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1. Introduction

Dependability can be invoked when faults occur in 
the system. This observation obviously leads to the 
execution of a monitoring system able, at all times, 
to provide the operating state of the components 
constituting a physical system (actuator, sensor, 
etc.). The first objective of the monitoring function 
is to increase the safety of the installation. In this 
context, many approaches have been developed 
by the different research communities, with a 
view to fault detection and diagnosis. Methods 
differ with respect to the type of prior knowledge 
on the processes that they require. Thus, they are 
classified in two classes depending upon being 
based on a model or not. Methods of supervising 
without model are based on information obtained 
from previous experience, on heuristic rules or on 
examples of resolution. For instance, an expert in 
a field uses the experience he has acquired when 
he is confronted the similar cases of supervision. 
He can also exploit physical laws describing the 
expected behavior of the system. Any deviation 
from the expected “normal” behavior is considered 
a symptom of a failure. The fundamental principle 
of this approach, which groups the methods of 
supervising with analytical models, consists in 
comparing the consistency of the simulated model 
with the observations of the real device. Some 
methods without model are given in literature 
such as the Artificial Neural Networks (ANN) 

[15], the Fuzzy Inference Systems (FIS) [1] and 
the Recognition Of Shapes (ROS) [3]. Model-
based monitoring methods have been developed 
since the early 1970s [8]. They are based on the 
generation and the study of a particular signal 
called “fault indicator” or “residual” [7]. The 
models used can be: continuous time or discrete 
time, qualitative, structural or analytical, linear 
or not, representing the proper functioning or 
taking into account the failures. We focus then, 
in this paper, on the method based on models to 
monitor the Hybrid Dynamic Systems (HDS) 
[11] composed of discrete and continuous 
dynamics which interact. The discrete part is 
described by state transitions and the continuous 
by differential equations. However, a physical 
system is often subject to perturbations which 
can be assimilated to unknown input and which 
have negative effects on the system behavior. The 
objective of this paper is the modeling and the 
diagnosis of HDSs subjected to perturbations. For 
the modeling we adapt a mixed approach which 
combines the continuous system approach and the 
Discrete Event System (DES) one. For diagnosis, 
we use the residue generation technique for the 
continuous systems and the timed model for the 
monitoring discrete systems. Two modeling and 
analysis tools are coupled: The State Observer and 
the Timed Automata (TA). Compared to hybrid 
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automata our diagnosis procedure takes into 
account the system perturbations and enables to 
locate all the faults. 

This paper is structured as follows: Section 2 
rapidly outlines our problem. The generic structure 
of HDSs and the so-called mixed modeling 
approach are detailed in Section 3. Our proposed 
approach concerned with fault diagnosis in the 
presence of disturbances or noise is presented 
in Section 4. Then, Section 5 presents the case 
study using a four-tank system and illustrates 
the efficiency of the proposed approach through 
simulation results in Section 6. Finally, section 7 
concludes the paper.

2. Problem Statement

A Hybrid Dynamic System is often subject 
to disturbances which originate from external 
phenomena due to the environment, or internal 
phenomena related to system changes. These 
disturbances which can be assimilated to unknown 
inputs have negative effects on the system 
behavior. The main objective of the paper is to 
propose a new approach for the fault detection and 
the possibility of distinguishing the component 
defect from the defect due to disturbance in a 
Hybrid Dynamic System.

3. Modeling of Hybrid Dynamical 
Systems

The industrial processes are complex; their 
dynamics present a double aspect in other words, 
a continuous and/or discrete nature.

