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1. Introduction

For solving the unconstrained optimization problem:

min ( ),f x                                                  (1.1)

where : nf R R→  is a twice continuous 
differentiable function, the well known quasi-
Newton BFGS method introduced by Broyden [7], 
Fletcher [12], Goldfarb [13] and Shanno [23] run 
as follows. Starting with an initial point 0

nx R∈  
and an initial approximation 0

n nB R ×∈  to the 
Hessian of function ,f  symmetric and positive 
definite, this method generates the sequence{ }kx :

1 ,k k k kx x dα+ = +                                       (1.2)

0,1,...,k =  where n
kd R∈  is the BFGS search 

direction computed as solution of the linear 
algebraic system:

,k k kB d g= −                                              (1.3)

and kg  is the gradient ( )kf x∇  of f  at .kx  
The matrix kB  in (1.3), known as the BFGS 
approximation to the Hessian 2 ( )kf x∇  of f  at 

,kx  is computed by the classical formula:

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y yB B
s B s y s+ = − +

                  
(1.4)

0,1,...,k =  where 1k k ks x x+= −  and 1 .k k ky g g+= −  
Observe that the first two terms in (1.4) depend by 

ks  and the approximation .kB  Only the third one 
is dependent by .ky  An important property of the 
BFGS formula (1.4), which is called the standard 
BFGS updating, is that 1kB +  inherits the positive 
definiteness of kB  if 0.T

k ky s >  The condition 
0>k

T
k sy  holds if the stepsize kα  in (1.2) is 

determined by the Wolfe line search conditions 
[26, 27]:

( ) ( ) ( ) ,T
k k k k k k kf x d f x g x dα σα+ ≤ +        (1.5)

( ) ( ) ,T T
k k k k k kg x d d g x dα ρ+ ≥                   (1.6)

where the positive constants σ  and ρ  satisfy 
0 1.σ ρ< < <  Since kB  is positive definite, 
the search direction kd  generated by (1.3) is a 
descent direction of f  at ,kx  no matter whether 
the Hessian is positive definite or not. 

To improve the numerical behavior and to 
accelerate the convergence of the standard BFGS 
method, the modified BFGS and the scaled BFGS 
methods have been introduced. The modified 
BFGS methods are based on modifying the vector 

ky  in such a way to improve the approximation 
of the Hessian of the minimizing function 
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and to establish the global and the superlinear 
convergence for general convex functions. The 
scaled BFGS methods, on the other hand, use the 
scaling the terms of the BFGS updating formula 
(1.4). Both these variants of the BFGS method 
generate efficient algorithms able to solve a large 
diversity of unconstrained optimization problems 
of different dimensions and complexities.

In [4] a double parameter scaled BFGS method for 
unconstrained optimization has been presented, 
where the first two terms of the standard BFGS 
update (1.4) are scaled by a positive parameter 
selected in such a way to cluster the eigenvalues 
of 1kB +  while the third one is scaled by another 
positive parameter chosen to reduce the large 
eigenvalues of 1.kB +  In this paper we consider a 
combination of the modified BFGS methods and 
of the scaled BFGS updates. In other words, our 
approach is as follows: firstly the standard BFGS 
method is modified by modifying the vector ,ky  
and secondly this modified BFGS update is scaled. 
This is motivated by the fact that the modified 
BFGS method (with vector ky  modified) is more 
efficient and more robust versus the well known 
standard BFGS update (see for example [14, 15, 
25, 29 and 30]). Therefore, we are interested to 
see whether scaling the modified BFGS methods, 
i.e. scaling the BFGS with vector ky  modified, 
lead us to more efficient algorithms. Section 2 
presents the main modified BFGS methods where 
the vector ky  is modified in different ways. To 
be self-contained, the main scaled BFGS updates 
are presented in Section 3 of this paper (see also 
[4]). Historically it has been noticed that the 
BFGS update tends to produce updates with large 
eigenvalues. Therefore, in Section 4 we develop 
a double parameter scaled variant of the Yuan 
and Wei [30] modified BFGS update, which 
improves the structure of eigenvalues. To cluster 
the eigenvalues, the first two terms of the modified 
BFGS update are scaled with a positive parameter. 
On the other hand, to shift the large eigenvalues 
to the left, the third term is also scaled with 
another positive parameter. In Section 5 the global 
convergence of this variant of double parameter 
scaled modified BFGS method is proved in vey 
general conditions without assuming the convexity 
of the minimizing function and using only the 
trace and the determinant of the double parameter 
scaled modified BFGS matrix. Finally, in Section 

6 intensive numerical results and comparisons for 
a collection of 80 medium size (100 variables) 
unconstrained optimization problems of different 
complexities taken from [1] are presented. We 
have the computational evidence that our double 
parameter scaled modified BFGS method is more 
efficient and more robust versus some other scaled 
BFGS methods.

