
319

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

One definition applied to monitoring is the
supervision of “activities in progress to ensure
they are on-course and on-schedule in meeting
the objectives and performance targets” [5]. It is
one of the most prominent techniques of the IT
industry, used in diverse categories ranging from
network monitoring and physical machines status
query, all the way up to applications performance
and information systems high-level queries. This
type of monitoring and observation enables the
overall supervision of Quality of Service (QoS) of
systems and applications [11]. By assessing such
benchmarks, it is currently possible to put the
service level in place for the monitored systems.

These are powerful tools but “if they fail to tell
you what you need to know in an instant, you’ll
never use it.” [6]. This means that if a system is
put in place for monitoring critical resources, the
monitoring system must be reliable even when
the critical resources fail. The monitoring system
cannot fail.

The need for monitoring is to such an extent
that most systems come with tools for assessing

internal relevant metrics in the context of
the system’s operation. For instance, in the
Windows [18] operating system we find both a
device manager tool and a task manager tool.
The first relates to the hardware/driver state in
terms of basic functionality, whereas the latter
relates to performance wise metrics (usage and
consumption of resources such as CPU, disk and
network), general and by process. Other example
is VMware’s dashboard [33], showcasing both
physical resources (barebones servers information)
and virtualized resources (virtualized storage,
virtualized network and virtualized machines).
These are three examples of monitoring solutions
for specific purposes.

With such tools, the monitoring of complex
systems is cumbersome. For complex systems
with several components, a large amount of
monitoring tools is required, each for monitoring
specific aspects of the system’s operation. In such
scenarios, the adoption of monitoring tools able to
provide a holistic view of the system proves to be

Studies in Informatics and Control, 27(3) 319-330, September 2018

https://doi.org/10.24846/v27i3y201807

Architecture for Highly Configurable Dashboards for
Operations Monitoring and Support

André CARDOSO, Cláudio Jorge VIEIRA TEIXEIRA*, Joaquim SOUSA PINTO
Instituto de Engenharia Electrónica e Telemática de Aveiro, Departamento de Engenharia Eletrónica,
Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro,
3810-193, Portugal
marquescardoso@ua.pt
claudio@ua.pt (*Corresponding author)
jsp@ua.pt

Abstract: Nowadays, information systems make use of a series of different components and platforms. Being
able to monitor the health status of such components and platforms, along with the overall health status of the
operation supported by such information systems is of paramount importance. The immediate solution for these
monitoring needs is to use vendor specific applications, which results in having to look and understand several
different interfaces. As it will be explained, there are available solutions that integrate such needs on a single
platform. However, these solutions failed to provide a monitoring dashboard for the entire system operation, with
highly customizable dashboard interface, easily defined metrics and easy mobile application availability. This
paper describes an architecture for configurable dashboards capable of presenting heterogeneous metrics, side
by side, regardless of their origin. A prototype, based on such architecture, is presented as a proof of concept.
This prototype is being used to monitor the Cape Verde’s Justice Information System. The result, based on the
proposed architecture and prototype, is a custom tool with a single configuration file that can be adapted to
different thresholds, metrics and monitoring scenarios.

Keywords: System monitoring, Operations monitoring, Real-time monitoring, Web-based dashboard,
Mobile dashboard.

http://www.sic.ici.ro

320 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

benefic. On this type of systems, a system failure
may be the result of several small component
failures. Finding and fixing them rapidly, with
minimal user impact, is critical.

In this paper, this type of systems. Within a single
user interface, integrates and summarizes different
metrics required for monitoring the health and
operational status of complex systems.

This paper consists of six sections. Section 2
presents the case study system, for which we are
required to deliver an informational dashboard.
Section 3 presents the state of the art regarding
application-monitoring tools. Section 4 discusses
the design and architectural principles pertaining
to the proposed monitoring tool. Section 5 presents
the developed prototype and, finally, Section 6
presents the main conclusions of this work.

2. Case Study

The work described in this paper is motivated by
the need of having a monitoring dashboard to be
used by the technical staff of Cape Verde’s Justice
Information System (JIS). The JIS is in use on
Cape Verde’s Courts for the computerization and
dematerialization of both criminal and civil case
files. It is a centralized system, used nationwide,
and designed for use by all justice actors: judges,
prosecutors, attorneys, clerks and criminal and
national police [21], [27].

The JIS is an in-house, custom development,
with a multitude of applications and servers.
The need to develop a holistic dashboard, with
vertical and horizontal information regarding the
current operational status of the JIS, came with
the requirement of better assisting the technical
team, responsible for the development, setup,
deployment and maintenance of the JIS.

The development team needs to be aware of the
issues concerning the production environment,
together with the issues concerning the staging,
testing and even the source code development.

Figure 1 depicts the overall monitoring scenario. It
consists of four major environments: Production,
Support, Staging and Development. Each
environment has its own requirements and needs
in terms of what is critical and what is monitored.

