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1. Introduction

Accurate positioning applications are pervasive in 
industrial and manufacturing applications, arising 
with prolific growth of nanoscale applied science. 
In the recent past, piezoelectric actuators (PZAs) 
have proved themselves to be major players in the 
realm of precision positioning [25, 30]. They have 
emanated as one of the most widely used type of 
actuators in this area due to advantages such as 
increased electromechanical coupling efficiency, 
enhanced resolution, quick frequency domain 
response, large stiffness coefficient, and minimal 
thermal expansion in the process of actuation 
[6,2]. Industrially interactive scientific micro/
nano manipulation applications generally call for 
control strategies which are not only capable of 
providing precise reference tracking but are also 
robust to external force [3, 28]. Simulation and 
modelling of such high accuracy industrial servo 
mechanisms that predicts and optimizes both static 
and dynamic performances of the systems under 
study are seen in [23, 24].

These essentialities are further effected by the 
inherent nonlinearities like hysteresis which 
hinder precision positioning capabilities.  

Thus, it is necessary to design decisive control 
methodologies for PZAs in order to satiate the 
constantly rising design requirements. Extensive 
research has been carried out with regard to 
implementation of appropriate control structures 
to take into consideration piezoelectric hysteresis 
and other nonlinearities. PI and PID have been 
seen to be the most popular classical controllers 
however with limited bandwidth and, therefore 
useful for macro scale applications without 
predominant disturbances.

Of late, model based control regimes like the 
dynamic matrix control; adaptive reference 
control and predictive control are achieving 
acceptance as presented in  [12]. In this case, 
the feedback controller is generally designed by 
employing a model of the physical process which 
is to be controlled along with the dynamics of the 
external perturbations affecting the system flow. 
A model-based control algorithm named “Internal 
Model Control” (IMC) which is centred around 
the principle of internal mathematical model of 
the process and its inverse dynamics have gained 
considerable popularity [9, 10]. 
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There have been researches reported on IMC 
pertaining to several independent industry oriented 
applications, based on the analysis of the control 
system’s stability and robust behaviour [9,18] 
without any study dedicated towards utilising 
the efficacy of IMC for PZA based applications. 
An impediment of traditional IMC design is the 
replication of the plant models in hardware which 
increases the hardware requirement. Besides, in 
the event of a mismatch between the plant model 
and actual process, there is a degradation in 
closed-loop  performance which also needs to be 
compensated along with proper tuning of the filter 
time constant.

Bio-inspired optimization algorithms using 
soft computing and artificial intelligence play a 
significant role in optimization of parameters [14]. 
The primary motivation utilizing AI technology 
is to make the system behave in a more dynamic 
manner similar to human mind. Efficiency, 
performance and cost have become ubiquitous in 
the modern industrial era with most applications 
demanding a minimizing cost or maximizing 
performance optimization problem. In a wide 
class of problems, there is a requirement to 
deduce an optimal solution owing to more than 
one characteristic. In such cases, multi-objective 
approach needs to be used wherein the several 
objectives are either accommodated in a single 
fitness function or each of them captured through 
distinct tasks [8,13]. 

The proposed research is based on exploiting 
Particle Swarm Optimization (PSO) and 
Bacterial Foraging Optimization (BFO), two well 
accepted and efficient swarm intelligence- based 
evolutionary soft computational techniques which 
employ a multi-objective approach. They are 
used to optimise the filter time constant and the 
gain values to PID equivalent Modified Internal 
Model Controller, through a fitness function. The 
prudence behind selecting these two attractive 
algorithms is that they do not get largely impaired 
by the population size or the non-linear nature of 
the problem with a better convergence rate that 
most analytical methods [21]. These algorithms 
also have the advantages of being computationally 
inexpensive using basic mathematical operators, 
global convergence and low memory requirement 
compared to the other evolutionary algorithms.

The rest of the paper is organised as follows: 
Section 2 briefs about the theoretical background of 
Internal Model control and the design of their fitness 
function. Section 3 presents an overview of BFO 
and PSO along with its application on PZA system. 
The results and discussion on the performance of 
the controllers are detailed in Section 4 which is 
followed by the concluding remarks.  

