
359

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

 1. Introduction

Service-Oriented Architecture (SOA) raises new
challenges related to the information security
level. Information security is concerned with
what needs to be protected and why, what it
needs to be protected from, and how to protect
it. Establishing security involves securing data
communications, data in rest, managing access
rights, etc. In SOA, a coherent security view must
be shared, a trust network should be established,
and global security policies’ enforcement should
be accomplished [33].

The distributed nature of the SOA, brings new
security challenges concerning unauthorized
access because it involves several services and
service providers. In traditional architectures,
data travels from the sender to the receiver, it
is processed by the receiver, and results are
returned to sender. In an SOA environment,
data originating from sender may travel through
multiple intermediate points before arriving at
the ultimate recipient. The message must be
secured and the confidentiality and integrity of the
data must be ensured. Therefore, SOA requires
additional security components, as well as the
adoption of new standards and specifications.

Researchers in [34], [1], [10] ,[35], [9] have shown
many of the security challenges in deploying
SOA. The current study aims to research and
provide an inventory of the security and privacy
vulnerabilities of SOA, investigate prevention
methods and propose mitigation measures.

Section 2 provides a review of the capabilities
and specific aspects of SOA while Section 3
identifies the main vulnerabilities that are
classified by their nature and impact. Section 4
analyzes security standards, open source tools to
mitigate security risks and performs a mapping
of prevention measures, including good practices,
procedures, techniques, and open source tools,
to vulnerabilities previously identified. The
organizational and business security measures
provided by ENISA security guidelines [7] are
also recommended in this section.

2. Service Oriented Architecture

Service-oriented architecture (SOA) is an
architectural approach based on the use of services
(such as RESTful, Web services) carrying out
some small functions, for instance producing or
validating data, or providing simple analytical

Studies in Informatics and Control, 27(3) 359-368, September 2018

https://doi.org/10.24846/v27i3y201811

Measures to Mitigate Cybersecurity Risks and
Vulnerabilities in

Service-Oriented Architecture
Carmen Elena CÎRNU, Carmen Ionela ROTUNĂ*,
Adrian Victor VEVERA, Radu BONCEA
National Institute for Research and Development in Informatics, 8-10 Averescu Avenue,
Bucharest, 01145, Romania
carmen.cirnu@ici.ro, carmen.rotuna@rotld.ro (*Corresponding author),
victor.vevera@ici.ro, radu.boncea@rotld.ro

Abstract: Raising awareness of cybersecurity issues and improving the digital literacy and skills in terms of
recognition and management of threats is considered as a high-priority action. Service-Oriented Architecture(SOA)
provides several benefits, including greater efficiency and open access to applications, services, and information,
but their very openness creates unique and significant security challenges for organizations. SOA principles are
widely used because they provide loose-coupling, service automation, extensible architecture and enhanced
reuse. This paper addresses the security challenges of SOA considering their business and technical impact
and performs a mapping to mitigation measures and tools. The process involves identifying the main security
vulnerabilities and researching solutions for cyber attacks prevention. It also proposes business level measures
to mitigate cybersecurity risks and vulnerabilities in SOAs. Several European projects and open source solutions
whose aim is to ensure the security and the privacy of SOA are identified, analyzed and proposed as tools for
enhanced security in the second part of the paper.
Keywords: SOA, Cybersecurity, Vulnerability classification, Mitigations, Open-source solutions.

http://www.sic.ici.ro

360 Carmen Elena Cîrnu, Carmen Ionela Rotună, Adrian Victor Vevera, Radu Boncea

services, with the aim to achieve a loose coupling
amongst interacting components. The main goals
for SOA consist in facilitating the continuous
development of large scale interoperable networks
of systems, facilitating online provisioning and use
of services and reducing costs at an organizational
level [17].

SOA is referred as a business process execution
environment according to the OASIS SOA
reference model and architecture [11]. The
differentiation between visibility, interaction,
and real world effect of services will be followed
during the vulnerability analysis as, according
to OASIS, these are the three key concepts
of the SOA paradigm. Computer systems and
in particular distributed systems face several
security risks which also affect a SOA. A SOA
vulnerability is a vulnerability present in such an
environment and vulnerabilities can exist in any
of the SOA layers. Figure 1 illustrates Logical
Solution View of the SOA RA, the multiple
separations of concern in the nine layers of the
SOA RA [11].