2. Some modified BFGS methods

2.1 Li and Fukushima BFGS updating (Li and 
Fukushima [14]). In order to obtain the global 
convergence of the BFGS method for nonconvex 
minimizing functions, Li and Fukushima [14] 
introduced a slight modification of the standard 
BFGS update. In [14] the modified BFGS is 
computed as:

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B z zB B
s B s s z+ = − +

                   
(2.1)

where
2(max{0, / } ( ))T

k k k k k k kz y y s s g sφ= + − +

and function : R Rφ →  satisfies the following 
conditions: (i) ( ) 0tφ >  for all 0;t >  (ii) ( ) 0tφ =  
if and only if 0;t =  (iii) ( )tφ  is bounded if t  is 
in a bounded set. Observe that by definition of kz  
we have that 2max{ , ( ) } 0.T T

k k k k k ks z s y g sφ≥ >  
This is sufficient to guarantee the positive 
definiteness of 1kB +  as long as kB  is positive 
definite. Therefore (2.1) is well defined. Li and 
Fukushima consider ( ) ,t tφ µ=  where 0µ >  is 
a constant.

2.2 Another Li and Fukushima BFGS updating 
(Li and Fukushima [15]). This modified BFGS, 
introduced in [15], is defined as:

2
1

, if ( ),

, otherwise,

T T T
k k k k k k k k

k kT T
k k k k kk k

k

B s s B z z s zB g
s B s s zB s

B

φ
+


− + ≥

= 



                                                                (2.2)
where kz  and φ  are the same as in the first 
updating formula of Li and Fukushima. For this 
modified BFGS formula 0T

k ks z >  is satisfied, and 
therefore 1kB +  inherits the positive definiteness of 

kB  along the iterations. For these two modified 
BFGS updating formulas, Li and Fukushima 
proved their global convergence and the 
superlinear convergence.
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2.3 Wei, Yu, Yuan and Lian BFGS updating 
(Wei, Yu, Yuan and Lian [25]). In order to get 
a better approximation of the Hessian of the 
minimizing function, based on the results given 
by Li, Tang and Wei [16], Wei, Yu, Yuan and Lian 
[25] proposed a modified BFGS method which 
contains not only the gradient value information 
but also the function values at the current and the 
previous steps. Their updating formula is defined 
as follows:

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y yB B
s B s s y+ = − +

 

                   
(2.3)

where

2 ,k
k k k

k

y y s
s
ρ

= +

                                    
(2.4)

2[ ( ) ( )]k k k k kf x f x dρ α= − +

       ( ( ) ( )) .T
k k k k kg x d g x sα+ + +                

(2.5)

The numerical experiments show that this 
modified BFGS method is more efficient that the 
standard BFGS method (see [25]).

2.4 Yuan and Wei BFGS updating (Yuan and Wei 
[29, 30]). On the other hand, Yuan and Wei [30] 
suggested another modified BFGS method for 
which the global and the superlinear convergence 
have been established. The corresponding 
updating formula is:

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y yB B
s B s s y+ = − +

                  
(2.6)

where

2
max{ ,0} ,k

k k k
k

y y s
s
ρ

= +

                           
(2.7)

and kρ  is given by (2.5). This modification can 
ensure that 1kB +  inherits the positive definiteness 
of kB  for general convex functions. 

3. Some scaled BFGS methods

For the paper to be self-contained, this section 
presents some scaled BFGS methods taken from 
[4]. A scaled BFGS update with a multitude of 
variants was given by:

1 ,
T T

k k k k k k
k k kT T

k k k k k

B s s B y yB B
s B s y s

γ+ = − +
               

(3.1)

where 0kγ >  is the scaling parameter. For the 
scaling parameter kγ  in (3.1) some values have 
been proposed in literature, as follows (see [4]).

3.1 Scaled BFGS with different interpolation 
conditions (Biggs [5, 6] and Yuan [28]). 

The value of the scaling parameter kγ  proposed 
by Biggs [5, 6] is:

1 1
6 ( ( ) ( ) ) 2.T

k k k k kT
k k

f x f x s g
y s

γ + += − + −
   

(3.2)

In the same line of research, Yuan [28] suggested 
the following value for the scaling parameter

1 1
2 ( ( ) ( ) ).T

k k k k kT
k k

f x f x s g
y s

γ + += − +
        

(3.3)

For general nonlinear functions, the inexact line 
search does not involve the positivity of .kγ  In 
these cases Yuan restricted kγ  in the interval 
[0.01,100]  and proved the global convergence of 
this variant of the scaled BFGS method.

