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Nomenclature

L
q
, L

d
q and d axis inductances.

R Resistance of the stator windings.
i
sa

, i
sb

, i
sc

Stator phase currents.
i
q
,i

d
q and d axis currents.

v
q
,v

d
q and d axis voltages.

c
1
, c

2
, c

3
Switching signals.

ω
r

Angular velocity of the rotor.
ω

ref
Set-point angular velocity.

f
e

Supply frequency.
rc Fault resistance.
λ Amplitude of the flux induced by 

permanent magnets of the rotor in the 
stator phases.

p Number of pole pairs.
T

e
Electromagnetic torque.

J Combined inertia of rotor and load.
F Combined viscous friction of rotor 

and load.
θ Rotor angular position.
T

m
Shaft mechanical torque.

1. Introduction

Permanent Magnet Synchronous Motors 
(PMSMs) have been adopted for a wide variety 
of industry applications, mainly for their dynamic 
performances, efficiency, high torque to volume 
ratio, and high efficiency [10, 32]. Therefore, 
diagnosing accurately the source of degradation 
in this category of machines is a key item, which 
could not only guarantee safe operation, but reduce 

significantly expensive unscheduled downtimes 
leading generally to high costs of maintenance. 

Large reliability investigations have revealed 
that stator faults account for 37 % as source of 
failures in electrical machines [1]. In fact, stator 
faults, such as resistance variation, or inter-turn 
faults, produce a phase asymmetry due to the fact 
that the phase impedances are no longer equal 
[9]. Under these conditions, the stator symmetry 
of the machine is lost, and a reverse rotating 
magnetic field is produced, leading to additional 
electromagnetic stress. Furthermore, and as it is 
stated in [4, 12], insulation life is cut in half for 
every 10 °C increase, resulting in accelerated 
aging of the machine. It is obvious that the phase  
impedances unbalance affects the efficiency of the 
drive, and leads to unbalanced stator currents and 
voltages [12,  17]. The effect of the fault, has been 
evidenced on different variables of the machine, 
such as the electromagnetic torque, air-gap flux, 
or stator phase currents [17, 29-30].

In this context, several diagnostic approaches 
have been developed for PMSMs under stator 
asymmetries which can be roughly classified 
as model-based techniques, signal-based 
techniques, knowledge-based techniques, and 
hybrid/active approaches [6, 9, 13-14]. When 
compared to model-based approaches, signal-
based and knowledge-based approaches do not 
require an accurate model of the machine, nor a 
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detailed analysis of the fault mechanism, which 
is particularly advantageous for online variables 
monitoring and real time fault tracking [14-16]. 

According to several recent reviews, signal-
based techniques are the preferred approaches 
for faults diagnosis [9, 14]. In fact, this interest 
for signal-based techniques is mainly motivated 
by the use of accessible signals affected by the 
stator asymmetry. Considering a large variety 
of control drives based on PMSMs, the most 
accessible signals are phase currents and voltages, 
which makes them the starting point for many 
diagnostic analysis [6, 9, 17]. More specifically, 
stator electrical anomalies share the same fault 
signature, such as stator windings inter-turn short-
circuit, high-resistance connection, or voltage 
unbalances and they all give rise to a negative 
sequence that degrades the performances of the 
machine as quantified in [12, 22], considering line-
fed PMSMs. It is worth noting that this impact is 
directly dependent on the control schema adopted, 
which is generally able to compensate the stator 
asymmetry at its incipient stage as shown in [17, 
32]. For a conventional field-oriented controlled 
PMSMs, signal-based approaches have shown 
quit interesting results as investigated in [17, 30, 
32]. In [20], the influence of stator asymmetry 
has been evaluated for a direct torque controlled 
PMSM drive. 

Based on the classical Fast Fourier Transform 
(FFT), Motor Current Signature Analysis (MCSA) 
was widely used for stator fault detection with 
different approaches: analysis of the Park 
components [11], the use of zero sequence 
component [18-19, 35], or the use of symmetrical 
components derived from the space vector theory 
are used [19, 23, 26]. In [34], the second harmonic 
of Park current component iq, and speed are 
used as an assessment of winding fault and as 
unbalanced voltage source indicator.

Although the good performances of the signal-based 
techniques, they still vulnerable to the operating 
point of the machines, or/and unknown combination 
of electrical and mechanical disturbances.