The structural changes in these systems lead 
to discontinuities. They may occur because of 
discrete events designed by discrete sensors, 
actuators, or may be inherent in the system. 
However, in order to ensure the proper functioning 
of the whole automated system, it is essential to 
take into account the continuous as well as the 
discrete aspects of its dynamics. This problematic 
which is interested in continuous and discrete 
phenomena in a global sense is relatively recent 
(90s). It generates a very important and very 
particular class of systems known as the Hybrid 
Dynamic System (HDS). For the modeling of 
HDSs, there are several approaches which share 
the idea that continuous system evolution is 

affected by the discrete events. Therefore, the HDS 
could not be handled with classical approaches 
based on homogeneous modeling. Thus the 
complex systems are designed by incorporating 
differential equations due to model continuous 
behavior and discrete event representations due 
to instantaneous change of state in response 
to events. These systems have some signals or 
variables that take their values ​​in a continuous 
set and other variables that take values ​​in a finite 
discrete set. Therefore, the system behavior is 
determined by the interaction between discrete 
and continuous dynamics. A hybrid system will 
be then modeled by a set of continuous dynamics 
corresponding to different discrete events. Mainly, 
there are three modeling approaches of HDSs: the 
continuous, the event and the mixed approaches. 
The first consists in defining an approximation of 
the discrete dynamics by differential equations to 
model the occurrence of discrete events so that 
the HDS will behave as a continuous system. This 
representation enables us to use the continuous 
system properties for HDS. The second approach 
is purely discrete. It consists in approximating the 
continuous evolution so that the hybrid system is 
represented only by the events that characterize 
it which will allow to use the classical theory of 
supervisor of the DESs for control synthesis. The 
third is the mixed approach which is based on the 
assumption that the operation of a hybrid system 
is carried out in two steps. The first corresponds to 
a transformation of the continuous state described 
in terms of time elapsed during this phase and 
the second considers the instantaneous discrete 
change of this state. The models developed in 
this approach are based on the interaction of two 
sub-models, one for the event aspects, based on 
finite state automata, Petri nets or extensions of 
these formalisms, and the other, formalized by 
equations of state (often by differential equations) 
for continuous aspects. Each of the aspects 
is clearly considered in the interface between 
both sub-models. The event aspect influences 
the continuous model by validating some of the 
continuous equations as a function of the discrete 
active state and the continuous aspect acts on the 
event model by validating or forcing the crossing 
of certain transitions. Among the modeling tools 
resulting from this mixed approach, we find the 
hybrid automata ‎[2] representing the fundamental 
formal model of this approach, the hybrid 
statecharts to solve the problems posed by model 
specification, particularly in the hierarchical 
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structuring [6], and finally the different extensions 
of the Petri Nets [5]. The Figure 1-a gives the 
principle of this model where the continuous part 
is modelled by differential equations (Simulink) 
and discrete part by automaton (Stateflow) [10].
The temporal evolution is illustrated by the curves 
in Figure 1-b.

Figure 1 - a) Hybrid systems modeling; b) time 
evolution of hybrid systems

The mixed approach in Figure 2 represents a 
finite state automata which controls differential 
equations. In fact, the model is represented by 
the set X of real variables and by the set (S, E) 

event graph. The set S consists of the vertices 
of the graph and so the set E represents the 
discrete transitions. 

4. Monitoring Hybrid Dynamical 
Systems

When the process is described by a HDS, 
few works has been proposed for detecting or 
locating failures. Using residuals, numerous 
solutions have been suggested for continuous and 
discrete systems, linear and nonlinear ‎[14] ‎[13]. 
For the mixed approach proposed in this paper, 
the diagnosis approach combines the advantages 
of both methods (Observer and TA) to achieve 
the best performance, particularly in the fault 
location phase.

4.1 Diagnosis of the Continuous Part 

In the continuous part, the first step is to generate 
residues that are sensitive to certain failures 
and robust to disturbances and other failures. 
The residuals describe the differences in the 
responses between the system behaviors and the 
model. The algorithm used to obtain the residues 
is called the residue generator. Three approaches 
are mainly used to construct this type of residue: 
the Identification Approaches [13], the Analytical 
Redundancy Relations (ARR) or Parity Space 
approach [4] and the observer-based approaches 
or filters [14]. In this paper, we are interested in 
the state observer-based approach. 