Figure 1. General System Architecture

In the Development Environment, the focus is
on the result of batch-run unit tests, for early
detection of regression issues, and for detecting
new issues. This information is accessed with
custom database queries against the database
development support server.

The staging environment replicates the main
architectural principles and servers’ configurations
and restrictions but simplifies the setup, in terms
of redundancy of operation and performance.

The JIS application ecosystem consists of a
series of web applications, each supported by a
set of databases. There is also a set of internal,
autonomous, services responsible for handling
specific business logic. The scope of reaching each
application is illustrated with a different color.

The major concerns in terms of staging
environment relate to proper functionality and
configuration. Despite being in a continuous
integration development scenario, there are times
where a disruptive change is required. As such,
there is a need to attain metrics of the different
modules operational status.

The support environment relates to the user
support operations. As mentioned, JIS is a
nationwide system for the courts. For user support,
JIS has several helpdesk teams, with technicians
ready to assist judges, prosecutors and clerks on
a daily basis. These teams are also responsible for
keeping the user’s computers and peripherals up
to date in terms of security updates and in proper
working order. They are also the first responders
to assist in any issues regarding the use of the
JIS. To better perform on their function, and

	 321

ICI Bucharest © Copyright 2012-2018. All rights reserved

Architecture for Highly Configurable Dashboards for Operations Monitoring and Support

to keep track of issues and solutions, the team
uses an Information Technology Infrastructure
Library (ITIL) [28] system, in this case iTop [3].
Generally, the helpdesk also brings some metrics,
to better assess the team’s performance, such as
number of pending support tickets and average
age of support tickets.

Finally, the production environment brings
performance and high-availability issues on top
of the staging environment. This environment
has more servers, with high-availability clusters
put in place, and more internal services (for
parallelization purposes). The required metrics
include proper functionality, number of active
users, performance of request (page load times,
systems response time, etc.), database backups,
clusters’ health, servers’ resources status, etc. In
addition, some operational metrics are of interest:
number of case files filled, number of documents
produced, etc. These metrics may indicate if there
is some issue within the application, hampering
users from fulfilling the desired tasks.

During their lifetime, information systems evolve.
Despite setting up continuous integration and a
huge set of unit, functional, performance and
integration tests, in complex systems we easily
lose track of current state of each module or
service. Ensuring that all applications are running
optimally all times is mandatory. In this specific
case, the development and support teams require
the monitoring of the metrics from the different
environments. This means having a considerable
amount of monitoring tools put in place, each with
its own specificities.

The focus of this work was on researching the
proper way of having these metrics aggregated
and summarized, and on drawing the
attention of the support team when something
unexpected occurs.

The purpose of the present paper is the creation
of a highly configurable and dynamic solution
that can aggregate in the same interface metrics
of different systems, with minimal user effort, in
terms of configuration and maintenance.

As a proof of concept, a prototype capable
of showing simultaneously the monitoring
information will be developed from the previously
presented environments.

3. State of Art

As stated by [31], “most businesses across
the whole spectrum combine at least two or
three different tools to monitor and run their IT
infrastructure”.

There are, however, solutions that enable the
monitoring of the whole spectrum. These solutions
will be the focus of the state of art, since they
relate better with the goal of this work.

The solutions analyzed were selected based on
online ranks for monitoring tools, cross-referenced
with trending ranks and literature review. We
analyzed ranks of monitoring tools described in
several online reviews: a top 10 review [31], a
top 20 review [19], a top 40 review [4] and a top
8 specific for 2018 [25]. Table 1 shows the results
of the most mentioned tools, with the number of
occurrences, among the articles, excluding the
tools mentioned only once.

Table 1. Summary of the tools mentioned

Solutions Number of
Cites

AppDynamics 2
Bluestripe 2
Boundary 2

CopperEgg 2
Datadog 2

WhatsUp Gold 2
LogicMonitor 3

Nagios 3
New Relic 3

Zabbix 3
Icinga 4

Solarwinds
(View-Trace)

4

The tools mentioned twice were ruled out,
resulting a top six most cited tools. Thus, the
most cited solutions on such online posts were
cross-referenced with search trends statistics,
using Google Trends. As described on the Google
Trends website, data collected is “… anonymized
(no one is personally identified), categorized
(determining the topic for a search query) and
aggregated (grouped together). This allows us
to measure interest in a particular topic across
search, from around the globe, right down to city-
level geography.” [26].

http://www.sic.ici.ro

322 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

Chart 1 shows the most searched terms in Google
search engine relevant for the selected tools,
during a one-year time span. Google Trends
indicator ranges from 0 to 100, where 100 is the
maximum search interest reached.

Chart 1. Google Trends Indicator

As expressed in Chart 1, Zabbix [34] is the most
trended search. Despite some fluctuations, Nagios
[22] is the second most trended search, followed
by Solarwinds [30], New Relic [23], Icinga [20]
and finally LogicMonitor [13].