Modern monitoring and diagnosis techniques 
dedicated to complex systems [21, 23-24], and 
specifically for electrical machines [7, 31, 33-
35], have moved from traditional approaches to 

advanced ones based on Artificial Intelligence 
Techniques (AIT). In fact, these techniques 
require a minimum of intelligent configuration, 
since no detailed analysis of the fault mechanism 
is required, nor an advanced machine modelling 
[3, 5]. They are devoted to optimal decision-
making for fault identification and localization 
issues [28]. In [22], the negative sequence 
voltage component is used to study the inter-
turns short-circuit fault, the phase-to-ground 
fault and the phase-to-phase faults for permanent 
magnets synchronous generator, and to train an 
Artificial Neural Network (ANN) for automatic 
fault diagnosis system. The effectiveness of ANN 
has been evidenced in [28], showing interesting 
results for the detection of voltage unbalance, 
independently of the load operating condition.

In this paper, a new fault detection technique is 
developed for stator asymmetry detection and 
localization in PMSM controlled by conventional 
Field-Oriented Control (FOC). The proposed 
technique is based on the polar coordinate of 
the negative-sequence current. A Neuro-fuzzy 
inference system is adopted for optimizing the 
fault localization process. The main advantages 
of the developed technique are its simplicity, and 
robustness against the operating condition for 
stator fault localization. 

This paper is organized as follows. Section 2 
presents the control schema adopted for the 
PMSM under stator asymmetry. A preliminary 
spectral characterization of the fault, showing the 
limits of the MCSA in terms of fault localization, 
is established in Section 3. The proposed 
approach is fully disclosed, tested, and evaluated 
in section 4. 

2. Controlled PMSM under stator 
asymmetry

2.1 Controlled PMSM description

In order to test the performances of the proposed 
technique, a 7.5 kW three-phase PMSM model, 
controlled by a conventional FOC (Figure 1), 
has been implemented in Matlab/Simulink. The 
electrical equations of the healthy machine, 
expressed in the d-q reference frame, are 
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When a FOC is concerned, classically the d-axis 
component idref is set to zero, leading to the 
following new formulation of (3)
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The stator asymmetry was classically emulated 
by an additional resistance rc inserted in series 
to a stator phase as illustrated in Figure 1. As it is 
simulated, the fault can be assumed as a voltage 
unbalance [26-27]. In fact, the calibration of 
the fault, and more specifically the value of the 
additional resistance rc was adjusted according to 
the IEEE standards definition [8], expressed by

( )
max

amax bmax cmax

m amax bmax cmax

vu m

m= V +V +V /3

d = ( m-V , m-V , m-V )
P =100 d /m




 × 	      

(9)

where m is the average voltage peak value. The 
widest deviation between the phase voltages 
is denoted by dm. Finally, the normalized ratio 
between dm and m, is expressed by Pvu in (9). 

2.2 Time domain characterization

The PMSM has been initially simulated in healthy 
condition and for the rated operating point. The 
time domain evolution of the three-phase stator 
currents is reported in Figure 2-a, showing a 
clear symmetry of the system. The corresponding 
signals under stator asymmetry condition are 
reported in Figure 2-b, where the stator asymmetry 
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Figure 1. Block scheme of the FOC, with hysteresis current controllers, for a three-phase PMSM
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is clearly evidenced by the unbalance of the three-
phase currents. 

Figure 2. Behaviors of the phase currents, under (a) 
healthy and (b) faulty conditions

In Figure 3, the behaviors of the currents space 
vectors, under healthy (Figure 3-a) and stator 
asymmetry (Figure 3-b) are represented. 

Figure 3. Behaviors of the currents space vector, 
under (a) healthy and (b) faulty conditions

Under healthy condition, the current space 
vector shows a perfect circular behavior. On the 
contrary, under stator asymmetry, a different 
behavior of the same quantity can be easily 
evidenced. In the next section, the MCSA based 
on spectral analysis will be evaluated for different 
stator asymmetries configurations. 

3. Spectral fault characterization

In this section, a stator asymmetry fault frequency 
signature is extracted by spectral analysis. The 
harmonic spectra are obtained by applying the 
FFT algorithm to the instantaneous values of the 
three-phase currents. 