-	 Diagnosis based on state observer
The diagnosis based observer compares the 
estimated output functions with the same 
functions of the measured outputs to generate 
a residue or indicator of the failure occurrence 
which is often modeled by unknown additive 

Figure 2. Modeling of HDS through the Mixed Approach
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signals that are of two classes. The first class 
concerns the signals generated by the occurrence 
of a fault or a failure of a component (sensor, 
actuator). In order to clearly highlight these faults, 
it is necessary to make the output estimation error 
particularly sensitive to these unmeasured inputs, 
so that the residue deviates visibly from zero. 
The second class interests the non-significant 
signals to which the estimation error must be 
less sensitive, essentially modeling errors and 
measurement noises.

A limit of the influence of this class of signals 
(sensor accuracy, signal-to-noise ratio, etc.) gives 
a threshold beyond which the deviation between 
the outputs and their estimates is indicative of a 
failure. Once the fault is detected we are interested 
in identifying the component in fault. 

The system can be described by the state equations:

0

( ) ( ) ( )
( ) ( )
(0)

x t Ax t Bu t
y t Cx t
x x

= +
 =
 =



                                            
(1)

Where ( ) nx t R∈  is the state vector, ( ) pu t R∈  
the input vector and ( ) my t R∈ is the output 
vector and the matrices A, B and C are of 
appropriate dimensions.

In order to diagnose a defect, we define the 
following observer:

0

( ) ( ) ( ) ( ( ) ( )) 
( ) ( )
(0)

x t Ax t Bu t K y t y t
y t Cx t
x x

 = + + −
 =
 =



  

 

                

(2)

Where x  and y are the estimates of x and y 
respectively. Assuming that the pair (A, C) is 
observable, the observer gain matrix K can be 
chosen such that (A - KC) is a stable matrix.

-	 Diagnosis based on unknown input 
state observer

Assuming that all the unknown signals acting 
on the system are considered unknown inputs 

( ) qw t R∈ ,we have:

0

( ) ( ) ( ) ( )
( ) ( )
(0)

x t Ax t Bu t Fw t
y t Cx t
x x

= + +
 =
 =



                              

(3)

The matrix F is known, constant and with 
appropriate dimension. 

The aim of estimation in the existence of unknown 
inputs is to determine an observer which produces 
an estimate ( )x t so that the state estimation error 
ˆ( ) ( ) ( )x t x t x t= −  tends asymptotically towards 

0 when t →∞ . The structure of such observer is 
as follows:

( )
0

( ) ( ) ( ) ( )
( ) ( )

(0)

z t Nz t Mu t Ly t
x t z t Ey t
z z

= + +
 = +
 =





                             

(4)

where L, M, N and E are the observer gains 
calculated so that ˆ( )x t converges to zero for any 
initial state. To ensure the convergence of ˆ( )x t , 
the following conditions should be satisfied [9]: 

0 PA LC NP= − −                                            (5)
0 PB M= −                                                      (6)
0 PF=                                                              (7)

N is stable

where the matrix P is defined by: 

nP I EC= −                                                       (8)

From equations (6) and (8) we obtain
)  (  nM I EC B= −                                                 (9)

Substituting (8) into (7), we find:
ECF = F                                                          (10)

The general solution of (10) can be written as [9]

( ) ( ( ) ) mE F CF I CF CF+ += + Θ −                       (11)

where Θ  is an arbitrary matrix, Ix is the identity 
matrix of dimension x and X+ denotes the pseudo-
inverse of the full column rank matrix X, defined 
as: X+ = (XT X)-1 XT 

By posing the matrix L of system (4) as:

 L K NE= +                                                     (12)

From equation (8), (5), (12) and (11) we have: 
( ( ( ) )

( ( ) )
[  ]  

n

m

N I F CF C A

I CF CF CA
K

C

+

+

= −

 −
− Θ  

                             

(13) 

which determine the observer gains, it is first 
necessary to determine the matricesΘ and K of 
(13) by placing the poles of N in order to guarantee 
its stability. Then the other gains M, E and L are 
given by (9), (11) and (12).
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-	 Residues generation
Our goal is to construct residual generators r(t) 
directly from the observer:

( ) ( ) ( ) ( ( ) ( ))r t y t y t C x t x t= − = −                   (14)

Indeed, in case of an observer, the residuals r(t) 
represent the estimation error. When the system is 
affected by actuator faults fa(t), sensor faults fs(t) 
and unknown inputs w(t), it can be modeled by:

0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
(0)

a a

s s

x t Ax t Bu t Fw t D f t
y t Cx t D f t
x x

= + + +
 = +
 =



             

(15)

The matrices Da and Ds are called the fault 
distribution matrices. The ith column of Da and the 
ith column of Ds give the direction of the faults i in 
the measurement equation.

The estimation error (14), synthesized according 
to (9), (11), (12) and (13), can be seen as the 
output of the following dynamic system:

( ) ( )

0 0

ˆ ˆ ( )

( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( )

ˆ(0)

a a

s s s s

s s

x t Nx t PD f t

NE L D f t ED f t
r t y t Cx t D f t
x Px z

 = +

+ − −


= = +
 = −





                     

(16)

It is obvious that in the absence of a defect the 
signal ˆ( ) ( ) ( )y t y t y t= −  converges asymptotically to 
zero. The signal ˆ( )y t is therefore a residue which 
is sensitive to fa(t) and fs(t) but insensitive to w(t). 
The detection step is very important in system 
diagnosis. It involves the evaluation of residues 
which are directly related to the variations coming 
from the outputs (measurement noise, sensor 
defects) and inputs (actuator faults, disturbances, 
etc.). Therefore, an alarm Ai(t) assigned to the ith 
defect is obtained by comparing ˆ ( )iy t (or residue 
ri(t)) with a given threshold εi .

ˆ0,          ( )
( )

ˆ1,          ( )
i i

i
i i

if y t
A t

if y t

ε

ε

 <= 
≥                         

(17)

The fault location results from the signature 
matrix. The residuals are designed to be affected 
each one by a sub-set of faults and insensitive 
to the remaining faults. Thus, only a subset 
of residuals reacts, when a fault appears. 
Thereafter, the signature matrix gathers the 
sensitivity information for the residuals. It is 
defined as follows:

{ }: 0 ,1
( , ) ( , )

R

R

M R F
r f M i j

×

→



                                           
(18)

Where MR (i,j) is the (i,j)th component of the 
signature matrix MR, such that

 if and only if  is sensitive to the defect 
f and only if  is insensitive to the defe

1 
( , )

0 ci t  R

r
M i j

f
r f


= 


1 0 0
0 1

0
0 0 1

 RM

 
 
 =
 
 
 



 

  

                                     

(19)

The dimensions of the signature matrix are 
determined from the number of sensors or 
actuators and the number of residues generated 
by the observer model. The jth column of MR 
corresponds to the residue rj and the ith line 
corresponds to the defect fi.

4.2 Diagnosis of the Discrete Part

The DESs are described either by models where 
time is deterministic (temporal Petri nets, TA) or 
by models where time is random (Markov chain).

-	 Diagnosis by timed automata
Our objective is to design a diagnoser, which 
allows analyzing, detecting and locating a fault 
in a system. The method used is based on the 
employment of TA which is a tool for modeling 
and monitoring real-time systems ‎[12]. It is an 
extension by real variables, called clocks, of the 
finite state machines. Thus a TA can be considered 
as an abstract model of a timed system. A TA is 
defined by a 7- uplet  A = (Q, X, Σ, qF, q0, I, T); 
Where Q = {qi : i = 0, 1,2, …}  is a finite set of 
states, X = {x1, …, xn} is a finite set of variables 
(clocks), Σ is a finite set of events, qF ⊆ Q is the 
set of final states, q0 ∈ Q is an initial state, I: Q  
C(X) is a function which associates to each state 
a temporal constraint, called an invariant, T  Q 
 Σ  C(X)  2X is a set of action transitions. 
In Figure 3 we illustrate a diagnoser, using 
TA, designed to diagnose a fault in a process. 
Diagnoser constructor is thus based on a model 
representing two modes: the normal mode and the 
defective mode. The dynamical model, as seen in 
Figure 3-(a), is a control-command program of the 
process to which time information is added, for 
example the order of task execution, the date of 
event occurrence and the duration of the various 
functioning steps. The role of the diagnoser is 
to deduce the existence of unobservable faults 
based on observable events and the time elapsed 
between them.