3.2 Spectral scaled BFGS (Cheng and Li [10]). 
Another scaled BFGS method was introduced 
by Cheng and Li [10]. In this update the scaling 
parameter kγ  in (3.1) is computed as

2 ,
T
k k

k
k

y s
y

γ =

                                               
(3.4)

obtained as solution of the problem: 
2min .k k ks yγ−  

3.3 Scaled BFGS with diagonal preconditioning 
and conjugacy condition (Andrei [2]). Andrei [2] 
introduced another scaled BFGS update given 
by (3.1), in which the scaling parameter kγ  is 
computed in an adaptive manner as:

2min ,1 ,
T
k k

k
k k

y s
y

γ
β

  =  
+                             

(3.5)

where 0>kβ  for all .,1,0 =k  Intensive 
numerical experiments showed that this scaled 
BFGS algorithm with 1

T
k k ks gβ +=  is the best 

one, being more efficient and more robust versus 
the standard BFGS algorithm as well as versus 
some other scaled BFGS algorithms.

3.4 Scaling the first two terms of the BFGS update 
with a parameter (Oren and Luenberger [20] and 
Nocedal and Yuan [19]). This scaled BFGS update 
is different from (3.1) and is defined as:

1 ,
T T

k k k k k k
k k k T T

k k k k k

B s s B y yB B
s B s y s

δ+
 

= − + 
             

(3.6)
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where kδ  is a positive parameter. Concerning 
the selection of kδ  in (3.6) Oren and Luenberger 
[20] suggested /T T

k k k k k ky s s B sδ =  being one of 
the best, as it simplifies the analysis. 

3.5 A double parameter scaled BFGS (Andrei [4]). 
Motivated by the idea of changing the structure of 
the eigenvalues of the BFGS approximation to the 
Hessian matrix (1.4), a double parameter scaled 
BFGS method has been suggested by Andrei [4], 
In this method the updating of the approximation 
Hessian matrix 1kB +  is computed as:

1 ,
T T

k k k k k k
k k k kT T

k k k k k

B s s B y yB B
s B s y s

δ γ+
 

= − + 
          

(3.7)

where kδ  and kγ  are positive parameters with the 
following values: 

2
1

min ,1 ,
T
k k

k T
k k k

y s
y s g

γ
+

  =  
+                      

(3.8)

2

2 ,

k
k T

k k
k

k k
T
k k k

y
n

y s
B s

n
s B s

γ
δ

−
=

−
                                     

(3.9)

where kγ  is given by (3.8). 

3.6 Scaling the last terms of the BFGS update with 
two positive parameters (Liao [17]). In another 
avenue of research, Liao [17] introduced the two 
parameter scaled BFGS method: 

1

T T
k k k k k k

k k k kT T
k k k k k

B s s B y yB B
s B s y s

δ γ+ = − +
          

(3.10)

where the parameters scaling the terms in the 
BFGS update are computed in an adaptive way 
subject to the values of a positive parameter kτ  as:

,
( , ) ,

( ,1),

T T
k k k k k

T T T T
k k k k k k k k k k k k

k

s B s y s
s B s y s s B s y sδ γ

τ

 
 = + + 



                

if ,

otherwise,

T
k k k

kT T
k k k k k

s B s
s B s y s

τ


≥ 
+ 


            

(3.11)

where 0 1.kτ< <  

4. A double parameter scaled 
modified BFGS method

There are many possibilities to define a scaled 
modified BFGS method. The idea is to scale the 
modified BFGS methods presented in Section 
2 using the scaling procedures described in 
Section 3. In this paper we consider a scaling 
of the Yuan and Wei [30] modified BFGS given 
by (2.6) and (2.7) using the double parameter 
scaling BFGS procedure by Andrei [4] defined 
by (3.7)-(3.9). Concerning the modified BFGS 
method (2.6), two important tools in the analysis 
of its properties and of its convergence are the 
trace and the determinant. The trace of a matrix is 
the sum of its eigenvalues. The determinant of a 
matrix is the product of its eigenvalues. By direct 
computation from (2.6) we obtain:

2 2

1( ) ( ) .k k k
k k T T

k k k k k

B s y
tr B tr B

s B s y s+ = − +
            

(4.1)

On the other hand, as in [4] we have:

1det( ) det( ) .
T
k k

k k T
k k k

y sB B
s B s+ =

                       
(4.2)

In practical implementation the search direction 
is computed as

1 1 1,k k kd H g+ + += −                                      (4.3)

where 1kH +  is the BFGS approximation to the 
inverse of 1kB +  given by (2.6). With a little 
algebra, using the rank-one Sherman-Morrison-
Woodbury formula twice, from (2.6) we get:

1

T T
k k k k k k

k k T
k k

H y s s y HH H
y s+
+

= −

           
1 .