The basic structure of SOA comprises three main
components: Service Provider, Service Registry,
and Service Requestor as shown in the f﻿igure
bellow. The service is a key concept and core
of an SOA. It is the technical representation and
encapsulation of high-level business functionality.
The Service Provider is the entity that creates and
provides the services; it also creates metadata
for the services and publishes them in a central
repository, called Service Registry (Universal
Description, Discovery, and Integration - UDDI).

Service Requestor is an entity that requires
certain services which are published by Service
Providers. The operations that are performed in a
SOA are: Publish, Find, and Bind as presented in
the following figure:

Figure 2. Basic SOA Architecture

Taken from "Alwadain, A., Korthaus, A., Fielt,
E., & Rosemann, M. Integrating SOA into an

Enterprise Architecture: a comparative analysis of
alternative approaches. In Proceedings of the 5th
IFIP International Conference on Research and

Practical Issues of Enterprise Information Systems
-CONFENIS. Brazil" [36]

SOA technologies, such as UDDI, and security
and privacy standards such as SAML [8] and WS-
Trust [2], introduce another role which addresses
these issues, called a service broker [6], [34].

The key concepts of the SOA paradigm are:
services visibility, interaction, and real world
impact. Computer systems and in particular
distributed systems, including SOA, are subject
to several security risks and flaws that can occur
in any of the SOA layers.

Figure 1. SOA Logical Solution View - taken from [11]

	 361

ICI Bucharest © Copyright 2012-2018. All rights reserved

Measures to Mitigate Cybersecurity Risks and Vulnerabilities in Service-Oriented Architecture

3. Identifying Most Dangerous SOA
Security Vulnerabilities

Software weaknesses are errors that can lead to
software vulnerabilities. A software vulnerability
is an error of the software that can be directly used
by a hacker to gain access to a system or network.

Software weaknesses are flaws, faults, bugs,
vulnerabilities, and other errors in software
implementation, code, design, or architecture [20].

Unless all weaknesses have been properly
recognized and addressed, networks and systems
will become vulnerable to attacks.

Example of software weaknesses include:
buffer overflows, format strings, structure and
validity problems, common special element
manipulations, channel and path errors, handler
errors, user interface errors, pathname traversal
and equivalence errors, authentication errors,
resource management errors, insufficient
verification of data, code evaluation and injection.

Common Weakness Enumeration (CWE™)
is a formal list or a dictionary of common
software weaknesses that can occur in software’s
architecture, design, code or implementation that
can lead to exploitable security vulnerabilities.
CWE was created to serve as a common language
for describing software security weaknesses and to
provide a common baseline standard for weakness
identification, mitigation, and prevention efforts.

The U.S. National Vulnerability Database (NVD)
is a federal government repository of standards-
based vulnerability management data. These data
enable automation of vulnerability management,
security measurement, and compliance (e.g.,
FISMA). NVD integrates CWE into the scoring of
Common Vulnerabilities and Exposures (CVE®)
entries, upon which NVD is built, by providing a
cross section of the overall CWE structure. NVD
analysts score CVEs using CWEs from different
levels of the hierarchical structure.

The CWE classification with percentage of NVD
entries shows the following values [30]: SQL
Injection 17.85, Cross-Site Scripting (XSS) 14.58,
Buffer Errors 12.88, Permissions, Privileges,
and Access Control 9.04, Input Validation

7.98, Code Injection 7.8, Path Traversal 6.79,
Resource Management Errors 4.97, Information
Leak Disclosure 3.91, Numeric Errors 3.06,
Authentication Issues 2.72, Link Following
2.26, Cross-Site Request Forgery (CSRF) 1.47,
Credentials Management 1.32, Configuration
1.12, Cryptographic Issues 0.97, Format String
Vulnerability 0.59, Race Conditions 0.53, OS
Command Injections 0.16.

