 6000
samples, collected by running a controller test for
60 seconds with 0.01 as sampling time, the error

mean and standard deviation of the first method
were 0.0502 and 0.0286 seconds respectively. The
second method was better, with 0.0071 and 0.0005
error mean and standard deviation respectively,
showing that the second method has a much
smaller timing error than the first one.

Lachesis [13]

The front-end was made separated in order to
unload the back-end. In this manner the interface
is processed in the user machine and does not
add processing time to the controlling hardware.
In case a standard computer is used to do both
controlling and data processing, there’s no
noticeable difference, but when using affordable
computers to run the controllers it is important to
use all resources for this sole end.

Because of this the front-end could be designed
using a heavier framework that allows a more
appealing interface. By using Electron, standard
web technology can be used without the browser
safety limitations.

Microsoft’s Typescript was chosen as the
programming language because of its type-
checking capability. It eases development by
catching potential bugs during compilation, what
gives some safety and assurance of correctness
to the code.

Angular was used to organize the code. It takes
care of updating the DOM, which unburdens the
developer from this repetitive task, and enforces
separation of concerns by dividing the application
into smaller components. The framework also
uses the RxJs library, which turns the JavaScript
development reactive. This eliminates the
callback-hell problem from which the language
suffers and simplify the implementation of
concurrency. For a better visual style, the Angular
Material set of components was used, which
implements common components that follows
Google’s Material Design principles.

This application acts as front-end to Moirai, so
everything Moirai can do can be accessed and
manipulated by it. The first screen after launching
Lachesis is the login screen, in which you select
which server to connect to. After logging in the
Connection panel changes to allow the user to
disconnect, change Moirai’s password or backup/
restore the whole database.

http://www.sic.ici.ro

268 Álan C. E Sousa, Valter J. S. Leite, Ignacio Rubio Scola

The second panel is the Hardware Setup, seen
in Figure 1, where the user can select to what
hardware Moirai will connect. This panel also
allows the configuration of the connection, the
inputs and outputs, which can receive meaningful

names. Calibration expressions and interlocking
rules can also be provided. The user will see the
I/O names (aliases) in all other configuration
windows and will be able to access those values
by code in the controllers. If the user accesses a

Figure 1. Hardware Setup component

Figure 2. System Response component

	 269

ICI Bucharest © Copyright 2012-2018. All rights reserved

Affordable Control Platform with MPC Application

calibration alias, the returned value is the input
reading processed by the expression. If a value
is written to it, the value is evaluated by the
expression before being written to the output.

The second component is called System Response,
as shown in Figure 2. It allows the user to create
open-loop tests with an easy to use interface. For
common types of inputs, like step and stair, the
user can simply fill a form and the wave will be
generated automatically. If the user needs more
control of the wave, he can enter a list of time-
point pairs or import them from other software in
CSV file format.

The third component is named System Control
and can be seen in Figure 3. The user can add
the controller, written in Python, in three text-edit
boxes. They are named Before, Controller, and
After. Before can be used to set constants, initial
value of “global” variables, pre-calculate gain
matrices, etc., as well as setting outputs to turn
the system on. Controller will be executed every
sampling time and should be used to actually
calculate the needed outputs. After should be used
to turn the system off. If an exception is raised
inside Controller, the execution is halted and After
is executed.

Some special variables exist in those scopes,
like s (state, a dictionary that holds its value
between executions and scopes, acting as a global
variable), log (a dictionary, every key will act as a
new variable) and t (holds the current time since
test started). The dictionaries inputs and outputs
hold the values of selected inputs (not all are
scanned for performance reasons) and allows to
set outputs. In Figure 3 you can see the system and
the pump 1 being turned on, as well as the PID
gains, reference and initial value of the integrator
accumulator and derivative last value being set.

Last comes the Graphs component, represented
in Figure 4. It allows the user to visualize logged
data both during and after a controller/test run.
If the test is finished, it also allows to export
the points to JSON, CSV or MAT formats. The
graphs can be zoomed and panned, and they can
be synchronized, so zoom and pan operations
applied to one graph also apply to all other graphs.
This component also allows to stop a running test.
The graphs are updated every second and only the
points inserted in the database after the last point
already fetched are retrieved. This minimizes both
the data transfer and the data processing by the
server. Because of the client-server structure the

Figure 3. Control component

http://www.sic.ici.ro

270 Álan C. E Sousa, Valter J. S. Leite, Ignacio Rubio Scola

user does not need to keep the client open while
the test is running, so simply navigating to another
component or closing the application will make
the server have more processing power available
to the controller.