T T
k k k k k

T T
k k k k

y H y s s
y s y s

 
+ + 
                     

(4.4)

The study given in [3] emphasized that the 
efficiency of the BFGS method is strongly 
dependent on the structure of the eigenvalues of 
the approximation to the Hessian matrix. Powell 
[21] and Byrd, Liu and Nocedal [8] point out that 
the BFGS method suffers more from the large 
eigenvalues than from the small ones, i.e. the 
BFGS update tends to produce updates with large 
eigenvalues. Now, we see that the second term 
on the right hand side of (4.1) being negative, 



 139

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Double Parameter Scaled Modified Broyden-Fletcher-Goldfarb-Shanno Method...

it produces a shift of the eigenvalues of the 
modified 1kB +  given by (2.6) to the left, and this is 
independent whether the BFGS update is modified 
or not. Therefore, by properly scaling the second 
term on the right hand side of (2.6), the scaled 
modified BFGS method is able to correct large 
eigenvalues. On the other hand, the third term 
on the right hand side of (4.1) being positive it 
produces a shift of the eigenvalues of the modified 

1kB +  to the right. But, 

2 2
2

2max{ ,0) Tk
k k k k

k

y y y s
s
ρ

= +

          

2

2
(max{ ,0)) ,k

ks
ρ

+

and

max{ ,0} .T T T
k k k k k k ky s y s y sρ= + ≥

Therefore, the third term on the right hand side of 
(4.1) can be bounded as:

2 2

2 2
max{ ,0} max{ ,0}2 .k k k k

T T T
k k k k k k k k

y y
s y s y s s s y

ρ ρ 
 ≤ + +
 
 

For convex functions, for all ,k  2 / ,T
k k ky s y M≤  

where M  is a positive constant [18]. If the above 
bound is large, then the modified update 1kB +  (2.6) 
may have large eigenvalues. Therefore, a correction 
of the structure of the eigenvalues of the modified 

1kB +  (2.6) by Yuan and Wei [30] can be achieved 
by scaling the corresponding terms in (2.6) and 
this is the main motivation for which we introduce 
the scaled modified BFGS methods. Therefore, in 
order to change the structure of the eigenvalues of 
the modified BFGS approximation to the Hessian 
matrix given by (2.6) in this section we propose a 
double parameter scaled modified BFGS method in 
which the updating of the approximation Hessian 
matrix 1kB +  is computed as:

1 ,
T T

k k k k k k
k k k kT T

k k k k k

B s s B y yB B
s B s s y

δ γ+
 

= − + 
         

(4.5)

where kδ  and kγ  are positive parameters and 
ky  is determined as in (2.7). Observe that this 

scaled modified BFGS update contains both the 
gradient value information and the function values 

in two successive points. In our scaled modified 
BFGS method given by (4.5) the parameter kδ  is 
selected to cluster the eigenvalues of 1kB +  and kγ  
is determined to reduce the large eigenvalues of 

1,kB +  thus hoping to obtain a better distribution 
of the eigenvalues.

Using the rank-one Sherman-Morrison-Woodbury 
update formula twice, from (4.5) we get 

1
1 1,k kH B−
+ +=  where

1
1 T T

k k k k k k
k k T

k k k

H y s s y HH H
y sδ+

 +
= −



                 
.

T T
k k k k k k

T T
k k k k k

y H y s s
y s y s

δ
γ

 
+ +  

           

(4.6)

is the approximation to the inverse Hessian. In our 
algorithm the stepsize kα  in (1.2) is determined 
by the Wolfe line search (1.5) and (1.6). Therefore 

0.T
k ks y >  If 0,kρ >  then we have

2 0.T T T Tk
k k k k k k k k k k

k

s y s y s s y s y
s
ρ ρ

 
 = + = + > >
 
 

Proposition 4.1. If the stepsize kα  is determined 
by the Wolfe line search (1.5) and (1.6), kB  is 
positive definite and 0,kγ >  then 1kB +  given by 
(4.5) is also positive definite.

Proof  Using the symmetry and the positivity of 
,kB  we have

2( ) ( )( ),T T T
k k k k k ks B z s B s z B z≤

with equality if 0=z  or .0=ks  On the other 
hand, by the Wolfe line search (1.5) and (1.6) we 
have that 0.T

k ky s >  Therefore, using the above 
inequality we get:

1

T T
T T k k k k

k k k k T
k k k

z B s s B zz B z z B z
s B s

δ δ+ = −

2( )T T T
Tk k k k

k k k kT T
k k k k k

z y y z z B sz B z
y s s B s

γ δ δ+ = −

2 2( ) ( ) 0,
T T

k k
k kT T

k k k k

z y z y
y s y s

γ γ+ ≥ >

for any nonzero .z  <
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If 1,kδ =  1kγ =  and k ky y=  for all 0,1,...,k =  
then the above algorithm is exactly the standard 
BFGS algorithm. For different values of the 
parameters kδ  and kγ  in (4.5) (or (4.6)), different 
scaled modified BFGS algorithms are obtained. 
Therefore, in order to implement the SMBFGS 
algorithm, some procedures for kδ  and kγ  in 
step 5 must be defined. A variant of SMBFGS, 
we consider in this paper, inspired from [4], is 
as follows. Since the scaled BFGS with diagonal 
preconditioning and conjugacy condition is the 
best one (see [2]), in our scaled modified BFGS 
algorithm kγ  is computed as:

2
1

min ,1 ,
T
k k

k T
k k k

y s
y s g

γ
+

  =  
+                      

(4.7)

for all .,1,0 =k  Concerning the parameter kδ , 
the idea taken from the linear conjugate gradient 
methods (see also [4]), is to select it in such a way 
that the eigenvalues of 1+kB  to be clustered. Since 
the trace of a matrix is the sum of its eigenvalues, 
the parameter kδ  is selected in such a way that 
the trace of 1kB +  given by (4.5) to be equal to .n  
Therefore, considering the trace of 1kB +  given by 
(4.5), from the equation 1( )ktr B n+ =  we obtain: 

2

2 ,

k
k T

k k
k

k k
T
k k k

y
n

y s
B s

n
s B s

γ
δ

−
=

−
                                     

(4.8)

where kγ  is given by (4.7).

Proposition 4.2. Let kδ  be computed as in (4.8). 
Then, for any 0,1,k =  , kδ  is positive and close 
to 1.                                                          

Proof Observe that along the iterations 
.01 →+k

T
k gs  Hence, 2 2

1/ ( )T
k k k ky y s g ++  is 

close to 1. On the other hand, kB  is symmetric 
and positive definite. Therefore, it has real and 
positive eigenvalues: .,,1 nλλ   Since kB  is 
nonsingular and tr B nk( ) ,=  it follows that for 
any ,,,1 ni =  0iλ >  such that 

1
.

n
ii

nλ
=

=∑  
But 2

0 0 0 0 0.TB s s B s=  For k  sufficiently large, 
20 1k kB s< <  and 0 1.T

k k ks B s< <  Since 2
k kB s  

and T
k k ks B s  are approximately of the same order of 

magnitude, it follows that 2 / .T
k k k k kn B s s B s>>  

Therefore, we have 2 / T
k k k kn y y sγ>>  and 

,/2
kk

T
kkk sBssBn >>  i.e. for any 0,1, ,k =   

kδ  is positive and close to 1. Observe that the 
bigger n  is, the closer to 1 kδ  is.<

5. Global convergence of SMBFGS

The convergence analysis of SMBFGS is based on 
the same principles as those presented by Andrei 
[4] (see also Li and Fukushima [14] and Byrd and 
Nocedal [9]). 

Proposition 5.1. Let kδ  be computed as in (4.8) for 
0,1, .k =   Then, there are the positive constants 

0 δ< < ∆  such that for any 0,1, , ,j k=   

The scaled modified BFGS algorithm – SMBFGS

1.
Initialization. Choose an initial point 0

nx R∈  and an initial positive definite matrix 0.H  Choose 
the constants ,σ  ρ  with 0 1,σ ρ< < <  and 0ε >  sufficiently small. Compute 0 0( ).g f x= ∇  
Set 0 0.d g= −  Set 0.k =

2. Test a criterion for stopping the iterations. For example, if ,kg ε≤  then stop the iterations. 
Otherwise, continue with step 3.

3. Compute the stepsize 0kα >  satisfying the Wolfe line search conditions (1.5) and (1.6).

4. Compute 1 ,k k k kx x dα+ = +  1 1( )k kf f x+ +=  and 1 1( ).k kg f x+ += ∇  Set 1 ,k k ks x x+= −  
1 .k k ky g g+= −

5. Compute the scaling factors kδ  and .kγ
6. Compute ky  as in (2.7).
7. Update the inverse Hessian kH  using (4.6).
8. Compute the search direction as 1 1 1.k k kd H g+ + += −
9. Set 1k k= +  and continue with step 2.                                                                               <

The corresponding scaled BFGS algorithm can be presented as follows.
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1 .k k jδ δ δ δ−< < ∆                                     (5.1)

Proof From Proposition 4.2 it follows that kδ  is 
close to 1 for any 0,1, .k =   As a consequence, 
there are the positive constants 0 δ< < ∆  such 
that any product of the form 1 ,k k jδ δ δ−   for any 