Furthermore, we use the search engine at IEEE
Xplore [9] to inquire which of these tools are most
mentioned. The quoted tool name was used as
the search phrase. The results obtained show that
LogicMonitor is not mentioned at all. Solarwinds,
Icinga and New Relic are mentioned twice, Zabbix
seven times and Nagios, with thirty articles is by
far the most mentioned tool.

Table 2 summarizes the presented information.
It takes into account the number of citations in
Table 1, the average of the inverse position of
the Chart 1 and the result of IEEE search. These
indicators, when normalized and added, total the
score of each tool.

Table 2. Summary analysis

Cites Trends IEEE
Explore

Total

Nagios 0.150 0.238 0.682 1.070
Zabbix 0.150 0.286 0.159 0.595

Solarwinds 0.200 0.190 0.045 0.436
Icinga 0.200 0.095 0.045 0.341

New Relic 0.150 0.143 0.068 0.361
LogicMonitor 0.150 0.048 0.000 0.198

We selected the three tools with highest score
in Table 2 for a more detailed analysis and
comparison: Nagios, Zabbix, and Solarwinds.

3.1 Nagios

Nagios is one of the oldest and most mature open-
source monitoring tools. Due to its versatility and
extensibility through a plug-in mechanism, we
can find extensions to almost every equipment or
metric. It has a straightforward installation and
configuration. We can extend its base configuration
with custom scripts, alerts via emails or Short
Message Service (SMS).

It is based on a Master/Slave architecture, with a
central node running the Nagios Core component,
capable of performing basic node analysis, and
the slaves being different plug-ins installed on the
monitored client machines, enabling the master to
perform remote checks. There are two methods
to monitor host and services: 1) Monitoring via
Nagios Remote Plugin Executor (NPRE) agent
where, the agent monitors the local resources and
sends the data to Nagios Server. 2) Monitoring
via public services, meaning it is accessible via
protocols such as ICMP, SNMP and SSH. This
method is useful for servers where we cannot or
do not want to install an agent on. In the case of
windows servers (as JIS), the Nagios Core offers
a protocol “check_nt” that communicates with the
predefined machines to be monitored. Figure 2
illustrates the communication channel established
between the Monitoring Host (Nagios) and the
windows clients, via the NSClient++ daemon.

Figure 2. Nagios Communication Architecture

	 323

ICI Bucharest © Copyright 2012-2018. All rights reserved

Architecture for Highly Configurable Dashboards for Operations Monitoring and Support

The “check_nt” is an old legacy protocol that only
has some basic local system resource checks, with
security being provided by SSL protocol.

In [12] authors conclude that Nagios is a good
package and is being used by the masses. In [14]
authors enhance Nagios for cloud computing
monitoring and in [24] Nagios is integrated with
OpenStack. Finally, in [10] authors conclude
that Nagios is “a powerful network monitoring
software”, enabling “independent developers
to extend functionalities without modifying the
Nagios core”.

We can find it widely used in healthcare,
education, retail and financial industries [8].
In terms of community content and support,
the official forum has 65584 members and the
YouTube channel (with 5900 subscribers) holds
a bigger focus on tutorials.

3.2 Zabbix

Zabbix is an open source enterprise-monitoring
tool for networks and applications that runs on
a Linux based operating system. It offers a free
public license and a paid service for custom
solutions. It has a simple architecture composed
of a server that deals with monitoring agents’
information, database queries and notifications
due to events, as shown in Figure 3. The agents
are services that run on the target devices.

DB

Front End Application

Zabbix Server

Agent 1

Agent 2

Agent 3

Agent 4

Figure 3. Zabbix architecture

As explained in [34], the key features provided are
report metrics and automated alerts for devices,
networks, databases, websites and report metrics.
It is capable of monitoring services such as HTTP,
ICMP and SMTP without requiring the installation
of specific monitoring agents. Based on SNMP,
Zabbix provides a network discovery tool to
search for new Zabbix agents or new file systems,

network interfaces, CPUs and Simple Management
Protocol Object Identifiers (SNMP OIDs). When
found, it will generate discovery events that
automatically initiate pre-determined actions.

In [16]the Internet telecommunication companies
are growing rapidly and now are based on the
cloud computing environments. Management
of a big distributed production infrastructure
with multiple business services requires a
centralized control system. This paper describes
how the Zabbix enterprise-class monitoring
system can be used as an adaptive solution
for the purpose of real-time control of cloud
computing resources, auto-detection of critical
anomalies in advance and, when possible, auto-
restore production services using a predefined
workaround procedure. Real-world company
examples are provided.”,”author”:[{“dropping-
particle”:””,”family”:”Mescheryakov”,”give
n”:”Serg”,”non-dropping-particle”:””,”parse-
names”:false,”suffix”:””},{“dropping-particle”
:””,”family”:”Shchemelinin”,”given”:”Dmitry
”,”non-dropping-particle”:””,”parse-names”:fa
lse,”suffix”:””},{“dropping-particle”:””,”famil
y”:”Efimov”,”given”:”Vadim”,”non-dropping-
particle”:””,”parse-names”:false,”suffix”:””}],”c
ontainer-title”:”2014 6th International Congress
on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT Zabbix is used
for real-time control of cloud computing resources
and it is concluded that Zabbix is “a powerful tool
for effective control of cloud computing resources
in a big distributed virtualized infrastructure”.