The spectra have been normalized setting at 0 
dB the fundamental harmonic component at 
frequency fe =33 Hz. For the sake of clarity, only 
the spectra corresponding to the faulty cases are 
reported in Figures 4-6. 
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Figure 4. Spectra of the three phase currents under a 
stator asymmetry caused by phase a
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Figure 5. Spectra of the three phase currents under a 
stator asymmetry caused by phase b
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Figure 6. Spectra of the three phase currents under a 
stator asymmetry caused by phase c
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For reference, all the amplitudes of the harmonics 
of interest are reported for healthy and faulty cases 
in Table. 1. It is worth noting that comparing 
the amplitude variations, from healthy to faulty 
conditions, of the different harmonics and mainly 
the 5th harmonic, show a clear detectability of 
the stator fault. Observing the spectra reported 
in Figures 4-6, corresponding to different faulty 
cases, it is evident that the discrimination in 
amplitude for the 5th harmonic, between the 
different phases, is under a range of approximately 
5 dB. Considering possible effects of noise, local 
disturbances, or/and processing parameters 
consideration, can make the process of faulty 
phase localization practically impossible. 

Table 1. Currents harmonics amplitudes in decibels 
under healthy and stator asymmetries

Healthy Stator asymmetry

Harmonics 
order

3rd 5th 7th 3rd 5th 7th

Phase a -60 -58 -66 -36 -35 -37
Phase b -65 -62 -56 -41 -46 -54
Phase c -66 -63 -55 -32 -33 -36

Finally, at this level of the investigation, the 
frequency domain analysis, based on the fault 
signature derived from the different spectra of the 
stator phase currents, can be considered for fault 
detection, but fails to identify the phase affected 
by the fault. 

To cope with the above limitation of frequency 
domain analysis for fault localization, a new 
approach will be developed and tested in the 
next sections.

4. Proposed approach for stator 
asymmetry detection and 
localization

In this section, the main concept of the proposed 
approach for stator asymmetries detection and 
localization is fully developed. In fact, it consists 
of three main steps as illustrated in Figure 7. 

4.1 Definition of the stator fault indicator

The first step to be carried out is the acquisition 
of the three-phase currents under stationary 
condition. Then the signal conditioning step is 
completed by filtering the three currents, in order 

to reduce the ripple effect in currents due to the 
pulse width modulation. The second important 
step is the cyclic tracking of the maximum phase 
currents values (Isa_Max, Isb_Max, Isc_Max), which will 
be used for calculating the corresponding negative 
sequence component I

-
 given by 

_ _ _
1 . . .
3−  = + + sa Max sb Max sc MaxI I a I a I

	    
(10)

where

30.5
2

a j= − +
                              	    

(11)

and a  is the complex conjugate of a. The NSC is 
used in its polar form, where the NSC scale value 
represents the amplitude, and the NSC angle value 
is corresponding to the phase. 

The final NSC evaluation stage is based on the 
interpretation of the NSC polar coordinates in 
two steps. The first one is dedicated to the stator 
asymmetry detection, where the NSC amplitude 
is compared to zero. Since the NSC amplitude 
can be affected by noise, and/or intrinsic stator 
asymmetries, it is convenient to consider a security 
factor ξ, slightly greater than zero, in order to avoid 
false alarms during the detection process. 

No stator 
fault detected

Stator Fault 
detected

Fault detection:
NSC scale value test

ξ<

Fault localization: 
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fuzzy classifier
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Figure 7. Flowchart of the proposed approach for 
fault detection and localization based NSC
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Once a stator asymmetry is detected, the second 
step is the localization of the faulty phase. The 
process of fault localization is based on the NSC 
angle, as described by Figure 8. Effectively, 
depending on the stator phase affected by the fault, 
the NSC angle orientation changes accordingly 
(Figure 8),  leading to a classification process 
characterized by the following rules:

-- If (NSC angle is in the sector 1) then (Fault 
location is in the phase a).

-- If (NSC angle is in the sector 2) then (Fault 
location is in the phase b).

-- If (NSC angle is in the sector 3) then (Fault 
location is in the phase c).

Figure 8. All-or-nothing angles classification scheme 
for NSC-based fault localization

Effectively, the above approach has been validated 
successfully tested on the controlled system of 
Figure 1, under full-load operating condition. The 
corresponding results are shown in Figures 9-12. 
Initially, the motor has been tested under healthy 
condition, leading to a zero value of the NSC in 
terms of amplitude and phase angle (Figure 9).  
This fact indicates a reliable diagnosis of healthy 
condition for the PMSM.

Figure 9. Normalized NSC in the complex plane 
under healthy stator condition

Then, three different stator asymmetries have 
been tested to evaluate the ability of the proposed 
approach, leading to the reported results in Figures 

10-12. As can be seen, the fault localization is 
clearly evidenced for each case, leading to an 
effective tool for stator asymmetry localization.