3.1. Vulnerabilities Classification

Web application vulnerabilities are: Injection
attack, Cross-site scripting (XSS) attack, Cross
Site Request Forgery (CSRF), Protocols and
session management vulnerabilities, Security
misconfiguration, Cryptographic storage vulne-
rabilities, Username enumeration.

SOA specific vulnerabilities are:

1.	 Web Services Layer [29],[10] : WSDL
scanning, Metadata spoofing, Attack
obfuscation, Over-sized cryptography,
Insufficient Logging, Insecure Configuration,
Inadequate Testing, Information Leakage.

2.	 Business Processes Layer: BPEL scanning,
Metadata spoofing, BPEL state deviation,
Instantiation flooding (direct and indirect),
WS-Addressing spoofing, Workflow
engine hijacking.

3.	 SOA oriented vulnerabilities:

(a) SOAP vulnerabilities [31]: Harmful SOAP
attachments, SOAP Action spoofing.

(b) XML vulnerabilities [32]: XML External
Entity (XEE) attack, XPath injection,
XML Denial of Service (DoS) attacks,
Schema poisoning.

4. SOA - Security Vulnerabilities
and their Mitigation

SOA is a collection of loosely coupled and
independent services (or resources), each with
a well-defined interface. Services are offered on
demand and can range from a simple service,
to a high level service repository, composed of
multiple services. Services can be delivered to an
end-user, to an application or to another service
with no need for human intervention.

http://nvd.nist.gov/home.cfm
http://cve.mitre.org/cve/

http://www.sic.ici.ro

362 Carmen Elena Cîrnu, Carmen Ionela Rotună, Adrian Victor Vevera, Radu Boncea

According to NIST, a vulnerability is defined as “a
flaw or weakness in system security procedures,
design, implementation, or internal controls
that could be exercised (accidentally triggered
or intentionally exploited)” [19] and results in
a security breach or in a violation of the system
security policy. In this context, in the following we
examine crucial SOA security issues - including
confidentiality, integrity, and availability -
while providing mitigation measures helpful in
increasing SOA security.

Security means integrity, reliability, and
confidentiality of the system. In particular, security
in a SOA ecosystem focuses on those aspects of
assurance that involve the accidental or malicious
intent of other people to damage, compromise
trust, or hinder the availability of SOA-based
systems to perform desired capability. SOA
Security Oasis definition: “The set of mechanisms
for ensuring and enhancing trust and confidence
in the SOA ecosystem.” [11].

End-to-end security capabilities include
federated authentication, which intercepts service
requests and adds the appropriate username and
credentials; validation of each service request and
authorization to make sure that the sender has the
appropriate privilege to access the service; and,
lastly, encryption/decryption of XML content at
the element level for both message requests and
responses. To address these intricate security
requirements trust models, WS-Security [3]
and other security related standards have been
developed [34].

Relationship of SOA Web Service Security
Requirements to Standards shows which
security requirements are satisfied by the various
specifications and standards as shown in Table 1.

Successfully implemented SOA security has to
be defined, planned, and implemented to both
threats and counter-measures in an agile manner.
Other important aspect of SOA security are
well defined service level agreements (SLAs)

Table 1. SOA Web Service Security Requirements relationship with Standards

Dimension Requirement Specifications
Messaging Confidentiality and Integrity WS-Security

SSL/TLS
Authentication WS-Security Tokens

SSL/TLS X.509 CERTIFICATES
Resource Authorization XACML

XrML
Privacy EPAL

XACML
Negotiation Registries UDDI

ebXML
Semantic Discovery SWSA

OWL-S
Business Contracts ebXML

Trust Establishment WS-Trust
XKMS
X.509

Trust Proxying SAML
WS-Trust

Federation WS-Federation
Security Properties Policy WS-Policy

Security Policy WS-Security

Availability WS-Reliable Messaging
WS-Reliability

	 363

ICI Bucharest © Copyright 2012-2018. All rights reserved

Measures to Mitigate Cybersecurity Risks and Vulnerabilities in Service-Oriented Architecture

and security metrics between service providers
and service consumers. SOA security may
also involve greater auditing and reporting to
adhere to regulatory compliance established by
governance structures.