In terms of community content and support,
the official forum has 79688 members and the
YouTube channel (with 1400 subscribers) holds a
bigger focus on conference videos than tutorials.

3.3 Solarwinds

Solarwinds is a proprietary software that can be
used to monitor a large variety of applications
from a single dashboard that comes preconfigured.
The number of modules and features available is
extensive, and it supports a set of control actions
on such nodes, being able to reboot server,
terminate processes and fix issues remotely.

To assist on monitoring management, it features
a user interface for adding and removing
monitored nodes.

http://www.sic.ici.ro

324 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

In terms of support, it hosts a training and
certification academy, suitable for a company
that needs a first response team when the core of
their business depends on the availability of the
system. Solarwinds is used by companies such as
Accenture [1] consulting company and Lockheed
Martin [15] an advanced technologies company.

In terms of community content and support, the
number of members registered on Solarwinds
forum and YouTube channel is not public. The
YouTube channel is found to have a good balance
between conferences and tutorials videos.

3.4 Concluding Remarks

Table 3 shows the summary of the described
monitoring solutions. The major features
compared relate to the type of architecture in
place, the multiple systems monitoring and the
support type these solutions offer.

Table 3. Monitoring Solutions Comparison

Architecture
Type Support Type

Zabbix Agent / Server Professional and
Training

Nagios Agent / Server Professional and
Community

Solarwinds Agent / Server
Professional,

Community, Training
and Certifications

As shown, all analyzed solutions use an Agent/
Server architecture. This approach enables a
quick adaptation to new scenarios, by means of
deployment of new, specific agents.

Documentation, support line and community
forums are critical for the adoption and success
of any product. The reviewed solutions follow
this rule and offer such tools to end-users.
Furthermore, we find the proprietary solutions
with training and certifications.

Table 4 shows how each system compares to others
in term of user interaction. In this comparison, the
research is particularly interested in the type of
interface supplied, and for customization allowed.

Table 4. User interaction comparison

Interface Type Interface
Customization

Zabbix HTML5, Mobile No
Nagios HTML5 Yes

Solarwinds HTML5, Mobile Yes

Zabbix and Nagios, being open source, enable a
deep source code change. They also enable the
use of themes that allow for HTML customization
and mobile support. Additionally, on Nagios the
community provides many unofficial features
ready to use and customize.

Solarwinds is the most complete solution in our
review. It contains several modules, easy interface
customization and provides mobile applications
for on-the-go monitoring. Solarwinds also allows
us to add and remove nodes dynamically using a
user’s interface, in contrast to Nagios, which uses
text files configurations.

In the process of finding a suitable monitoring
tool, it was concluded that all reviewed
applications feature the required functionalities
for monitoring the case study system. They all
announce monitoring of basic server resources
and network. They support all the major protocols
for communication and programing languages
for agents’ configuration or development. They
all provide a Restful API [29], enabling agents
to communicate with any server, if authorized.
In addition, all solutions claim to be adaptable,
scalable and versatile.

4. Design and Architecture

Despite all solutions presented being suitable for
multiple systems monitoring, it was found that
none could indeed support the present case study
in full: deploy a monitoring dashboard for the
entire system operation with highly customizable
dashboard interface, easily defined metrics and
easy mobile application availability.

These requirements demanded that regardless of
the chosen solution, and considering the solutions
reviewed, there would be the need to perform
custom development.

As presented, the JIS comprehends a series of
servers, services and applications. Within the
applications, there is also the need to be aware
of certain performance counters, related to
business rules.

To accommodate such different metrics, the
definition of the categories is proposed. Each
category aggregates the information considered
pertinent to it. Taking into account the JIS as
the case study, we define seven categories,
according to the case study operational

	 325

ICI Bucharest © Copyright 2012-2018. All rights reserved

Architecture for Highly Configurable Dashboards for Operations Monitoring and Support

requirements: 1) Server resources; 2) Database
status; 3) Case file metrics; 4) Websites status; 5)
User activity benchmarks; 6) Tests performance
benchmarks; 7) Helpdesk performance.

The Server Resources category congregates
metrics related to the servers’ operational status
(topics): used/available CPU, used/available
RAM, and used/available storage. These metrics
are shown grouped by topic.

The Database Status category holds metrics
related to the operational status of databases,
namely information about the last successful
backups (both full and transactional).

The Case file metrics shows information
regarding the usage of the system: how many case
files were consulted in the last days, how many
requirements have been filled, etc.

The Website status shows metrics regarding the
connectivity, availability, issues and performance
of the several web sites of the JIS ecosystem.

The User activity benchmarks shows metrics
concerning the user’s performance on these sites:
logged in count, password mismatch count.

The Tests performance benchmarks sums
up metrics concerning the results of the latest
automated test batch-run status (number of passed,
failed and inconclusive tests).