2. Internal Model Control 

2.1 Classical Internal Model Control

Internal model controller relates to a model- 
based process where the mathematical model of 
the process is embedded inside the controller in 
a closed loop.  The  IMC  philosophy constitutes 
the process model, an inverse model and a filter 
as reflected in Figure 1 where ( )PiezoG s stands for 
the process, ( )PiezoG s  represents the mathematical 
model of the process while ( )Inv PiezoG s− corresponds 
to the transfer function of the IMC controller and 

( )d s is the external perturbations affecting the 
system [12].

The aim of the parallel loop containing the plant 
model is to obtain a difference between the real 
plant and its estimated transfer function leading to

( ) [ ( ) ( )] ( ) ( )Piezo Piezod s G s G s U s d s= − +

                      (1) 

The error signal facilitates in achieving the desired 
set-point taking into consideration the system 
model mismatch and external disturbances. The 
resulting control signal is thus given by:



ˆ( ) [R(s) ( )] ( )

{ (s) [G ( ) ( )] ( ) ( )} ( )
Inv Piezo

PiezoPiezo Inv Piezo

U s d s G s

R s G s U s d s G s
−

−

= −

= − − +   
(2)

                                            



[ ( ) ( )] ( )
( )

[1 ( ) ( )] ( )
Inv Piezo

PiezoPiezo Inv Piezo

R s d s G s
U s

G s G s G s
−

−

−
=

+ −           
(3)

Also, ( ) ( ) ( ) ( )PiezoY s G s U s d s= +                          (4)   

Closed loop transfer function of IMC is obtained 
by substituting into Y(s) 



[ ( ) ( )] ( )G ( )
( ) ( )

[1 ( ) ( )] ( )
Inv Piezo Piezo

PiezoPiezo Inv Piezo

R s d s G s s
Y s d s

G s G s G s
−

−

−
= +

+ −   
(5)

Thus, it can be derived that a) if 
( ) ( )Inv Piezo PiezoG s G s− =  and ( ) ( )Piezo PiezoG s G s= , then 

absolute set point tracking along with disturbance 
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rejection is achievable, b) if 1( ) ( )Piezo PiezoG s G s−≠  , 
disturbance rejection can still be achieved if 

1( ) ( )Inv Piezo PiezoG s G s−
− =  .

An advantage of IMC is that it involves a single 
tune able parameter which is the filter time 
constant. Variation in this constant abruptly 
affects the system control performance. This study 
attempts to design this important coefficient using 
swarm-based intelligent algorithms.

Figure 1. Classical IMC structure for piezo electric 
actuator system

2.2 Modified Internal Model Control 
(M-IMC) for Piezo Electric 
Actuation System

The transparent framework presented in the 
previous section based on classical Internal 
Model Control has a limitation. The structure 
was realized by first placing the PZA plant in the 
loop, followed by reusing it as a reference model 
in a parallel. This involves replicative work - 
first for the model and second for the controller, 
thus engaging significant controller hardware. 
Modified Internal Model Control proposes 
few alterations in the generic IMC structure 
to minimize control hardware requirement. 
Although IMC can be easily implemented, 
yet Proportional Integral Derivative control 
remains the most commonly engaged industrial 
controller. Hence, a PID equivalent structure 
of M-IMC is presented. The transformation 
to Modified IMC has been diagrammatically 
illustrated in Figure 2. The IMC based process 
can hence be utilized in the design of a standard 
feedback controller based upon the internal PZA 
model and Internal Model Controller, ( )Inv PiezoG s− . 
R(s)-Y(s) is the generalized error term used by a 
typical feedback control structure. Accordingly, 
this reformulation is also advantageous as it 
offers a lighter IMC framework along with a 
PID equivalence which finds usage in common 
industrial applications.

Figure 2. Modified IMC structure for piezo electric 
actuator system.

2.2.1 The Filter Transfer Function 

In the PZA system, a low pass filter is augmented 
with the improper IMC controller ( )Inv PiezoG s−  to 
make it proper and also to enhance the system 
robustness because the gap between the process 
and its model is pronounced at the higher end 
of the frequency response. This robust filter is 
crucial in the controller design of the PZA system 
by considering several control performance issues 
in the final design so that the targeted controller 
can obtain the required design specifications 
- robustness in performance and stability. 
Introduction of the filter also makes the controller 
stable, causal and proper. The final shape of 
the controller inclusive of the augmented filter 
function is as 

1( ) ( ).G ( )Inv Piezo LPFPiezo
G s G s s−

−
− = 

,with 
1( )

( 1)LPF nG s
sα

=
+  where ‘n’ is the filter order and 

α is the filter time-constant.