4.1. Projects and Standards Addressing
SOA Security

The following is a summary of security open-
source tools for Web services:

secRT

The secRT is an Open Source security platform,
developed by CORISECIO [13] in cooperation
with the German Federal Office for Information
Security (BSI), which provides a development
framework that contains a full set of security
functionality. Security methods may be combined
with easy workflow methods to provide secure
and customized business processes. Configured
security processes are automatically distributed
to the runtime environment and executed there.

The secRT Framework offers features such as:
Entity Management which enables the integration
in existing meta directories, Key Management
- a complete infrastructure for PKI keys and
certificates and Cryptographic functions which
allow the choice of the algorithm.

WebSand

The overall goal of the WebSand FP7 project is
to empower Web application developers, hosters,
and users in designing, implementing, and running
secure applications [27]. The project enables the
specification and enforcement of three classes
of security policies: fine-grained access control
policies, information flow control policies and
secure composition policies. As a necessary
prerequisite for the enforcement of such policies,
one of the aims of WebSand is to enforce a
reliable separation of data and executable code,
e.g. through a strict type system. This separation
also counteract many types of injection attacks
targeting a server or relying on injected scripts
being reflected to a client-side end-user.

SWEPT

Started in March 2014 the SWEPT project [18]
provides required software components that can

be integrated within the current existing web
development frameworks, which enable the
creation of highly secure websites. SWEPT is
the first technology which aims to create self-
protected web applications and web services.
The main goal is to develop a new multifaceted
approach to mitigate malicious attacks on websites
by maximizing the security posture of websites
with a minimum of intervention needed by website
owners and administrators. In addition, the project
also aims to define a defacto standard and good
practice for securing websites.

w3af

w3af is a Web Application Attack and Audit
Framework with the goal to create a framework
to help secure web applications by finding and
exploiting all web application vulnerabilities [14].
The framework is easy to use and extend, and
licensed under GPLv2.0.

OWASP SKF

The Open Web Application Security Project
(OWASP) Security Knowledge Framework
relies on OWASP Application Security
Verification Standard and other resources
and is intended to be a tool used as a guide
for building and verifying secure software.
OWASP SKF provides a free, open source web
application security system, which also serves
as a training tool to teach developers about
application security. The SKF supports software
developers throughout the product lifecycle,
ensuring security in both pre-development and
post-release updates. It analyzes the processing
techniques that developers use to edit their data,
then matches those patterns to known security
vulnerabilities. After providing descriptions of
linked vulnerabilities and offering feedback on
how to implement solutions, the SKF validates if
security fixes were implemented correctly.

The WS-security standard

WS-Security is a web services security standard
published by OASIS consortium developed with
the aim to enforce integrity and confidentiality
on messages [22]. WSS relies on existing
security standards and specifications (such as
X.509, SAML assertions, Kerberos, XML digital

http://www.sic.ici.ro

364 Carmen Elena Cîrnu, Carmen Ionela Rotună, Adrian Victor Vevera, Radu Boncea

signatures, and XML encryption [26], etc.) to
define a framework for embedding the security
information within a SOAP message. WSS defines
an XML element called Security which is inserted
in the SOAP header and contains integrity,
identity, and confidentiality information and gives
the receiver the information necessary to decrypt
and validate the message.

WS-Trust

WS-Trust describes the model for establishing
both direct and brokered trust relationships
including intermediaries [12]. The Web Services
Trust Language (WS-Trust) uses the secure
messaging mechanisms of WS-Security to define
additional primitives and extensions for the
issuance, exchange and validation of security
tokens. WS-Trust also enables the issuance and
dissemination of credentials within different trust
domains. To secure a communication between two
parties, the two parties must exchange security
credentials (either directly or indirectly). However,
each party needs to determine if it can ‘trust’
the asserted credentials of the other party. This
specification defines extensions to WS-Security
for issuing and exchanging security tokens and
ways to establish and access the presence of trust
relationships. Using these extensions, applications
can engage in secure communication designed to
work with the general Web services architecture.