Finally, the Helpdesk performance holds
metrics on the helpdesk team: number of open
tickets, average response time, average close time
of such tickets.

4.1 Overall Architecture

To retrieve the information required for such
metrics there was the need to develop specific
agents that could access the data, generate and
deliver the metrics to the monitoring solution.
For the basic server monitoring solution, any
solution with a RESTful API will be enough.
Custom metrics are produced using additional
monitoring endpoints. To better encapsulate the
entire monitoring structure, a dashboard server
was devised, whose responsibility is to get proxy
information from the basic metric RESTful system
and from the custom agents into the dashboard.
Figure 4 illustrates the proposed architecture for

the monitoring solution. It depicts the dashboard
interface, the dashboard API and the Basic metric
RESTful system. These three components enable
the monitoring of any application ecosystem.

The Dashboard Interface is the main output of
this solution. Conceptually, the interface must
be responsive and easily adapted to fit on mobile
devices as an installed application, with no
additional setup or application configuration.

The Dashboard API is the driver/proxy of
information between the interface calls and the
application ecosystem. For security reasons, most
of the resources monitored are in a protected
intranet, meaning that direct access to them is
strictly off limits. This proxy must act as a filter
of requests and as a driver of information. The
API defined within the Dashboard API server
must be flexible enough to support any kind
of screening on any kind of system inside the
protected intranet, but must be objective, so that
the call is correctly proxied to the right system.
The Dashboard API can perform direct queries to
internally available databases, check access times
on web sites and proxy requests to the basic metric
RESTful system.

The Basic Metric Restful System is an existing
system, which can be installed and used as
monitoring solution for the basic server resources
(CPU, RAM, Storage, connectivity). The sole
requirement of such system is its interoperability
using a RESTful API.

Figure 4. Proposed architecture for the monitoring
solution

The Dashboard API also features a RESTful API
for communication.

http://www.sic.ici.ro

326 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

4.2 Dashboard Interface Architecture

As mentioned, the Dashboard interface is the
most visible output of this project. One of the
most important requirements of the interface
is to deliver a highly configurable view where
categories and topics can be added, removed,
formatted and plotted on-demand. On top of
that, we intend to use the same interface and
logic to deploy mobile applications for on the go
monitoring, screening and alerts.

Figure 5 illustrates the dashboard interface’s
main components. As expressed, the outputs of
the dashboard may be visible using a regular web
browser or within a mobile application, by using
a mobile application generator.

The Dashboard application consists of a series of
rules for querying information on the Dashboard
API, and for displaying such information.

The Configuration file is the main piece of the
interface, and the only one that needs changes
to monitor different systems. It stores which
categories to display, how to display them, which
topics to display on the categories, how to display
the collected metrics and which thresholds are
relevant in the interface.

Figure 5. Dashboard Interface main components.

Once the application is ready for production, there
is an intention of using a framework that creates a
container to deploy the application to the different
mobile platforms.

5. Implementation

With the architecture defined, implementing the
monitoring solution was the next step. The basic
metric RESTful system, the custom agents, the
dashboard API and the dashboard interface were
the main components to implement.

5.1 Monitoring Backend

From the list of candidates, the Nagios Core
was chosen as the basic metric RESTful system.
The main reasons were its free availability, good

support forums and easy extensibility. Nagios
Core 4.0.6 was installed on a server running
Ubuntu 16.04 [2], using the default configurations.
For Nagios assessment, the Nagios client was
installed on the servers. On Windows Servers, the
NSClient++ [17] was installed, more specifically,
the version NSCP-0.5.2.33, with the necessary
permissions to check the intended resources.

For the custom metrics check, a specific logic
was developed to communicate with the systems.
Considering the JIS case study, direct database
queries were used on most systems. When this was
not possible, the development team implemented
RESTful based custom endpoints, within
the required systems, to provide the required
information. The Dashboard API triggered the
database and endpoint queries.

The Dashboard API was developed as a .NET
Restful service. It provides the interface defined
in Code 1.

As shown, the interface was defined as a very
broad and generic service proxy call. The
parameters on the interface, “type”, “resource”,
“component”, “datemin” and “datemax” enable
the retrieval of all the required information, on
different formats.

http://IP/dashboard/api/{type}/{resource}
http://IP/dashboard/api/{type}/{resource}/
{component}
http://IP/dashboard/api/{type}/{resource}/
{datemin}/{datemax}

Code 1. Dashboard API definition.

The “type” parameter expects value “summary”,
“list”, “table”, “gauge”, “linechart”, “piechart”,
“infos” or “ping”. With this API, the same
information can be received in different formats.
The parameter “type” enables this behavior.
Values “list” and “table” are self-explanatory.
Value “summary” will return a summary of the
information and value “infos” will return detailed
information. Finally, values “gauge”, “linechart”
and “piechart” return data properly formatted to
feed a gauge chart, and value “ping” is used for
checking connectivity, returning the response code
of such connectivity request.