2.2.2 PID Equivalent form of Modified-
IMC for PZA System

Let the PZA system be represented by a 2nd order 
process as follows: 

1 2

(s)
( 1)( 1)Piezo

kG
s sτ τ

=
+ +



                                  
(6)

The PZA plant is factorized into minimum and 
non-minimum phase elements. The later are 
considered for the inverse controller, which is 
then augmented with a low pass filter as seen in 
the following equation 

( ) ( ) ( )Inv Piezo Inv Piezo LPFG s G s G s− −= 

1 1 2( 1)( 1)
( ) ( )

( 1)Piezo LPF
s sG s G s
k s

τ τ
α

− + +
= =

+


                  
(7)

where GLPF(s) is the low pass filter.
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The equation of the equivalent standard closed 
loop controller is obtained using the transformation

( )
( )

1 ( ) ( )
Inv Piezo

M IMC
Piezo Inv Piezo

G s
G s

G s G s
−

−
−

=
− 

1 2

1 2

1 2

( 1)( 1)
( 1)

( 1)( 1)1
( 1)( 1) ( 1)

s s
k s

s sk
s s k s

τ τ
α

τ τ
τ τ α

+ +
+

=
+ +

−
+ + +

2
1 2 1 2 1 2 1 2( ) 1 ( ) 1s s s

k s k k k s
τ τ τ τ τ τ τ τ

α α α α
+ + + +

= = + +
  
(8)

Transfer function of a classical PID controller is  

( ) ( )I
c P D

Kg s K K s
s

= + +
                                     

(9)

Figure 3. PID Equivalent Control of Modified IMC 
for PZA.

Equating the above equations leads us to the PID 
equivalent form of the M-IMC, represented in 
Figure 3.

2.3 Determination of the PZA Design 
Fitness Function 

IMC offers an important advantage in choosing 
a single tunable design parameter in the form 
of filter coefficient. In this investigation, the 
Modified IMC`s PID equivalent controller is 
tuned using bio inspired swarm intelligence 
techniques. The soft computing methodologies 
have been mainly used to regulate the optimal 
filter constant which in turn has been used to tune 
the PID parameters. A three dimensional search 
space is defined in which each dimension stands 
for each of the PID parameters. A definite point 
in the search space corresponds to a particular 
combination of [KP KI KD] for which a distinct 
output response is obtained. The performance 
of the point is determined by a fitness function 
comprising several components which serve as 
control evaluation index of the design. The point 
in the search space is considered the global best 
if the fitness function attains an extreme value for 
it i.e. either a maxima or a minima.

In this design, four components have been used 
to define the fitness function - settling time, peak 

overshoot, steady state error and rise time. The 
contribution of each of these four constituents 
towards the original fitness function is decided 
by a scale factor whose choice is decided by 
the designer. As each of these functions are 
individually minimized in nature, the best design 
point for the optimal response characteristics 
corresponds to the minimal value of the overall 
fitness function.

As elaborated, mathematically the fitness function 
is represented as:

( ) ( ) ( ) ( )1 P SS S RF e M E e T Tη η− −   = − + + −          
(10)

Where  F- Fitness function, MP - Peak Overshoot, 
TS - Settling Time, TR - Rise Time, η  :-Scaling 
Factor, and the scaling factor as η .
The point in the search space is considered as the 
best point if the fitness function attains a minimum 
value. The value of this fitness function has 
been used as different combination of the gains 
correspondingly reflected in three dimensional 
search space, and optimized through two swarm 
intelligence techniques - Bacterial Foraging 
Optimization and Particle Swarm Optimization, 
as seen in Figure 4.

Figure 4. Block Schematic of Swarm Intelligence 
Optimized Modified Internal Model Control for 

PZA system.

3. Swarm Intelligence-Based Soft 
Computational Techniques for 
Filter Time Constant Optimization

3.1 Bacterial Foraging Optimization 
Algorithm (BFO)

Based on the study of foraging behavior of 
E.coli bacteria, a relatively new algorithm named 
Bacterial Foraging Optimization was introduced 
in the family of bio-nature inspired optimization 
techniques [21,11].  The work analyzed a wide 
gamut of bacterial foraging and swarming behavior 
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and discussed how to relate distributed non-
gradient optimization with biological and social 
foraging process. The primary motive of this new 
philosophy is the exploitation of group foraging 
strategy of a bacterial swarm for multi-optimal 
function optimization [5, 17]. To maximize the 
amount of energy obtained with respect to time, 
bacteria search for nutrients with even individual 
bacterium communicating with each other by 
sending signals. Taking into consideration the 
previous factors foraging decisions are taken by 
a single bacterium.