UDDI

Produced by OASIS, Security for Universal
Description, Discovery and Integration (UDDI)
allows Web services to be easily located and
subsequently invoked. Security for UDDI
enables publishers, inquirers and subscribers
to authenticate themselves and authorize the
information published in the directory.

4.2. SOA Vulnerabilities Mapping to
Mitigation

An attacker may attempt to compromise the
security of a SOA in several ways but the main
sources of attacks are third parties, that seek
to subvert interactions between legitimate
participants, and social engineering techniques.
In such a complex system with multiple ownership
boundaries and trust boundaries, it is important

to understand the threats in order to effectively
secure all components: messages, services and
data storage. Any of the contributing technologies
can be the subject of a threat but the risks can
be minimized by using mitigation measures as
cryptography standards and security technologies.

SOA vulnerabilities classification takes into
account vectors such as exploitability, preva-lence,
detectability and impact and is in line with the
top flaws identified by OWASP [24],[23]. The top
threats of SOA with easy exploitability, common
prevalence, easy detectability and severe impact
are: threats on Web Service implementation,
insufficient authentication and authorization and
XML specific attacks.

4.2.1. Threats on Web Service
Implementation

These threats, also called Injection flows, target
at finding and exploiting a vulnerability in the
code of the deployed web service. The attacker
sends malicious code to the interpreter in order to
alter the existing data, to produce an error, cause
repudiation issues such as voiding transactions,
gain database administrator privileges, destroy the
data or make it unavailable.

Exemples of vulnerabilities are SQL Injection,
XPath Injection, Cross-site Scripting.

An efficient mitigation measure is automated
dynamic scanning of the application for web
vulnerabilities such as CSRF, SQL Injection, XSS.
A simple technique for preventing Injection is
parameterized query usage where placeholders are
used for parameters and supplied when executing
the query.

Other measures include:

-- checking the code is an efficient method to
see if the application uses interpreters safely;

-- statements received from users should be
validated by means of appropriate threat-
detection rules before executing;

-- prevent usage of weak password or
default password;

-- use encrypted connections – HTTPS.

	 365

ICI Bucharest © Copyright 2012-2018. All rights reserved

Measures to Mitigate Cybersecurity Risks and Vulnerabilities in Service-Oriented Architecture

Open-source solutions W3af Web Application
Attack and Audit Framework, InSpec and
WebSand can be used to increse the level
of security.

4.2.2. Insufficient Authentication and
Authorization

Authentication verifies the identity of the user
while Authorization establishes whether the
interaction is legitimate, ensuring that the involved
participants have permission to participate in the
interaction. An authenticated, but unauthorized
attacker can try to access unauthorized data and
functions when access control information is not
properly defined.

Examples of vulnerabilities are Dictionary attacks,
IP Spoofing, Message Eavesdropping, Brute force
attacks, Credential theft, Elevation of privilege.

To prevent these type of attacks PKI, multi-factor
authentication, or the newer XML security-based
technologies such as XML-Signature and SAML
should be used. Also strong password policies,
including storing credentials in a secure manner
and using authentication mechanisms, that do not
require clear text credentials to be passed over the
network are also efficient mitigation measures.

Other recommended mitigation measures are:

-- Authentication Confirmation Using Tokens
& Certificates;

-- Access Control usage controls what an
„authorized‟ user is allowed to do;

-- Cryptographic random number generators to
generate session IDs.

4.2.3. XML Specific Attacks

XML is a versatile data-encoding standard.
However, parsing XML can be processor intensive
and complex, which can lead to security issues.
One common issue is a denial of service (DOS)
against a web service. If an attacker crafts an
XML message with very large payloads, recursive
content, excessive nesting, malicious external
entities, or with malicious DTDs (Data Type
Documents), a DOS can occur.

The use of XML for messaging makes the
infrastructure particularly prone to attacks

targeting those components processing the
messages [29]. These threats may at least make
the infrastructure unavailable and at worst
compromise the whole system by giving access
to unauthorized users.