A Mixed Approach for Modeling and Fault Diagnosis of Hybrid Dynamical Systems with Unknown Disturbances
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-	 Principle of fault detection
The temporal evolution of the process results from 
a succession of states (Figure 3- (b)). A discrete 
transition Ti from state i to the state i+1 occurs 
when two conditions are satisfied. The first is 
related to certain logical conditions which can be 
provoked by discrete events caused by discrete 
sensors or actuators. The second is related to given 
time Ta that should be elapsed. This time is within 
an interval [Tmin, Tmax] in normal mode and ]Tmax, 
Tc] in degraded mode. When Ta is greater than Tc 
we assist to a faulty mode (see Figure 4).

Figure 4. Functioning Modes

-	 Fault detection condition
The state evolution is accompanied by the 
computing of the residual r(t) given by (16). Three 
situations can occur:
-	 If r(t) = 0 when t ϵ [Tmin, Tmax], the system is in 

normal mode.

-	 If r(t) = 0 when t ϵ ]Tmax, TC[, the system is a 
degraded mode

-	 If r(t)  0 when t ϵ ]TC , +∞[, the system is a 
faulty mode.

The advantage of this condition is to identify the 
degraded mode of the system without calculating 
the critical time Tc which is difficult to determine. 
Figure 4 illustrates the three functioning intervals.

-	 Principle of fault location 
The second step of the diagnosis concerns the 
fault location. Following the fault detection 
and the different faulty modes identified in the 
FMEA (Failure Modes and Effects Analysis), 
we determined the faulty component or a set of 
defective components, Figure 3-c. The dynamic 
model of the process contains two states: fault 
state and normal state. From there, through the 
path from the initial state to the fault state, the 
fault is located by measuring the elapsed times in 
the different transitions.

The steps of the algorithm which summarizes our 
diagnostic approach are:

1: Model a HDS subject to disturbances 
by connecting two tools:
1.1: The unknown input observer concerns 

Figure 3. General Construction of a Diagnoser
a) Dynamical model, b) Detection stage, c) Location stage

DS: Detection Step; N°j: Fault N°j.
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the continuous part of the HDS. 
1.2: The timed automata handles the 
discrete part.
2: Diagnose a fault by our model:
2.1: Detect a fault:
2.1.1: Analyze the residuals.
2.1.2: Establish the dynamics of the hybrid 
system to determine characteristic times.
2.1.3: Apply the fault detection condition 
to distinguish the fault of a system 
component and the fault resulting from 
the disturbance.
2.2: Locate a fault by analyzing the 
signature matrix and by temporal 
identification of the system in order to 
locate all the defects.

5. Application: Water Distribution 
Network

5.1 System Description

The process of water distribution network is 
shown in Figure 5. This network is made up of 
four tanks each with a ground section Si, i=1,…4, 
connected by the same pipes with the same section 
sp, equipped with the valves V1, V2 and the valve V3 
which allows the liquid evacuation. The network 
is supplied with two volumetric flows qe1(t) and 
qe2(t) feeding the tanks 1 and 2 respectively and 
controlled by pumps P1 and P2. To observe the 
network, there are three flow meters Q1, Q2 and Q3 
marked in Figure 5 by black circles. The sensors 
are calibrated to measure the variation around 
steady state values. The available measurements 
are the sum of the outflows of the tanks 1 and 2 
(through valve V1): y1(t) = q1(t) + q2(t), the outflow 
of the tank 3 through valves V2, y2(t) = q3(t) and 
that of tank 4 through V3, y3(t) = q4(t). The water 
levels in the tanks 1 and 2 are obtained through 
four sensors: two for high levels L1h and L2h and 
two for low levels L1b and L2b. The controls of the 
valves V1, V2, V3 and the pumps P1, P2 are on/off 
controls. When P1 is stopped its flow qe1(t) = 0 
and when it is running qe1(t)  = 0,02 m3/s, similarly 
for P2. The discrete event V1, V2, V3, P1, P2, L1h, 
L2h, L1b, L2b are Boolean variables. All these events 