3.1.1 Application of Bacterial Foraging 
Optimization Algorithm for M-IMC

The BFO based simulation has been carried out 
using the following algorithm and parameters 
as presented in Table 1. The fitness function 
decreases as the number of bacteria in the 
population is increased, leading to an optimized 
value of 8.1652 for a population of size 1000, as 
seen in Table 2.

The Algorithm

Step 1: Parameters P, Sc, St, Sr, Se, Pe and the                      
C (i), (i =1, 2,…, P) are initialized. Initialize  

iφ , i = 1, 2…. P. The control variables are 
randomly distributed throughout the search 
space. When φ  is computed, the position of each 
bacterium in the population of the bacteria P. is 
refreshed spontaneously along with a termination 
test for maximum number of stipulated loops.

Step 2:          Elimination-Dispersal loop: l= l+1

Step 3:         Reproduction loop: k= k+1

Step 4:          Chemo taxis loop: j= j+1

(i) Chemotactic step for bacterium cell ‘i’ 
is taken, for i= 1, 2….,P :

(ii) Cost ( , , , )Z i j k l   is computed.

(ii) Assume
( , , , ) (i, j, k, l) Z ( ( , k, l),P(j, k, l))i

ccZ i j k l Z jφ= +  
to accumulate cell-to-cell attractant 
effect with nutrient concentration

(ii) Let ( , , , )lastZ Z i j k l=   is used to store 
the present value as a better value may be 
resulted during the run

(v) Tumble: A random vector is generated 
( ) pi R∆ ∈  with each element ( ),m i∆ m= 1, 

2,….,d in the range [-1,1], R being a real 
number.

(vi) A step of size C(i) is simulated in the 
tumble direction for ith cell as

( )( 1, ,1) ( , ,1) (i)
(i) (i)

i i

T

ij k j k C ∆
Φ + = Φ +

∆ ∆         
(11)

Table 1.BFO algorithm control parameters

Sl.No Parameters Values
1 Number of bacterium in 

population, P
     100 
(initial)

2 Maximum number of steps, 
St

3

3 Number of chemo tactic 
steps, Sc

4

4 Number of reproduction 
steps, Sr

6

5 Number of elimination-
dispersal steps, Se

2

Table 2.BFO based optimization result

Number of 
bacterium in 
population, P

Optimal Fitness 
Function Value

100 16.2137
200 14.6071
300 14.0316
400 13.1201
500 12.8561
600 11.4924
700 10.5132
800 9.6121
900 8.4297
1000 8.1652

(vii) (i, j 1, k, l)Z +  is computed. In case of 
the loss or cost function being minimum, 
continue to next step else break to step (iii) 

(viii) Swim - An approximation is 
made and swimming behavior ofeach  
cell  is considered if  the  bacteria  
numbered  {1,2,.......,i}  have moved and 
{i+1,i+2,i+3......S} have not

(a) Assume m=0 (swim length counter)

(b) While m<St
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Let m=m+1

If ( , 1, , ) ZlastZ i j k l+ <  (if there is betterment), let
(i, j 1, k, l)lastZ Z= +

( )( 1, ,1) ( 1, ,1) (i)
(i) (i)

i i

T

ij k j k C ∆
Φ + = Φ + +

∆ ∆

( 1, , )i j k lφ +  is used to   compute the new
( , 1, , )Z i j k l+

Else, let m=St. 

End of while loop.

(ix) Move to next cell (i+1) if i ≠ to P

Step 5:  If j<Sc, move to step 3. However, 
chemotaxis may be continued as the life of the 
bacteria still exists.

Step 6:     Reproduction

a) For a particular k and l, and for every  

i = 1,2,3,4.......P, let 
1

1
( , , , )

cS
i
health

j
Z Z i j k l

+

=

= ∑  

represent the cell health. It is basically a 
measure of how many nutrients it has 
achieved in its lifetime and of the success 
quotient towards avoiding obnoxious 
substances. The bacteria are then sorted 
according to chemotactic parameters 
C(i) with increasing cost healthZ   i.e. lower 
health. The cell with maximum healthZ
values dies while the bacteria with the 
optimal values are splitted.