0,1, ,j =  is bounded as in (5.1). <

Proposition 5.2. Consider the scaled modified 
1kB +  given by (4.5), where kγ  and kδ  are 

computed as in (4.7) and (4.8), respectively. Then

1 0( ) ( ) ( 1)ktr B tr B k+ ≤ ∆ + ∆ +                       (5.2)
and

2

0
0

1( ( ) ) .
k

i i
T
i i ii

B s
tr B k

s B s δ δ=
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≤ + +∑

                 (5.3)
Proof  Observe that

2 2
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k k k k T

k k k
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s B s
δ δ δ − −

− − −
− − −


= −
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k k k k
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− −


+ − +



...=
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(5.4)

But, from (4.7), for any 0, , ,i k= 

2 2

2
1

T
i ii i
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i i i ii i i

y yy s
y s y sy s g

γ
+

=
+

           

2

2
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1.i
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i i i

y

y s g +

= ≤
+

Therefore, since by Proposition 5.1 there are the 
positive constants 0 δ< < ∆  such that for any 

0,1, , ,j k=   1 ,k k jδ δ δ δ−< < ∆  it follows that
2

1 0
0

( ) ( )
k

i i
k T

i i ii

B s
tr B tr B

s B s
δ+
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≤ ∆ −∑

            
0

1

1 ( ) 1.
k

k

tr B k
=

+ ∆ + ≤ ∆ + ∆ +∑
        

(5.5)

From (5.5) we get (5.2).  

Since 1kB +  is positive definite, 1( ) 0.ktr B + >  
Therefore (5.3) is true. <

Proposition 5.3. If for all ,k  ,k mγ ≥  where 
0m >  is a constant, and ,kδ θ≥  where 0θ >  is 

a constant, then there is a constant 0c >  such that 
for all k  sufficiently large:

0

.
k

k
i

i

cα
=

≥∏
                                               

(5.6)

Proof  The determinant of the scaled modified 
1kB +  given by (4.5) is as follows:

1

1det( ) det
T T

k k k k k k k
k k k T T

kk k k k k

s s B B y yB B I
s B s y s
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Therefore,
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But, for all ,i  T T
i i i i i is B s s gα≤ −  and 

(1 ) (1 ) .T T T
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Since 1 1
1det( ) ( ) ,

n

k kB tr B
n+ +
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 by using 
Proposition 5.2, we get

( )1 0
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(5.10)

When k  is sufficiently large, (5.10) implies (5.6).  <

Theorem 5.1. Let { }kx  be generated by the 
algorithm SMBFGS. Then

liminf 0.k kg→∞ =                                  
(5.11)

Proof Assume that 0,kg > Γ >  for all .k  
Observe that .k k k k kB s B dα=  Since f  is bounded 
from below, from the first Wolfe condition (1.5) 
we have 
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Now, from the geometric inequality, for any 
0Ω >  there exists an integer 0 0k >  such that for 

any positive integer q  we have:
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Hence, 
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where the last inequality follows from 
Proposition 5.2. Now, considering ,q →∞  
we get a contradiction because of Proposition 
5.3 which shows that the left-hand side of the 
above inequality (5.14) is greater than a positive 
constant. Therefore, (5.11) is true.  <

6. Numerical results and comparisons

In this section we present some numerical results 
with a Fortran implementation of the double 
parameter scaled modified SMBFGS algorithms. 
In all these algorithms the double parameter scaled 
modified BFGS is computed as in (4.5). The search 
direction is computed as in (4.3) where 1kH +  is 
updated as in (4.6). The algorithm SMBFGS is 
particularized as follows: SMBFGS1 (SMBFGS 
with 1kγ =  and 1,kδ =  i.e. the standard modified 
BFGS in which 1kB +  is computed as in (2.6) 
and ky  is as in (2.7)); SMBFGSD (SMBFGS 
with kγ  given by (4.7) and kδ  given by (4.8)); 
SMBFGSA (SMBFGS with kγ  given by (4.7) 
and 1kδ = , i.e. the scaled modified BFGS method 
given by Andrei [2]); SMBFGSB (SMBFGS with 

1 16( ( ) ( ) ) / 2T T
k k k k k k kf x f x s g y sγ + += − + −  and 

1kδ = , i.e. the scaled modified method by Biggs [5, 
6]); SMBFGSC (SMBFGS with 2/T

k k k ky s yγ =  
and 1kδ = , i.e. the scaled modified BFGS 
method given by Cheng and Li [10]); MNOYA 
(SMBFGS with 1kγ =  and /T T

k k k k k ky s s B sδ =  
i.e. the scaled modified BFGS of Nocedal and 
Yuan [19] given by (3.6) with ky  replaced by 

ky ); SMBFGSY (SMBFGS with 1kδ =  and 
1 12( ( ) ( ) ) /T T

k k k k k k kf x f x s g y sγ + += − + , i.e. the 
scaled modified BFGS method given by Yuan [28]).