are numerically controlled except V1, V2 and V3 

which are manual. The objective is to maintain 
the liquid levels h1 and h2 in tanks 1 and 2 within 
the following interval:

1

2

1.3 12  
0.5 7

m h m
m h m
≤ ≤

 ≤ ≤                                             
(20)

Two non-measurable perturbations quantities may 
be assumed to affect the evolution of the network: 
a leakage in the supply pipe of the tank 1 denoted 
f(t) or an infiltration in the tank 4, denoted d(t).

Figure 5 Water distribution network

5.2 Systems Diagnosis

5.2.1 Diagnosis of Failures Influencing 
Continuous Dynamics

While using the principle of mass conservation, 
our system can be represented by the system of 
differential equations. Using Torricelli’s law [9], 
we have:

( )( ) 2pq t s sign h g h= ∆ ∆                           (21)

Where q(t) is the flow in m3/s, sp is the section 
of the pipe in m2, ∆h is the level difference 
between the tanks in m and sign(∆h) means the 
sign of ∆h.

Thus, from relation (21) and Figure 5 we have:
( ) 2i p iq t s gh= , where ih is the water level in 

the tank i, i=1,…4.

The system of water distribution network is 
described by the following four nonlinear 
differential equations:

A Mixed Approach for Modeling and Fault Diagnosis of Hybrid Dynamical Systems with Unknown Disturbances
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1
1 1 1

2
2 2 2

3
3 1 2 3

4
4 3 4

e

e

dh
S q q

dt
dh

S q q
dt

dh
S q q q

dt
dh

S q q
dt

 = −

 = −

 = + −


 = −
                                      

(22)

By neglecting the load losses in the pipes and 
after linearization around the stationary operating 
regime, the continuous part of the system can be 
modeled in the following form:

1 11 1

2 12 2

3 23 3 3 3

4 34 4 4

1 1

1 12

2 2

4

( )( ) 0 0 0
( )( ) 0 0 0
( )( ) 0
( )( ) 0 0
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( ) 00 0 0

0 0 0
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with: P1, P2, V1, V2, V3 ϵ {0, 1}

where ( )x tδ refers to the variation of ( )x t around 
its steady state value. The coefficients ia are given 

by
02

p
i

i i

s ga
S h

= , Where 0ih is the water level in 

the tank i in stationary operation. Tank sections 
are: S1 = 100 m2, S2 = 150 m2, S3 = 300 m2, S4 
= 400 m2. The stationary regime imposed by 
feeding rates qe1(t) = 0,02 m3/s and qe2(t) = 0,015 
m3/s is characterized by: a1 = 49,0510-4 s-1, a2 
= 43,6010-4 s-1, a3 = 9,342910-4 s-1 and a4 = 
7,007110-4 s-1. The measurements are affected 
by sensor noises, denoted vi(t), with zero mean 
and standard deviation  = 55 10−× . To satisfy 
the conditions of existence of an observer with 
unknown inputs, the number of measurements 
should be strictly superior to the number of 
unknown inputs. In addition, we can verify the 
observability of (13), that is, the eigenvalues of 
matrix N can be arbitrarily placed by means of 
Θ and K. The poles of the observer are: 

{-0.0196 -0.0206 -0.0216 -0.0196}. The gains N, 
E, M and L are calculated from (9), (11), (12) 
and (13).