Step 7: If k<Sr, move to step 2 with the number        
of specified reproduction steps not being reached. 
Hence, the next generation of the proceeding 
chemotactic process is initiated.

Step 8:      Elimination-Dispersal

Each cell is eliminated and dispersed with 
probability Pe for i=1,2…, P which keeps the total 
population swarm size constant. To achieve this, 
if a bacterium is eliminated, one is dispersed into 
a random location in the search space. 

Step 9:  If l <Se, move to step 1, else quit.

3.2 Particle Swarm Optimization 

Particle Swarm Optimization is a technique 
used to solve nonlinear problems, developed by 

American Social Psychologist James Kennedy. 
The technique is based on the concept of 
interaction and behavior among birds or fishes 
where birds and fishes gather, organize, compete 
and co-ordinate among themselves to find food 
[1,4]. A similar concept is seen in Particle Swarm 
Optimization where there is a population known 
as swarm which consists of a number of random 
solutions known as particles [15]. These particles 
are free to move around in the search-space based 
on certain formulae in a multi-dimensional space 
based on their previous movements and also 
considering the movements of their neighbors 
[29, 27]. 

The particles keep on changing their positions and 
velocities based on the following formula:

Let 1 2 3[ , , ............ ]T
i i i i idx x x x x=  represent the position 

of the thi element in the d dimension space,

Let ,1 ,2 ,3 ,[ , , ........ ]T
ipbest i pbest i pbest i pbest i dpbestx x x x x=

represent the previous best position of the thi  
element in the `d` dimension space.

Among the group the best particle of the index 
is dgbest

The velocity of the particle thi is presented as 

1 2 3[V ,V ,V ............V ]T
i i i i idV =

Then the updated velocity and the distance from  

idpbest   and dgbest  is defined as;
1

1 1 2 2( ) ( )t t t t t t t t
id id id id d idV w V c r pbest x c r gbest x+ = ∗ + ∗ − + ∗ −

                                                                        (12)
1 1t t t

id id idx x V+ += +                                              (13)
where i =1,2,3,….,m and d =1,2,3,…..,n

In the above equation, `m` represents no. of 
particles, ̀ n` represents dimension index, ̀ t` stands 
for number of iteration, t

idV represents speed of the 
particles ‘i’ at its t times in d dimension space. t

idx
represents position of the particles ‘i’ at its t times 
in d dimension space, 1t

idx + In dimension d of the 
thi particle position in iteration t+1,  ̀ w` represents 

the inertia of weight factor, 1c  and 2c   represent 
acceleration constants, 1r and 2r are random variables 
[0,1], t

idpbest represents the most optimal position 
at its ‘t’ times in the d dimension quantity of the 
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individual ‘i’, t
dgbest represents the d dimension 

quantity of the swarm at its most optimal position.

3.2.1 PSO Algorithmic Approach for the 
Specified Design

For the PZA based system, the filter tuning 
parameters and PID controller design problem 
are casted in PSO framework. In the three 
dimensional search space, PK  , IK   and DK  are 
considered the three dimensions and the fitness 
function is based on time domain characteristics, 
as stated earlier. The number of adaptation varies 
from 100 to 1000 keeping the population swarm 
size constant at 50, acceleration constant at 1.5 
and inertia weight factor as 0.7.

Table 3.PSO based optimization results

Iteration Optimal Best Gain 
Points

Optimal 
Fitness 

Function Value
100 213.6 649.5 701.7 2.2642
200 621.3 1430.7 1495.3 1.3279
300 1903.7 2421.5 2425.1 1.0105
400 1941.0 723.6 3338.0 0.8708
500 1568.3 4222.6 4192.8 0.7953
600 2125.8 4834.6 4944.7 0.7504
700 699.0 5519.8 5755.1 0.7151
800 5571.4 1121.0 6472.2 0.6912
900 1747.7 1056.2 7369.2 0.6674

1000 4511.0 2037.7 8014.7 0.6544

The value of the points which minimizes the 
fitness function along with the optimal value of 
the fitness function using PSO is mentioned in 
each row of Table 3. It can be observed that the 
value of function is optimized as the iterations 
are increased, leading to a value of 0.6544 from 
2.2642. The corresponding proportional gain of 
2037.7 is then used for determining the filter time 
constant which turns out to be 2.78. 