Examples of XML specific attacks are XML-
bombs (XML documents with endless recursions),
schema poisoning (an alteration in the XML
Schema of a message, leading to inconsistencies),
XEE atack (XML External Entity attack is a type
of attack against an application that parses XML
input), XML Denial-of-Service (an attacker tries
to prevent legitimate users from accessing a
service by flooding the service with thousands
of requests) or Recursive Payloads (where the
attacker tries to send too deeply nested data to
the web server so that the XML parser will be
heavily stressed).

A validation service acting as a security proxy or
“filter” to any application service can efficiently
stop the threat. Another mitigation is to use
filters, XML Gateways, or XML parser options
when processing XML to prevent parsers from
processing malicious messages.

Examples of tools for preventing XML attacks are
OWASP SKF and SWEPT. WS-Security(WSS)
and WS-Trust and UDDI standards implementation
also increases the security level.

4.3. Assessment Frameworks/ Tools:
ENISA Technical Guideline on
Security Measures

Enisa defines security incidents as “A breach
of security or a loss of integrity that could have
an impact on the operation of electronic tele-
communications networks and services “ [7].

Enisa’s technical guideline on security measures is
useful for assessing cybersecurity, as the guideline
basically addresses physical, network and software
systems implemented for end-users, as well as the
human resource management of these systems.

Also the security guideline addresses the
security issues mainly in a post implementation
scenario and provide mitigations to most
frequent security vulnerabilities.

http://www.sic.ici.ro

366 Carmen Elena Cîrnu, Carmen Ionela Rotună, Adrian Victor Vevera, Radu Boncea

The security objectives within the guideline
have been derived from a set of international and
national standards that are commonly used by
providers in the EU’s electronic communication
sector. For these security objectives there is
a list of security measures which could be
implemented by providers to reach the security
objective depending on the level of security
intended to be achieved.

The most important security measures that are
recommended in the Enisa guideline are:

-- Governance and risk management

-- Human resources security

-- Security of systems and facilities

-- Operations management

-- Incident management procedures

-- Business continuity management

-- Monitoring, auditing and testing.

Risks vary for different service providers and
they depend on specific details like provider type,
services type and so on.

5. Conclusion

SOA and Web Service technologies offer
many benefits and are revolutionizing the way

software interacts, but the real benefits are
usually accompanied by serious security flaws.
Being aware of the risks to Web Services before
deploying Web Services in a SOA can help
improve the overall security.

Better protection against cyber-attacks requires
national and transnational collaboration
mechanisms, allowing access to external resources
(e.g. cybersecurity research and development,
tailored information, certified training) and
experiences (e.g.cooperation).

The study addressed the main SOA vulnerabilities
considering exploitability, prevalence,
detectability and impact and performed a mapping
to mitigation measures and tools. The current
study provides an analysis of the capabilities and
specific aspects of SOA and identifies the main
vulnerabilities that are classified by their nature
and impact. It also analyzes security standards
and open source tools to reduce security risks. The
result consists in mapping research on prevention
measures, including best practices, procedures,
techniques and tools designed to mitigate the open
source vulnerabilities previously identified. Thus
performing threat assessments, creating mitigation
strategies, and determining acceptable levels of
risk are the keystone for an effective process to
mitigating threats in an efficient way. The result
can be an acceptable level of risk to the safety and
integrity within any SOA ecosystem.

REFERENCES

1.	 Altaani, Noor A. & Jaradat, A. (2012).
Security Analysis and Testing in Service
Oriented Architecture.

2.	 Anderson, S. et al. (February 2005).
Web Services Trust language (WS-
Trust). Public draft release, Actional
Corporation, BEA Systems, Computer
Associates International, International
Business Machines Corporation, Layer
7 Technologies, Microsoft Corporation,
Oblix Inc., OpenNetwork technologies,
Ping Identity, Reacticity, RSA Security,
and Verisign.

3.	 Atkinson, B. et al. (April 2002). Web
Services Security (WS-Security), Technical
report, Microsoft, IBM and Verisign.