3. Model Predictive Control

Model Predictive Control is a control technique
used in the chemical and petrochemical industries.
The main idea behind MPC is to use the model of
the controlled process to predict the plant output
and use the prediction to optimize the control
trajectory [14]. This work considers a very simple
form of MPC only to illustrate an application
of our main contribution, which is the use of
affordable computers with an open source control
platform. Albeit simple, this implementation is
very computationally intensive.

Then, for a controlled process modeled as:

(1)

where k is the sample order, is the
dynamic matrix, is the input matrix,

 is the output matrix, x(k) is the system
state at sample k, y(k) is the controlled output,

and u(k) is control input. Two sets of samples
or windows are defined: the prediction and the
control horizons with Np and Nc samples ahead,
respectively. Usually Nc is much smaller than Np.

Because most of the MPC applications refers to
regulation processes, an integral action is often
introduced by considering a deviation model
version of (1). In this case, assuming Δx(k + 1) =
x(k + 1) - x(k) and Δu(k +1) = u(k + 1) - u(k), one
can rewrite (1) as [14]

 (2)

Equation (2) is used Np times to predict a
set of outputs
which yields

, (3)

where and are given by

 (4)

and

.
(5)

Figure 4. Graphs component

	 271

ICI Bucharest © Copyright 2012-2018. All rights reserved

Affordable Control Platform with MPC Application

The MPC objective is to minimize a quadratic
cost function

 (6)

with Rs being a column vector containing the
future setpoints and a matrix that weighs ΔU.

Substituting Y, deriving and equating to zero
we have:

 (7)

After the computation of the optimal control
sequence, only its first component is applied to the
process. Next a new state measure or estimation is
required, and a new optimal sequence of control
signals, ΔU, is computed.

Control Signal Constraint

Using this technique, it’s already possible to
implement a working controller. However, MPC
excels because of its capability to work with
constraints in both control signal and output.
For that reason, a return to the cost function is
needed in order to use the optimization techniques
for optimizing it with applied constraints. All
constraints must be written in the form:

 (8)

Various techniques exist to solve the minimization
of the quadratic cost function (6) under (8). The
authors decided to use quadratic programming to
solve it [14]. Note that a full optimization problem
must be solved every sampling time, requiring an
additional computation power from the controller
CPU. Thus, this control technique is used to
illustrate the proposal of the low-cost platform.

For the implementation of such control law, the
information of the state vector is needed, but only
the system outputs y(k) is present. On the other
hand, the states and outputs of the system are can
be considered corrupted by white Gaussian noises
with zero mean, named w and v respectively:

(9)

To handle this case the Kalman filter [15] is used
to estimate the state vector and to reduce the
covariance of the estimation error:

(10)

where is the state estimation, L is the optimal
correction gain (in the sense that it minimizes the
covariance of the estimation error) computed by

 (11)

and P is the solution of the following algebraic
Riccatti equation (ARE):

 (12)

with Q and R the covariance matrices of noises w
and v respectively.

After computing L, the code to run the MPC
controller has to take the following steps at every
sample time to compute the control signal:

1.	 Read the controlled variable and compute the
estimated state with (10) and then compute
the state variation, Δx.

2.	 Take the augmented state by appending the
last value of the controlled variable to the
state variation vector computed in Step 1.

3.	 Compute F and Φ with (4) and (5)
respectively, and then and

, which are inputs of the
QP optimization algorithm.

4.	 Write the soft constraints on the output,
control variable, state and their variations
in the form , where M and N
matrices come from the concatenation of the
following inequalities:

a.	 Constraint on Δu

b.	 Constraint on u

c.	 Constraint on y

5.	 Use the QP algorithm to minimize
 subject to the constraints

in Step 4 to get the optimal control variation
vector ΔU. Then implement the control signal

.

http://www.sic.ici.ro

272 Álan C. E Sousa, Valter J. S. Leite, Ignacio Rubio Scola

Figure 5. Four tanks interactive system

4. Application

The implementation has entailed a laboratory
scale process that consists of four interconnected
tanks, each of them with a capacity of 200 liters,
and a reservoir with capacity of 1000 liters
(see Figure 5). A 1 c.v. pump actioned through
a 3-phase inverter controls the inlet flow of the
process. A Siemens PLC model Simatic S7 300 is
used to get process measures, to dispatch control
signals and to perform the interlocking task. All
control and measurement consist of 4-20 mA
current loops [8,16]. The process allows some
different configurations, and, for this application,
only tanks T1 and T2 are used, coupled through a
fixed manual valve, where the inlet flow arises in
tank T1 and the control objective is the level on
tank T2. For control purposes, only the level on
tank T2, h2, is measured and controlled.