All the algorithms used in these numerical 
experiments implement the Wolfe line search 
conditions with 0.8σ =  and 0.0001.ρ =  The 
iterations are stopped if the inequality 510kg −

∞
≤  

is satisfied, where .
∞

 is the maximum absolute 
component of a vector or if the number of 
iterations exceeds 1000.  In all the algorithms, 
for all the problems, the initial matrix 0 ,H I=  
i.e. the identity matrix. For each scaled modified 
method, except the method of Liao given by (3.10) 
and (3.11), where ky  is replaced by ,ky  in order 
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to get the search direction we use the inverse 
updating formula (4.6). For the scaled modified 
BFGS methods by Biggs [5, 6] and Yuan [28], kγ  
is restricted in the interval [0.01, 100]. Besides, 
at the very first iteration of these methods the 
scaling is not applied. All the codes were written 
in double precision Fortran and compiled with f77 
(default compiler settings) on an Intel Pentium 
4, 1.8GHz workstation. In the following, we 
present the numerical experiments by considering 
a number of 80 unconstrained optimization test 
problems of medium size ( 100n =  variables), 
described in [1] solved with all seven scaled 
modified BFGS algorithms. The comparisons of 

the algorithms are given in the following context. 
Let 1ALG

if and 2ALG
if  be the optimal value found 

by ALG1 and ALG2 for problem 1, ,80,i =   
respectively. We say that, in the particular problem 
,i  the performance of ALG1 was better than the 

performance of ALG2 if: 
1 2 310ALG ALG

i if f −− <
                               

(6.1)

and the number of iterations (#iter), or the number 
of function-gradient evaluations (#fg), or the 
CPU time of ALG1 was less than the number 
of iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding to 
ALG2, respectively. 

Figure 1. Performance profiles of SMBFGSD versus SMBFGS1, SMBFGSA, SMBFGSB, SMBFGSC, 
MNOYA and SMBFGSY
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Table 1 presents a global overview of the 
algorithms by showing the total number of 
iterations (itert), the total number of function 
and its gradient evaluations (fgt) and the total 
CPU computing time (cput) for solving 80 
unconstrained optimization problems used in 
this numerical study. Subject to the number of 
iterations, the double parameter scaled modified 
SMBFGSD is the best algorithm for solving 
all 80 unconstrained optimization problems. 
Subject to the CPU computing time, SMBFGSC 
is the fastest algorithm. Close to this there are 
SMBFGSA and SMBFGSD. 

Table 1. Characteristics of SMBFGS algorithms for 
solving 80 unconstrained optimization test problems

itert fgt cput
SMBFGS1 10114 68963 11.06
SMBFGSD 6735 51758 8.09
SMBFGSA 7083 46826 8.05
SMBFGSB 9826 66109 11.16
SMBFGSC 6936 52770 7.83
MNOYA 11102 60968 12.60
SMBFGSY 12140 80823 13.78

In the first set of numerical experiments we 
compare SMBFGSD versus SMBFGS1, 
SMBFGSA, SMBFGSB, SMBFGSC, MNOYA 
and SMBFGSY. Figure 1 presents the Dolan 
and Moré’s performance profiles [11] of 
these algorithms for this set of unconstrained 
optimization test problems based on the CPU 
time metric. The table inside the figures represents 
the performances of the algorithms for 1,τ = i.e. 
the efficiency of the algorithms. For example, 
when comparing SMBFGSD versus SMBFGS1 
(standard modified BFGS algorithm: 1kδ =  and 

1kγ = ), subject to the number of iterations, we see 
that SMBFGSD was better in 43 problems (i.e. it 
achieved the minimum number of iterations in 43 
problems), SMBFGS1 was better in 27 problems. 
Both of them achieved the same number of 
iterations in 7 problems, etc. Out of 80 problems 
considered in this set of numerical experiments 
only for 77 does the criterion (6.1) holds.

Concerning the scaled modified BFGS update of 
Nocedal and Yuan (MNOYA) given by (4.5) with 

1kγ =  and / ,T T
k k k k k ky s s B sδ =  scaling of the first 

two terms of 1kB +  matrix leads to disappointing 
numerical results. This is consistent with the 
analysis given by Nocedal and Yuan [19] and 
Shanno and Phua [24] in their study on scaling 
the BFGS update. On the other hand, in our 
study on the double parameter scaled modified 
BFGS algorithm SMBFGSD we emphasize that 
both parameters kγ  and kδ  are important in 
the economy of the algorithm: kδ  is computed 
to cluster the eigenvalues of 1kB +  and kγ  is 

responsible for shifting the large eigenvalues to the 
left. These are the main reasons why SMBFGSD 
has better performances than MNOYA. 