4.	 Boncea, R. & Bacivarov, I. C. (January-
March 2016). Security in Internet of
Things: Mitigating the Top Vulnerabilities,
Quality Assurance Journal, XXII(85), 11-
17. ISSN 1224–5410.

5.	 Bowen, P., Hash, J. & Wilson, M. (October
2006). Information Security, NIST Special
Publication 800-100.

6.	 Colan, M. (April 2004). Service-Oriented
Architecture expands the vision of Web
services, Part 2, IBM DeveloperWorks.

7.	 ENISA Technical Guideline on Security
Measures, Version 2.0, October 2014.

8.	 Farell, S. et al. (July 2003). Assertions
and protocol for the OASIS security

	 367

ICI Bucharest © Copyright 2012-2018. All rights reserved

Measures to Mitigate Cybersecurity Risks and Vulnerabilities in Service-Oriented Architecture

assertion markup language (SAML), V1.1.
Committee specification, OASIS.

9.	 Hafner, M. & Breu, R. (2008). Security
engineering for service-oriented
architectures. Springer Science &
Business Media.

10.	Harney et al. (2006). Web Services
Vulnerability Assessment 2004, Group
Secure Association Key Management
Protocol (online), http://www.ietf.org/
rfc/rfc4535.txt.

11.	http://docs.oasis-open.org/soa-rm/
soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.pdf
(December 2012). OASIS Reference
Architecture Foundation for Service
Oriented Architecture Version 1.0.

12.	http://docs.oasis-open.org/ws-sx/ws-
trust/200512, Oasis WS Trust.

13.	h t t p : / / o p e n s o u r c e . c o r i s e c i o .
com/?id=secrt_framework, Corisecio
Framework.

14.	http://w3af.org/, w3af Web Application
Attack and Audit Framework.

15.	http://www.cloudcomputing-news.
net/ news/ 2014/nov/21/top-cloud-
computing-threats-and-vulnerabilities-
enterprise-environment/, Top Cloud
Computing Threats.

16.	h t tp : / /www.compute rwor ld . com/
article/2565944/security0/sans-unveils-
top-20-security-vulnerabilities.html, Top
20 Security vulnerabilities.

17.	http://www.opengroup.org/soa/source-
book/soa_refarch/p5.htm - SOA
Reference Architecture, The Open Group.

18.	http://www.swept.eu/, Swept Project.

19.	https://csrc.nist.gov/cyberframework
(2018). NIST Cybersecurity framework.

20.	https://cwe.mitre.org/, Common Weakness
Enumeration (CWE) Community.

21.	h t t p s : / / w w w. k b . c e r t . o r g / v u l s / ,
Vulnerability Notes Database.

22.	https://www.oasis-open.org/committees/
tchome. php?wg_abbrev=wss, OASIS
Web Services Security (WSS) TC.

23.	https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project,
Owasp Top Ten Vulnerabilities.

24.	https://www.owasp.org/index.php/
OWASP_Secu r i t y_Knowledge_
Framework, Owasp Security
Knowledge Framework.

25.	h t t p s : / / w w w. s i f a s s o c i a t i o n . o rg /
NewsRoom/White%20Papers/Data%20
P r i v a c y % 2 0 S e c u r i t y % 2 0 a n d % 2 0
Interoperability.pdf, SIF Association, Data
Privacy, Security and Interoperability.

26.	https://www.w3.org/TR/xmlenc-core1/,
XML Encryption Syntax and Processing
Version 1.1.

27.	https://www.websand.eu, Websand Project.

28.	https://www2.opengroup.org, The Open
Group, SOA white paper.

29.	Lindstrom, P. (2004). Attacking and
Defending Web Services, White-paper,
Spire Security.

30.	Lowis, L. & Accorsi, R. (2009). On
a Classification Approach for SOA
Vulnerabilities. In 33rd Annual IEEE
International Computer Software and
Applications Conference, 2009, Seattle,
WA (pp. 439-444). doi: 10.1109/
COMPSAC.2009.173.