0.045 0.015 0
0.0099 0.0084 0
0.0032 0.021 0

0 0.0007 0.020

K

− 
 − =
 −
 
 

0 0.5608 0
0 0.1711 01
0 0.2260 010000
0 0.0065 0

 
 − Θ =
 −
 −      

(25)

The leakage rate f(t) is equal to 30% of 1 ( )qe tδ
and the infiltration d(t) is equal to 0.01 m3/s. 
Both perturbation are applied between time 
instants t = 600s and t = 900s. The model-based 
failure detection is based on the evolution of 
the residuals. Therefore we start by generating 
residuals sensitive to certain failures and robust 
to disturbances and other failures. Thus, when a 
fault occurs, only a subset of residues reacts. The 
desired sensitivity and robustness information 
for the residuals is listed in a binary matrix, 
called the signature matrix, as illustrated in 
Table 1. This is constructed in the following 
way: when the jth residue is to be sensitive (resp. 
robust) to the ith failure, then the binary value 1 
(resp. 0) is assigned to the (i,j)th component of 
the matrix. Fault location, in fact, is studied by 
analyzing the fault signature matrix. However, 
in the case of multiple signatures, this technique 
does not allow then the fault location. To do this, 
we build a diagnoser based on TA which takes 
into account dynamic evolution of the system 
and failure propagation. 

5.2.2 Diagnosis of Failures Influencing 
Discrete Dynamics

In general, the discrete evolution of a HDS 
is determined by the occurrence of external 
or internal events the nature of which may be 
controllable or not (for instance, the intervention 
of a human operator or the failure of components). 
The occurrence of events implies changes in the 
continuous dynamics of the system. In Hybrid 
Dynamic Systems (HDS), these changes can be 
either by a particular structure of the physical 
process or by discrete inputs / outputs generated 
by different components of the system. To simplify 
the study, it is assumed that the valves V1, V2 and 
V3 remain constantly open. The pumps P1 and P2 
are controlled in on/off way to maintain the levels 
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Table 1. Matrix of fault signatures.

Failure mode Components r1 r2 r3

Flow Sensor Failure Q1 Flow sensors Q1 1 0 0
Flow Sensor Failure Q2 Flow sensors Q2 0 1 0
Flow Sensor Failure Q3 Flow sensors Q3 0 0 1

Leak in tank 1 Tank 1 1 0 0
Leak in tank 2 Tank 2 1 0 0
Leak in tank 3 Tank 3 0 1 0
Leak in tank 4 Tank 4 0 0 1

Pump P1 Stuck_Close
Pump P1 0 1 0

Pump P1 Stuck_Open
Pump P2 Stuck_Close

Pump P2 0 1 0
Pump P2 Stuck_Open

Level sensor L1h Stuck_Up
Level sensor L1h 0 1 0

Level sensor L1h Stuck_Down
Level sensor L1b Stuck_Up

Level sensor L1b 0 1 0
Level sensor L1b Stuck_Down

Level sensor L2h Stuck_Up
Level sensor L2h 0 1 0

Level sensor L2h Stuck_Down
Level sensor L2b Stuck_Up

Level sensor L2b 0 1 0
Level sensor L2b Stuck_Down

Valve V1 Stuck_Close
Valve V1 0 1 1

Valve V1 Stuck_Open
Valve V2 Stuck_Close

Valve V2 0 1 1
Valve V2 Stuck_Open
Valve V3 Stuck_Close

Valve V3 0 1 1
Valve V3 Stuck_Open

Li Stuck_Down means the sensor always remains in state 0 (the sensor does not detect the high level); Li Stuck_Up means the sensor always remains in state 1 (the sensor does not detect the low level); Vi Stuck_Close 
means the valve number i remains closed to an opening request; Vi Stuck_Open means the valve number i 
remains open to a closing request; Pi Stuck_Close means the pump number i remains off at a running request; 
Pi Stuck_Open means the pump number i remains running at a stop request;

Figure 6. Timed automata of our discrete system 
(1: pump on; 0: pump off; “∧” = logical AND).