Through mass balance equations, a linearized
model of this process can be obtained as:

(13)

where is the inlet flow on tank T1, A is the area
of the cylindric tanks, R12 is the flux resistance
between T1 and T2, R2 is the flux resistance of
the output of T2, and h1 and h2 are the levels on
tanks T1 and T2, respectively. Replacing the
numerical values, we have:

(14)

Assuming a Nc = 15 samples, the sampling time
of T = 10s (and Np = 150) was used to implement
the controller. Also, to evidentiate the possibilities
of this affordable platform, the experiments were
repeated with T = 1s (and Np = 1500). Although
this last choice is not the natural one, it leads
to a higher computational demand that allows
to test the proposed affordable platform. The
corresponding F and Φ matrices were computed.
The observer gain was calculated by using the
Kalman Filter, where the covariance of both states
and the variation of the states were calculated
based on experimental data from 1000 samples of
the output yielding R = 0.060440 for the sensor and
Q as diagonal matrix with 0.783261 and 0.090986
for the state variation. For code implementations
details, see https://bit.ly/2uuwecW.

With those values calculated, the MPC can be
used to control the level of T2. Two experiments
have been performed changing only the sample
time as mentioned before. The output and control
signal of the system following a setpoint change
and adapting to a disturbance at 600 seconds can
be seen in Figure 6. The disturbance is performed
by actioning a second pump to add water to tank
T2. The controller was run in a Raspberry Pi 3
Model B. The hardware controlling the actuators
and sensors is a Siemens S7 PLC, which reads the
sensors in analogic inputs and controls the pumps
through a frequency invertor. The user only needs
to know which PLC ports are connected to what
hardware, and to give names to those ports in the
Hardware Setup component.

It is clear from the experiment data that the
controlled output is more effective for a smaller
sample time, with almost none overshooting and
shorter settling time. On the other hand, the control

https://bit.ly/2uuwecW

	 273

ICI Bucharest © Copyright 2012-2018. All rights reserved

Affordable Control Platform with MPC Application

signal has a more significative variance in this
case, which may lead to higher maintenance costs.
Such an issue can be solved by including a simple
first order digital filter in the code. However, the
objective of this paper is just to illustrate that a
more demanding computational controller can be
easily implemented in this affordable platform
with a quite simple hardware.

5. Conclusion

An affordable control platform was proposed
which allows to run controllers in a low-end
computer. It was able to execute a complex,
computational expensive controller while saving

all readings and writings to a database and
estimating states through an observer. The user
only needs to fill a form in order to configure the
hardware and then he can focus on the system
identification, testing and controller development,
what gives him more time to study the related
concepts. If the student has a non-standard
hardware, it’s easy to develop a new driver for
AHIO which can interface with such hardware.
The platform will recognize any driver that AHIO
exports. A real-time control application has been
used with MPC to illustrate the potential of the
present proposal.

Figure 6. MPC output and control signal

http://www.sic.ici.ro

274 Álan C. E Sousa, Valter J. S. Leite, Ignacio Rubio Scola

REFERENCES

1.	 Carlsson, H., Svensson, B., Danielsson, F. &
Lennartson, B. (2012). Methods for Reliable
Simulation-Based PLC Code Verification,
IEEE Trans. Ind. Informatics, 8, 267-278.

2.	 Schluse, M., Priggemeyer, M., Atorf, L. &
Rossmann, J. (2018). Experimentable Digital
Twins-Streamlining Simulation-Based
Systems Engineering for Industry 4.0, IEEE
Trans. Ind. Informatics, 14, 1722-1731.

3.	 Bazaraa, M. S., Sherali, H. D. & Shetty, C.
M. (2006). Nonlinear programming : theory
and algorithms. Wiley-Interscience.

4.	 de Jesús Rubio, J. (2018). Discrete time
control based in neural networks for
pendulums, Appl. Soft Comput., 68, 821-832.

5.	 Rawlings, J. B. & Mayne, D. Q. (2009).
Model predictive control : theory and design.
Nob Hill Pub.

6.	 Boeira, E., Bordignon, V., Eckhard, D. &
Campestrini, L. (2018). Comparing MIMO
Process Control Methods on a Pilot Plant, J.
Control. Autom. Electr. Syst., 29, 411-425.