From the comparative study of the performance 
of both swarm intelligence techniques, it can be 
noticed that the optimization of PSO algorithm 
is better than that of BFO in the sense that the 
optimal value of the fitness function for BFO is 
8.1652 while PSO provides a much low value 
of 0.6544. 

4. Results and Discussion

The dynamic model of piezoelectric plant has 
been expressed in the form of a second order 
mass-spring-damper system with nonlinear 
hysteresis force, as seen in [20,19]. This work uses 
a similar mathematical model along with a Dahl 
based hysteresis model [26], represented by the 
following equation,

Mx Dx Kx Tu Fh + + = −                              (14)

where M stands for the system, D is damping 
co-efficient, T is piezoelectric coefficient, K is 
stiffness, u is input voltage and hF  represents the 
hysteresis effect in terms of force. The schematic 
representation of the PZA system along with Dahl 
hysteresis model is shown in Figure 5.

Figure 5. Second order piezo electric plant using 
Dahl Model for nonlinear Hysteretic force hF .

A preloaded piezo actuator with integrated 
feedback strain gauge sensor from Physik 
Instrument has been used in this study. Based on 
the above system modelling, the transfer function 
of the actuator has been obtained through model 
identification with the help of several experimental 
data with the test bench shown in Figure 6, and is

2

0.0336
0.1828 190.154 119206.85PiezoTF

s s
=

+ +         
(15)

The following section elaborates upon the control 
performance of the second order PZA system 
which is observed when it is subject to several 
real-time constraints.

 

Figure 6. Experimental setup of the PZA
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4.1 Impulse Disturbance at the PZA  
System Output

Initially, the PZA process and model are assumed 
to be a perfect match, with the system being 
affected with no disturbance or delay except an 
unit impulse, as shown in Figure 7. The proposed 
PSO based M-IMC control regime has bene 
compared with two of the most widely used 
classical control genres used for piezoelectric 
actuation - Classical PID [22, 26] and Classical 
IMC [7,16] and the system response to each of 
them is illustrated in Figure 7. The simulation time 
has been set relatively large in order to observe 
the complete output of the zero tracking input. 
The response is seen to track the zero input till the 
30th second where the unity impulse disturbance 
is applied and the response level shifts to one. The 
controller steadily eliminates this effect and the 
response gradually returns to zero. Withdrawal 
of the disturbance at the 60th second makes the 
system behave similarly in a opposite direction 
and the outputs again gets to zero owing to 
controller effect. Classical PID is seen to have 
the largest settling time of about 51.5 seconds 
as a response to the disturbance. Classical IMC 
offers a better response with a settling time of 46.5 
while PSO based M-IMC has the least value of 
44 seconds.

Figure 7. Set point tracking response with impulse 
disturbances for PZA system.

4.2 Unit Step Disturbance at the PZA 
System Output

An unit step disturbance input at t=10 sec is 
applied to the PZA system to order to observe 
the performance of the above three control 
regimes (Figure 8). PSO based Modified Internal 
Model Control has a settling time of 26 seconds 
as compared to Classical Internal Model Control 
of 27.5 seconds.  Classical PID is seen to be the 

least efficient with the largest settling value of 
31 seconds.

Figure 8. System tracking response with unit step 
disturbances for PZA system.

4.3 Gaussian Noise Disturbance at the 
PZA Plant Output

Simple transfer model of disturbances is not 
enough to stand for the random disturbances that 
effect a plant in real life scenario. White Gaussian 
noise (mean=0, variance=1) has been used to 
represent the stochastic disturbance model which 
is similar to a sinusoid of variable amplitude and 
frequency. The system output is seen for a zero 
tracking input in Figure 9 where the controller is 
seen to mitigate the random effect and oscillates 
about zero without any instability. PSO tuned 
M-IMC is seen to quickly nullify the Gaussian 
noise effect with a fast response time as compared 
to Classical IMC.

Figure 9. Response of classical IMC and PSO based 
M-IMC PZA system to Gaussian Disturbance.

4.4 Plant Parameter Variation at the PZA 
Plant Output 

As elaborated earlier, plant/model mismatch occurs 
commonly primarily as system modelling due to 
the resulting approximations when the physical 
system is transformed into its mathematical 
equivalent. Model mismatch is difficult to avoid 
and occurs for reasons such as inaccurate system 
identification or inappropriate order assumption of 
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the plant. The nonlinear nature of the PZA also 
enhances possibilities of mismatch. 