Table 2. Temporal identification of the system.

Actions Time in sec
P1 On
P1 Off

30
327.16

P2 On
P2 Off

30
378.6

Activating L1h
Deactivating L1h

327.16
327.16

Activating L2b
Deactivating L2b

89.3
553.7

Activating L2h
Deactivating L2h

378.6
378.6

Activating L2b
Deactivating L2b

83.7
681.26

A Mixed Approach for Modeling and Fault Diagnosis of Hybrid Dynamical Systems with Unknown Disturbances
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h1 and h2 in a fixed intervals. The TA representing 
the system of the discrete part in normal operation 
is given in Figure 6. 

The diagnoser construction is based essentially 
on the temporal knowledge of the system, it is 
necessary to know the time instant of the pumps 
P1 and P2 setting on or the time between the two 
sensor states. The times of transition determined 
for each phase of system normal mode are given 
in Table 2.

6. Simulation Results

The water distribution network process is affected 
by two unknown inputs: a leakage f(t) in the 
supply pipe of the tank 1 and unknown infiltration 
d(t) both between t = 600s and t = 900s. As before, 
the measurements are affected by sensor noises. 
The diagnosis method proposed in this paper has 
been validated. Indeed, for each random injection 
of defects (sensors, actuator or system), the 
diagnosis approach is able to detect and to isolate 
faults in the presence of disturbances at all times. 
We have injected a fault on P2 (P2 stuck_close) so 
that it remains off at a running request between 
instants t = 150s and t = 400s in the presence of 

the disturbances f(t) and d(t). The responses of 
the residues (r1, r2, r3) to this defect are illustrated 
in Figure 7. The instant of fault detection 
corresponds to that when r2 exceeds its threshold 
ε2 (ε2 = 2.10-4). This instant, called Tdetection, is 
equal to 167.09s. We note that the signature of 
P2, Table 1, is confused with those of Q2, Tank 3, 
P1, L1h, L1b, L2h, L2b. Therefore, this defect is only 
detectable but not locatable. The black and brown 
signals show the state of the sensors L1h and L2h 
and their sensitivity to this defect (P2 stuck_close). 
The states of both pumps are given by the blue 
and purple signals. The levels of the liquid, h1 
in green and h2 in rose, are given in Figure 7. In 
this Figure, we note that L2h remains at state 0, till 
348.6s after setting on the pump P2 and the residue 
r2 at this instant is non-zero. Thus, this instant, 
called Tlocalization, corresponds to the location of the 
fault on P2. Therefore, this defect is detectable and 
locatable. Thus, at time t = 600s (f(t) 0 and d(t) 
0), we note that L1h  remains at state 0,till 297.2s 
after setting on the pump P1 and the residues r1, 

r2 and r3 at the instant T = 897.2s (600s + 297.2s) 
remain at zero. So this instant represent the instant 
of the perturbations due to the leakage f(t) and the 
infiltration d(t) and not a system fault.

Figure 7. Diagnosis of faults on pump P2 (P2_stuck close) in the presence of disturbances.

where 2 , 1, 2
2 p

i
i

q
h i

gs
= =
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7. Conclusion 

In this paper we have dealt with the diagnosis 
of Hybrid Dynamical System (HDS) subject to 
disturbances. First we have proceeded to HDS 
modeling by connecting two tools known in 
the literature. The first is the observer which 
concerns the continuous part of the HDS and 
the second is the timed automata (TA) which 
handles the discrete part. The yielded model is 

used for diagnosis which is composed of two 
steps. The first is the fault detection by analyzing 
the residuals generated by the system output and 
the observer one. The second step of diagnosis 
is the fault location which results from signature 
matrix analyzing and temporal identification of the 
system. The simulation result raised the advantage 
of our approach in distinguishing between the 
defect of a system component and the defect 
resulting from disturbance. 
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