The “resource” parameter identifies the
monitored resource in the IT ecosystem.

The “component” parameter identifies the
single server’s component that should be returned.
It expects value “cpu”, “ram”, “drive” or
“uptime”.

	 327

ICI Bucharest © Copyright 2012-2018. All rights reserved

Architecture for Highly Configurable Dashboards for Operations Monitoring and Support

Code 2 features some practical examples.

http://IP/dashboard/api/summary/db1
http://IP/dashboard/api/table/db1
http://IP/dashboard/api/gauge/srv1
http://IP/dashboard/api/summary/srv1/ram
http://IP/dashboard/api/ping/srv2

Code 2. Dashboard API Practical Examples

Parameters “datemin” and “datemax” are to be
used in cases where a specific time window of
events is required. This is the case of case file
metrics and website status, mentioned before.
In the case file metrics category, the “resource”
parameter corresponds to the subcategory
proposed within the case files, “procACN” for
archived, queried or new case files, “procCPR”
for civil, criminal and appeal case files and lastly
“procPend” for pending orders and applications.
For the second mentioned category, website
status, the “resource” parameter can be one of
“eventLogDetails”, “eventLog” or “action”.
Correspondingly, the information received is
represented by the last errors in error log, with
the number of occurrences of each, last recorded
events and last recorded actions. Code 3 presents
some practical examples of such API calls.

http://IP/dashboard/api/lineChart/procACN/
{datemin}/{datemax}

http://IP/dashboard/api/table/action/{date-
min}/{datemax}

Code 3. Dashboard API with date interval

On Code 3 example, the last two variable fields
are used to define the date range to which the
query refers. This information is retrieved from
the dashboard’s configuration file.

5.2 Monitoring Dashboard

The monitoring dashboard has two main
components: the configuration file and the
user interface.

As mentioned, the configuration file holds all the
information on which categories and topics will be
in display, and where to get the information. In this
file, each Panel represents one category. Code 4
shows the configuration properties of a Panel.

Most properties of the Panel are self-explanatory.
It has an internal id (panelId) and a name. To
assist on the visual configuration and interface,
each panel may have a default background color,
defined as a CSS property, and an icon from the
font awesome dataset, or from an image URL.

Conceptually, each panel may have a brief
summary of the metrics within the related topics.
This summary of information should be available
and visible if the panel is also visible. To achieve
this, each Panel defines a set of summary objects.
Each object has three properties, a property with
the URL that provides the data, and two for
displaying information, one aligned to the right
and other to the left, both able to display the data
received from a URL or a text label.

{ "panelId": number
 "name": string
 "defaultColor": string (css),
 "fontAwsomeIcon":
{font-awesome object}, opcional
 "imgSrc": string, URL, optional
 "summaryInterval": number,
 "summary":
[{"serviceURL": string (url),
"display": string,
"subdisplay”: string}, …]
 "threshold": {threshold object},
 "views": {view object} }

Code 4. Panel Example

The threshold set enables the customization
of warnings and errors within the dashboard
monitor. The defined thresholds are specific to
the dashboard monitor.

Finally, each panel defines a set of views. Each
view relates to a topic from a specific category.
The view displays detailed information regarding
a given topic. Each view consists of a set of
information for independent components and
charts. Namely, each component defines its
particular endpoint for getting information, the
type of chart to display and the information
refresh interval. An example of such component
is expressed in Code 5.
{…
 "linearChart":
 {
 "type": "line",
 "dateConfig":
 {
 "type": "month"
 "value": 6
 },
 "xAxisModel":"{m}, {y}",
 "serviceUrl":"http://…",
 "serviceInterval": 30000,
 "legend": true
 },…
 "tables":
 [{ "title": string,
 "serviceURL": string,
 "serviceInterval": number,
 "footer": string, },…] }

Code 5. Example of a view’s configuration

http://www.sic.ici.ro

328 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

With this configuration file, all the required
metrics could be retrieved and displayed. In
terms of information display, a prototype for a
permanent operations control room display was
required to be presented. Furthermore, there
was also the need to present a mobile version
of such dashboard.

The mobile version represents a summarized
view of the dashboard, showing only the
panel’s information. In this version, and using
devices with restricted displays, the views will
not be shown.

The Dashboard interface was developed
using JavaScript, HTML5 and CSS. For this
development, the AngularJS [7] version 4
was used.

Finally, the mobile application is built using
Cordova [32], that wraps all the application’s
resources and acts as a container for a running
web application in the mobile device.

5.3 Look & Feel

In this section, the paper presents some of the
visualization components of the developed
dashboard prototype.

This application is mainly for visualization,
with no user interaction, so the information of
views and panels is automatically switched at
configurable intervals. The top row contains the
different components mentioned before and the
side panels contain critical information about
server resources that are always in display.

Figure 6 presents an integrated view concerning
usage of server resources of two servers.

Figure 6. Server resources layout

In the overhead panels and side panels, a brief
overview of other areas is present.