The following section considers a plant model 
mismatch of 35% in plant parameters as compared 
to the nominal model which has been fed with a 
unit step input along with an impulse disturbance. 
The step response of the classical IMC and PSO 
tuned IMC are seen in Figure 10. The results 
suggest that PSO based Modified IMC is able to 
consider the effects of plant parameter variation 
in a much befitting manner with reduced settling 
time and a better regulation of its output to track in 
comparison to classical IMC which is seen to have 
a steady state value not equal to unity, but slightly 
greater than it, as it is shown in inset of Figure 10. 

Set point tracking at unity of the above controllers 
with 35% plant parameter variation and an unit 
impulse disturbance can also be observed. The 
PSO based Modified IMC has a shorter settling 
time of 74 seconds as compared to 78 seconds of 
classical IMC.

Figure 10. Classical and PSO based M-IMC with 
35% plant parameter mismatch - Step responses

4.5 System Performance in Presence of 
Time Delay and Step Disturbance 

A time lag persists between the point of input 
and actual output in real plant due to its physical 
charasteristics. The same has been modelled using 
a delay element in the PZA system whose value 
is taken to be 1 seconds while it is kept 2 seconds 
for the plant model. 

Fig 11 shows the time response of the classical 
IMC controller and PSO tuned M-IMC controller  
where in the former an uneven response is 
observed and the perturbation effect is seen to be 
exhibited for a longer time. On the contrary,M-
IMC offers a much smoother response with a 

shorter settling time of 18.5 seconds compared to 
36.5 seconds.

Figure 11. System responses of classical and PSO based 
M-IMC controller for PZA system with time delay.

4.6 Step Response of Time Delayed PZA 
System with Impulse Disturbance

Performance of classical PID, classical IMC and 
PSO based Modified IMC towards step response 
of the piezo plant incorporating a delay of one 
seconds along with impulse disturbance, illustrated 
in Figure 12. Classical PID controller has a settling 
time of 84 seconds which is the largest. PSO based 
Modified IMC gives a better performance than 
classical IMC with a settling time of 74.5 seconds 
and 76.5 seconds respectively. 

Figure 12. System step response of classical 
IMC, PID and PSO based M-IMC with impulse 

disturbances for PZA system.

For an unperturbed PZA system without any time 
delay, four standard control parameters for a unit 
step input - Rise time, settling time, Integral of 
absolute error, IAEI and Integral of Squared Error,

ISEI are evaluated to verify the efficiency of PSO 
based Modified IMC with classical controllers, 
during 0-50th seconds as seen in Figure 12. 

0

( )
T

IAEI e t dt= ∫ [ ]2

0

( )
T

ISEI e t dt= ∫
                         (16) 

From Table 4, it can be observed that Classical 
IMC considerably improves the system response 
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with the lower time values as well as with the error 
indices as compared to Classical PID. However, 
PSO based Modified IMC is seen to have the best 
performance with a IISE of 314.36 and a settling 
time of 16.5 seconds.

Table 4.System Performance Parameters of PZA 
Input against Step Input

Control 
Schemes

Rise 
time 
(s)

Settling 
time (s) IAEI ISEI

Classical 
PID

7.62 23.5 1108.7 679.56

Classical 
IMC

6.09 19 830.38 483.36

PSO Based 
Modified 
IMC

5.495 16.5 637.16 314.36

6. Conclusion

Bio-inspired evolutionary computational 
techniques are being used in several industrial and 
engineering applications with remarkable results. 
This paper explores the performance of a Modified 
Internal Model Control on the control response 
of a piezo electric actuator which is seen to be 

better than classical Internal Model Control. Two 
bio inspired swarm intelligence-based algorithm 
are then used to optimise a fitness function which 
is utilized to determine the Modified Internal 
Model Control parameters, including filter time 
constant. Particle Swarm Optimization provides 
promising results as compared to Bacterial 
Foraging Optimization. Hence, it is used to tune 
the M-IMC controller, termed as  PSO based 
M-IMC. From the results, it is evident that the 
proposed controller is able to track the desired 
set point accurately. The plant performance has 
also been observed against several disturbances. 
Results of PSO based M-IMC have a reduced 
settling time, lower overshoot and an overall better 
response to the external disturbances compared to 
other controllers. 
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