 

Figure 10. Normalized NSC in the complex plane 
under stator fault in “phase a”

Figure 11. Normalized NSC in the complex plane 
under stator fault in “phase b”

Figure 12. Normalized NSC in the complex plane 
under stator fault in “phase c”

In order to test the sensitivity of the proposed 
process for fault localization, several tests under 
different stator asymmetry configurations, and 
different speed operating conditions (from 130 
rad/s to 220 rad/s) have been carried out.  The 
corresponding results are reported in Figure 13, 
where the reliability of the proposed approach 
is confirmed, but with a little dependency on the 
speed operating condition, as it is the case of all 
signal-based techniques [14-15]. In the following 
subsection, a neuro-fuzzy classifier is introduced 
to cope with the above limitation. 
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Figure 13. Normalized NSC in the complex plane 
under different operating speed, and different faulty 

phase conditions: phase a (Red), phase b (Green), and 
phase c (Blue)

4.2 Automatic stator fault diagnosis

According to the results obtained in Figure 13, 
the speed operating point affects slightly the NSC 
angle under the same sector. At this stage, the key 
point to develop an automatic process for stator 
fault diagnosis, is to consider the different NSC 
angles as a database for a neuro-fuzzy classifier 
and decision making for fault localization. The 
ANFIS of the adopted artificial neural network 
structure (Figure 14), using a Takagi–Sugeno fuzzy 
inference system, is based on 6 layers [2, 25]. 

- a - - b - - c - - d - - e - - f -

Figure 14. Structure of a neuro-fuzzy model

The first layer (- a -) is the input, the second one 
(- b -) contains the input membership functions in 
the form of three fuzzy membership functions. The 
third layer (- c -) represents the inference rules, 
which are aforementioned as the classification 
rules; the fourth layer (- d -) carries the Sugeno 
output membership functions in the form of fuzzy 
singletons, the fifth layer (- e -) corresponds to the 
aggregated output and the sixth (- f -) contains the 
decision result output.

Based on the input membership functions of 
Figure 15 and the inference rules, the ANFIS will 
considerate the NSC angles database to generate 
an initial fuzzy inference system, then to train and 
adapt the parameters to minimize the errors.

Figure 15. Initial fuzzy membership functions 
of the NSC angle input variable in the fault 

localization classifier

The results of the trained ANFIS are shown in 
Figures 16-18. It is worth noting that the input-
output data are conventionally normalized 
between [0:1] for numerical stability reason.

Figure 16. The fault location decision profile of the 
neuro-fuzzy logic application

Figure 17. Training data used for identifying 
parameters of generic neuro-fuzzy model

Figure 18. Absolute error between the training data 
set output and the estimated data by the ANFIS 

model output

Diagnosis of Stator Asymmetry in Permanent Magnet Synchronous Motors Using Negative Sequence Current
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For the considered single input ANFIS, and after 
training, the decision profile for fault localization 
is depicted in Figure 16. 

Figure 17 shows a comparison between the desired 
decision used for the training cycle, and the ANFIS 
predicted decision results. The corresponding very 
low absolute errors, reported in Figure 18, are the 
proof of the procedure effectiveness for stator 
fault localization.
Considering the obtained results, the proposed 
approach has shown high efficiency for stator 
asymmetry detection and localization for the 
controlled PMSM. Its main advantages are 
simplicity, reduced latency of processing after 
the training process, which makes the proposed 
diagnostic approach practically automatic. 

5. Conclusion

In this paper, an automatic intelligent technique for 
the diagnosis of stator asymmetries is proposed. 
The proposed approach is based on the polar 
coordinate of the negative-sequence current. The 
amplitude value is adopted for the fault detection 

step, and the phase angle is then adopted for 
the fault localization process. A Neuro-fuzzy 
inference system is adopted for optimizing the 
fault localization process.

The performances of the whole proposed 
process have been validated for a PMSM, 
controlled by conventional FOC strategy, under 
different configurations of stator asymmetries. 
The developed method can be extended to 
the detection of other types of electrical faults 
affecting PMSMs.  

Appendix

PMSM parameters

Rated power 7.5kW
Stator phase resistance 0.129 Ω 
Armature inductance 1.53mH
Pole pairs  2
Moment of inertia 0.00333 kg.m2

Flux linkage 0.1821 Wb
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