Figure 7 illustrates the responsive layout proposed
for a quick mobile view of the application. The
main information panel is not visible in this case.

Figure 7. Simplified layout for mobile applications

Figure 8 presents a customized view concerning
metrics related to the overall operation. In this
case, the amount of new case files is inserted in
the system.

Figure 8. Case file metrics layout

Figure 9 describes the test runs on the development
and staging phases.

Figure 9. Tests performance layout

	 329

ICI Bucharest © Copyright 2012-2018. All rights reserved

Architecture for Highly Configurable Dashboards for Operations Monitoring and Support

Figure 10 presents the overall status of the
different web applications used in the case study.

Figure 10. Websites status layout

6. Conclusion

In this paper, we presented a prototype of
a customizable solution for monitoring

complex systems. A monitoring solution was
delivered, based on a single configuration file
that can be adapted to different metrics and
monitoring scenarios.

As a proof of concept, the prototype was
configured to monitor the operational status of the
Justice Information System of Cape Verde.

The JIS has been a good case study to develop
and test this type of solutions because is an
environment with different components and
specific high-level metrics.

Being a web-based solution, it can be displayed
on any HTML5 capable browser. Currently, it is
under test as the intended use: with information
displayed on a smart-TV.

REFERENCES

1.	 Accenture, Accenture. [Online]. Available:
<https://www.accenture.com/us-en/new-
applied-now>. [Accessed: 02-May-2018].

2.	 Canonical Ltd, Ubuntu. [Online]. Available:
<https://www.ubuntu.com/>. [Accessed: 02-
May-2018].

3.	 COMBODO Inc, iTop Definition. [Online].
Available: <https://www.combodo.com/itop-
193>. [Accessed: 01-May-2018].

4.	 Demers, T. 40 Application Performance
Management Tools. [Online]. Available:
<https://blog.profitbricks.com/application-
p e r f o r m a n c e - m a n a g e m e n t - t o o l s / > .
[Accessed: 01-May-2018].

5.	 Dictionary, B. (2015). Monitoring
Definition. [Online]. Available: <http://
www.businessdictionary.com/definition/
monitoring.html>. [Accessed: 01-Feb-2018].

6.	 Few, S. (2006). Clarifying the vision,
Information Dashboard Design The Effective
Visual Communication of Data, 223.

7.	 Google (2018). Angular. [Online].
Available: <https://angular.io/>. [Accessed:
02-May-2018].

8.	 iDatalabs (2017). Companies using Nagios.
[Online]. Available: <https://idatalabs.com/
tech/products/nagios>. [Accessed: 02-
May-2018].

9.	 IEEEEXplore (2015). IEEE Explore.
[Online]. Available: <http://ieeexplore.
ieee.org/Xplore/home.jsp>. [Accessed: 01-
Jun-2018].

10.	 Issariyapat, C. (2012). Using Nagios as a
groundwork for developing a better network
monitoring system. In 2012 Proceedings of
PICMET ‘12: Technology Management for
Emerging Technologies (pp. 2771-2777).

11.	 Katsaros, G., Kübert, R. & Gallizo, G. (2011).
Building a service-oriented monitoring
framework with REST and nagios. In
Proceedings - 2011 IEEE International
Conference on Services Computing, SCC
2011 (pp. 426-431).

12.	 Kaushik, A. (2010). Use of Open Source
Technologies for Enterprise Server
Monitoring Using Snmp, Technology, 2(7),
2246-2252.

13.	 LogicMonitor Inc, LogicMonitor. [Online].
Available: <https://www.logicmonitor.
com/>. [Accessed: 02-May-2018].

14.	 Luchian, E., Docolin, P. & Dobrota, V. (2016).
Advanced monitoring of the OpenStack NFV
infrastructure: A Nagios approach using
SNMP. In 2016 12th International Symposium
on Electronics and Telecommunications,
ISETC 2016 - Conference Proceedings, no.
7 (pp. 51-54).

http://www.sic.ici.ro

330 André Cardoso, Cláudio Jorge Vieira Teixeira, Joaquim Sousa Pinto

15.	Martin, L. (2016). Lockheed Martin.
[Online]. Available: <https://www.
lockheedmartin.com/en-us/index.html>.
[Accessed: 01-May-2018].

16.	 Mescheryakov, S., Shchemelinin, D. &
Efimov, V. (2014). Adaptive control of
cloud computing resources in the Internet
telecommunication multiservice system. In
2014 6th International Congress on Ultra
Modern Telecommunications and Control
Systems and Workshops (ICUMT) (287-293).

17.	 Medin, M. NSClient++. [Online]. Available:
<https://www.nsclient.org/>. [Accessed: 02-
May-2018].

18.	 Microsoft, Windows OS. [Online]. Available:
<ht tps : / /www.microsof t . com/en-us /
windows/>. [Accessed: 01-May-2018].