In the second set of numerical experiments we 
compare the SMBFGSD algorithm versus the 
modified BFGS update by Liao (MLIAO). 
The scaled modified BFGS algorithm by Liao 
is defined by (3.10) and (3.11) where ky  is 
replaced by ky  given by (2.7). Figure 2a presents 
the Dolan and Moré performance profiles of 
SMBFGSD versus modified LIAO (MLIAO) 
with 1.0005exp( 100 / ).k kτ = −  Figure 2b presents 
the performance profiles of SMBFGSD versus 
modified LIAO (MLIAO) with 2exp( 1 / ).k kτ = −  
We observed that if kτ  is small, like in the MLIAO 
algorithm with 1.0005exp( 100 / ),k kτ = −  then the 
algorithm takes / ( )T T T

k k k k k k k k ks B s s B s y sδ = +  
and / ( ),T T T

k k k k k k k ky s s B s y sγ = +  as specified 
in (3.11). On the other hand, if kτ  is relatively 
large, like in the MLIAO algorithm with 

2exp( 1 / ),k kτ = −  then the algorithm selects 
k kδ τ=  and 1,kγ =  as recommended by (3.11). 

Since in the modified LIAO algorithm the search 
direction 1kd +  is computed as solution of the 
system 1 1 1,k k kB d g+ + += −  we generated a Fortran 
version of the SMBFGSD code where the search 
direction is computed as solution of the system 

1 1 1k k kB d g+ + += −  to compare it with the modified 
LIAO algorithm. From Figure 2 we see that 
SMBFGSD is top performer versus the modified 
LIAO and the difference is significant subject to 
the efficiency and robustness of the algorithms. 
Since these codes use the same Wolfe line search 
and the same stopping criterion, they differ only in 
their choice of the search direction. Again, observe 
that the numerical results with the modified LIAO 
algorithm are disappointing. This is because in 
the modified LIAO the modified BFGS update is 
obtained by a simple symmetrization procedure 
from a rank one update (see [17]).  

7. Conclusions

In this paper we combined two important 
approaches for improving the numerical 
performances of the quasi-Newton BFGS method: 
the modified BFGS method and the scaled BFGS 
method. The modified BFGS method consists 
of modifying the vector ky  in such a way to 
improve the approximation of the Hessian of the 
minimizing function [14, 15, 25, 29, 30]. Scaling 
methods are more diversified and concentrate on 
scaling the terms of the BFGS update, as presented 
by: Biggs [5, 6], Yuan [28], Cheng and Li [10], 
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Andrei [2, 4], Nocedal and Yuan [19] and Liao 
[17]. In our development we scaled the modified 
BFGS update by Yuan and Wei [30] using the 
double parameter scaling procedure by Andrei [4]. 
The idea of scaling the Yuan and Wei’s modified 
BFGS method is to cluster the eigenvalues of 
the corresponding iteration matrix. For this, the 
first two terms of the modified BFGS update are 
scaled with a positive parameter determined to 
cluster the eigenvalues, while the third term is 
scaled with another positive parameter to shift to 
the left the large eigenvalues. Thus we obtained a 
double parameter scaled modified BFGS update 
for which we proved the global convergence in 
very general conditions without assuming the 
convexity of the minimizing function, using only 
the determinant and the trace of the updating 
modified scaled matrix. 

Intensive numerical experiments of these scaled 
modified BFGS algorithms on a collection of 
80 unconstrained optimization test problems 
of different complexities [1, 22] showed that 
the double parameter scaled modified BFGS 
method is more efficient and more robust versus 
other scaled modified BFGS methods discussed 
in this paper. 

The conclusion of this study is that scaling the 
modified BFGS methods improves the numerical 
performances of the algorithms, leading us to new 
efficient and robust algorithms for unconstrained 
optimization. In our double parameter scaled 
modified BFGS method we noticed that scaling 
the first two terms of the modified BFGS update 
to cluster the eigenvalues has a major effect on 
the numerical performances of the modified BFGS 
algorithm. However, the most important is scaling 
the third term of the modified BFGS update. The 

scaling of the third term will push down to the 
left the eigenvalues of the modified BFGS update 
matrix, thus obtaining a better structure of the 
eigenvalues than the one of the modified BFGS. 

It is important to notice that in our development 
we scaled the modified BFGS method of Yuan and 
Wei [30], but another line or research is to scale 
the modified BFGS update of Wei, Yu, Yuan and 
Lian [25]. In this way other scaled modified BFGS 
algorithms are obtained which can be compared 
versus our scaled modified BFGS algorithms 
considered in this paper.
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