7.	 Barroso, N. F. (2017). Distributed parameters
systems monitoring strategy based on
Kalman observers (in Portuguese). Master
thesis at Graduate Program on Electrical
Engineering (CEFET-MG). Available at:
<goo.gl/oDYCdB>.

8.	 Lopes, A., Leite, V. & Silva, L. (2018). On
the Integral Action of Discrete-time Fuzzy TS
Control Under. In WCCI - World Congress
on Computational Intelligence.

9.	 Venkatesh, S., Ramkumar, K., Guruprasath,
M., Srinivasan, S. & Balas, V. E. (2016).
Generalized predictive controller for ball
mill grinding circuit in the presence of feed-
grindability variations, Studies in Informatics
and Control, 25, 29-38.

10.	 Makhlouf, A., Marhic, B., Delahoche, L.,
Clérentin, A. & Messaoud, H. (2016). A
smart and predictive heating system using
data fusion based on the belief theory, Studies
in Informatics and Control, 25, 283-292.

11.	 Sousa, Á. C. (2017). Moirai. Available at:
<https://github.com/acristoffers/moirai>.
Accessed: 23rd May 2018.

12.	Sousa, Á. C. (2016). AHIO, AHIO -
Abstract Hardware I/O. Available at:
<https://github.com/acristoffers/ahio>.
Accessed: 23rd May 2018.

13.	 Sousa, Á. C. (2017). Lachesis. Available at:
<https://github.com/acristoffers/lachesis>.
Accessed: 23rd May 2018

14.	 Wang, L. (2009). Model Predictive Control
System Design and Implementation Using
MATLAB, Engineering. Springer-Verlag
London. doi:10.1007/978-1-84882-331-0

15.	 Kalman, R. E. (1960). A New Approach to
Linear Filtering and Prediction Problems, J.
Basic Eng., 82, 35.

16.	 Oliveira, L., Leite, V., Silva, J. & Gomide,
F. (2017). Granular evolving fuzzy robust
feedback linearization. In 2017 Evolving and
Adaptive Intelligent Systems (EAIS) (pp. 1-8).
IEEE. doi:10.1109/EAIS.2017.7954821.

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	page7
	page8
	page9
	_Hlk518562184
	_GoBack
	_Hlk525200695
	_GoBack
	OLE_LINK675
	OLE_LINK676
	OLE_LINK691
	OLE_LINK692
	OLE_LINK758
	OLE_LINK759
	OLE_LINK777
	OLE_LINK778
	OLE_LINK754
	OLE_LINK755
	OLE_LINK63
	OLE_LINK57
	OLE_LINK58
	OLE_LINK52
	OLE_LINK53
	OLE_LINK54
	OLE_LINK71
	OLE_LINK61
	OLE_LINK62
	OLE_LINK64
	OLE_LINK65
	OLE_LINK201
	OLE_LINK202
	OLE_LINK1
	OLE_LINK2
	OLE_LINK224
	OLE_LINK225
	_Ref518485983
	_Ref518485983
	_Ref518486338
	_Ref518486007
	_Ref518486478
	_Ref518486382
	_Ref518486362
	_Ref518562591
	_Ref518486036
	_Ref519073989
	_Ref518989310
	_Ref519073742
	_Ref519074467
	_Ref518486430
	_Ref518486456
	_Ref518485951
	_GoBack
	_GoBack
	_GoBack
	_Hlk526243018
	baep-author-id2
	_GoBack
	_GoBack
	_GoBack
	_Hlk512967206
	_GoBack
	_Ref508793658
	_Hlk506553364
	_Ref509939463
	_Ref509940412
	_Ref509507802
	_Ref512962362
	_Hlk515120268
	_Ref508891898
	_Ref508892763
	_Hlk506554044
	_Hlk506556508
	_Ref510542491
	_Hlk506557328
	_Ref508981331
	_Ref515456000
	_Hlk506557732
	_Hlk506558795
	_Ref509127234
	_Ref509590998
	_Ref510542648
	_Ref510542643
	_Ref509500315
	_Ref513036771
	_Ref509137065
	_Ref510543007
	_Ref509179060
	_Ref513036793
	_Hlk505095368
	_Hlk506559133
	_Ref526327754
	_Ref526327867
	_Ref526327914
	_Ref526327997
	_Ref526328048
	_Hlk506559234
	_GoBack
	_GoBack
	_GoBack
	_1fob9te
	_Hlk526768884
	_GoBack
	_GoBack