31.	Mohamed, B. I. & Mohamed, S. A. R.
(Mar-Apr. 2014). SOA Security Threats
on SOAP Web Services–A Critical
Analysis, IOSR Journal of Computer
Engineering (IOSR-JCE), 16(2), Ver. XI,
135-141. e-ISSN: 2278-0661, p- ISSN:
2278-8727.

http://www.sic.ici.ro

368 Carmen Elena Cîrnu, Carmen Ionela Rotună, Adrian Victor Vevera, Radu Boncea

32.	Moradian, E. & Hakansson, A. (2006).
Possible attacks on XML Web Services,
IJCSNS International Journal of
Computer Science and Network Security,
Vol. 6, 154-170.

33.	Nassar, B. P., Badr, Y., Biennier,
F. & Barbar, K. (2012). Securing
Collaborative Business Processes: A
Methodology for Security Management
in Service-Based Infrastructure.
In: Frick, J. & Laugen, B.T. (eds.)
Advances in Production Management
Systems. Value Networks: Innovation,
Technologies, and Management. APMS
2011. IFIP Advances in Information and
Communication Technology, Vol. 384.
Springer, Berlin, Heidelberg.

34.	Papazoglou, M. P. & Van Den Heuvel, W.
J. (2007). Service oriented architectures:
approaches, technologies and research
issues, The VLDB Journal, 16(3), 389-415.

35.	Phan, C. (2007). Service Oriented
Architecture (SOA) - Security Challenges
and Mitigation Strategies. In MILCOM
2007 - IEEE Military Communications
Conference (pp. 1-7).

36.	Alwadain, A., Korthaus, A., Fielt, E. &
Rosemann, M. Integrating SOA into an
Enterprise Architecture: a comparative
analysis of alternative approaches. In
Proceedings of the 5th IFIP International
Conference on Research and Practical
Issues of Enterprise Information Systems
-CONFENIS. Brazil.

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	page7
	page8
	page9
	_Hlk518562184
	_GoBack
	_Hlk525200695
	_GoBack
	OLE_LINK675
	OLE_LINK676
	OLE_LINK691
	OLE_LINK692
	OLE_LINK758
	OLE_LINK759
	OLE_LINK777
	OLE_LINK778
	OLE_LINK754
	OLE_LINK755
	OLE_LINK63
	OLE_LINK57
	OLE_LINK58
	OLE_LINK52
	OLE_LINK53
	OLE_LINK54
	OLE_LINK71
	OLE_LINK61
	OLE_LINK62
	OLE_LINK64
	OLE_LINK65
	OLE_LINK201
	OLE_LINK202
	OLE_LINK1
	OLE_LINK2
	OLE_LINK224
	OLE_LINK225
	_Ref518485983
	_Ref518485983
	_Ref518486338
	_Ref518486007
	_Ref518486478
	_Ref518486382
	_Ref518486362
	_Ref518562591
	_Ref518486036
	_Ref519073989
	_Ref518989310
	_Ref519073742
	_Ref519074467
	_Ref518486430
	_Ref518486456
	_Ref518485951
	_GoBack
	_GoBack
	_GoBack
	_Hlk526243018
	baep-author-id2
	_GoBack
	_GoBack
	_GoBack
	_Hlk512967206
	_GoBack
	_Ref508793658
	_Hlk506553364
	_Ref509939463
	_Ref509940412
	_Ref509507802
	_Ref512962362
	_Hlk515120268
	_Ref508891898
	_Ref508892763
	_Hlk506554044
	_Hlk506556508
	_Ref510542491
	_Hlk506557328
	_Ref508981331
	_Ref515456000
	_Hlk506557732
	_Hlk506558795
	_Ref509127234
	_Ref509590998
	_Ref510542648
	_Ref510542643
	_Ref509500315
	_Ref513036771
	_Ref509137065
	_Ref510543007
	_Ref509179060
	_Ref513036793
	_Hlk505095368
	_Hlk506559133
	_Ref526327754
	_Ref526327867
	_Ref526327914
	_Ref526327997
	_Ref526328048
	_Hlk506559234
	_GoBack
	_GoBack
	_GoBack
	_1fob9te
	_GoBack