19.	 Monitoring, A. P. (2014). 20 Top Server
Monitoring & Application Performance
Monitoring (APM) Solutions. [Online].
Available: <https://haydenjames.io/20-top-
server-monitoring-application-performance-
monitoring-apm-solutions/>. [Accessed: 03-
Jun-2018].

20.	 Monitoring Icinga Open Source, Icinga.
[Online]. Available: <https://www.icinga.
com/>. [Accessed: 02-May-2018].

21.	Morais, R., Pinto, J. S. & Teixeira, C.
(2014). Sistema de Informação da Justiça
de Cabo Verde, Rev. do Ministério Público,
137, 261-273.

22.	 Nagios Enterprises (2009). Nagios Core
- Features. [Online]. Available: <https://
assets.nagios.com/datasheets/nagioscore/
Nagios Core - Features.pdf>. [Accessed: 01-
May-2018].

23.	 New Relic Inc (2018). New Relic
Documentation. [Online]. Available: <https://
docs.newrelic.com/>.

24.	 OpenStack Foundation, OpenStack. [Online].
Available: <https://www.openstack.org/>.
[Accessed: 20-May-2018].

25.	 Putano, B. Top Server Monitoring Tools for
the New Year. [Online]. Available: https://
stackify.com/top-server-monitoring-tools/.
[Accessed: 01-May-2018].

26.	 Rogers, S. (2016). What is Google Trends
data — and what does it mean ?, Google
News Lab.

27.	 Rosa, J., Teixeira, C. & Sousa Pinto, J. (Jul.
2013). Risk factors in e-justice information
systems, Gov. Inf. Q., 30(3), 241-256.

28.	 Rouse, M. (2014). ITIL Definition. [Online].
Available: <http://searchdatacenter.
techtarget.com/definition/ITIL>. [Accessed:
01-May-2018].

29.	 Rouse, M. (2016). RESTful API. [Online].
Available: <http://searchmicroservices.
techtarget.com/definition/RESTful-API>.
[Accessed: 02-May-2018].

30.	 SolarWinds Worldwide LLC, Solarwinds.
[Online]. Available: <https://www.solarwinds.
com/>. [Accessed: 02-May-2018].

31.	 Sotnikov, A. Top 10 Server & Application
Monitoring Tools. [Online]. Available: <
https://www.acronis.com/en-us/blog/posts/
top-10-server-application-monitoring-
tools>. [Accessed: 01-May-2018].

32.	 The Apache Software Foundation, Cordova.
[Online]. Available: <https://cordova.apache.
org/>. [Accessed: 02-May-2018].

33.	 VMware Inc, VMware Software. [Online].
Available: <https://www.vmware.com/>.
[Accessed: 01-May-2018].

34.	 Zabbix LLC, Zabbix. [Online]. Available:
<https://www.zabbix.com/>. [Accessed: 01-
May-2018].

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	page7
	page8
	page9
	_Hlk518562184
	_GoBack
	_Hlk525200695
	_GoBack
	OLE_LINK675
	OLE_LINK676
	OLE_LINK691
	OLE_LINK692
	OLE_LINK758
	OLE_LINK759
	OLE_LINK777
	OLE_LINK778
	OLE_LINK754
	OLE_LINK755
	OLE_LINK63
	OLE_LINK57
	OLE_LINK58
	OLE_LINK52
	OLE_LINK53
	OLE_LINK54
	OLE_LINK71
	OLE_LINK61
	OLE_LINK62
	OLE_LINK64
	OLE_LINK65
	OLE_LINK201
	OLE_LINK202
	OLE_LINK1
	OLE_LINK2
	OLE_LINK224
	OLE_LINK225
	_Ref518485983
	_Ref518485983
	_Ref518486338
	_Ref518486007
	_Ref518486478
	_Ref518486382
	_Ref518486362
	_Ref518562591
	_Ref518486036
	_Ref519073989
	_Ref518989310
	_Ref519073742
	_Ref519074467
	_Ref518486430
	_Ref518486456
	_Ref518485951
	_GoBack
	_GoBack
	_GoBack
	_Hlk526243018
	baep-author-id2
	_GoBack
	_GoBack
	_GoBack
	_Hlk512967206
	_GoBack
	_Ref508793658
	_Hlk506553364
	_Ref509939463
	_Ref509940412
	_Ref509507802
	_Ref512962362
	_Hlk515120268
	_Ref508891898
	_Ref508892763
	_Hlk506554044
	_Hlk506556508
	_Ref510542491
	_Hlk506557328
	_Ref508981331
	_Ref515456000
	_Hlk506557732
	_Hlk506558795
	_Ref509127234
	_Ref509590998
	_Ref510542648
	_Ref510542643
	_Ref509500315
	_Ref513036771
	_Ref509137065
	_Ref510543007
	_Ref509179060
	_Ref513036793
	_Hlk505095368
	_Hlk506559133
	_Ref526327754
	_Ref526327867
	_Ref526327914
	_Ref526327997
	_Ref526328048
	_Hlk506559234
	_GoBack
	_GoBack
	_GoBack
	_1fob9te
	_GoBack

