
175

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

The Internet has evolved over the past several
decades as an essential infrastructure for the
social, economic and cultural aspects of everyday
life. It has employed the host-centric paradigm
in which packets are communicated according
to host addresses. However, this paradigm of the
Internet becomes an obstacle in accepting the
rapidly growing information-oriented services
such as Internet of Things [4]. Information-centric
networking (ICN) is a promising future Internet
provided to overcome the limitations of current
host-centric Internet, and one of the representative
ICNs is the named data networking (NDN) [12,
13, 23].

The NDN router looks up a prefix in its
forwarding information base (FIB) that matches
the name in the packet to forward the incoming
packet. The delivery of packets in an NDN is
name-based, unlike an IP network based on an
IP address. NDN names are human-readable and
hierarchical in structure to provide intrinsically
efficient forwarding [2].

There can be multiple matching prefixes in
FIB of NDN, and the longest matching one is
chosen as the final result. This process of name
lookup is called the longest prefix matching
(LPM) similarly to IP address lookup. To
provide stable service in an NDN, the router
should reach the same rate of packet delivery
as the link speed. Unfortunately, the LPM is
a very complicated and time-consuming task
because of variable string matching. Moreover,
the length of the name is not fixed and the name
space is unbounded. So the name lookup is

very challengeable, and many researches have
focused on reducing the lookup time.

Caching is one of the common techniques used to
improve the performance in various information
processing applications. It is usually accomplished
by exploiting temporal locality or spatial locality.
The name lookup time can be reduced in FIB by
using the caching technique [3]. The temporal
locality can be exploited in the name lookup
when the identical name is repeatedly referenced
within a certain period of time. Likewise, the
spatial locality can be exploited if the names with
the same prefix as the LPM results are referenced
repeatedly. Since the NDN provides in-network
caching, it is probably not significant to utilize
the temporal locality in the FIB. On the other
hand, prefix caching can improve the forwarding
performance by using spatial locality.

The prefixes in FIB can be classified as either
leaf or non-leaf. While the non-leaf prefix has
some child prefixes, the leaf prefix does not. If
a name can be matched to both a non-leaf prefix
and its child prefix, caching the non-leaf prefix
can cause an incorrect lookup result. In this paper,
we propose a prefix caching scheme to solve this
problem with a small overhead so that the router
can perform an efficient and rapid name lookup
for the FIB.

The rest of this paper is organized as follows.
Section 2 outlines packet forwarding in NDN.
In section 3 we introduce the prefix caching and
study the related works. Section 4 explains the
proposed prefix caching based on the information

Studies in Informatics and Control, 27(2) 175-182, June 2018

https://doi.org/10.24846/v27i2y201805

An Efficient Prefix Caching Scheme for
Fast Forwarding in Named Data Networking

Jinsoo KIM1, Junghwan KIM1*

1 Division of ICT Convergence Engineering, Konkuk University,
268 Chungwon-daero, Chungju-si, Chungcheongbuk-do, 27478, Korea
jinsoo@kku.ac.kr, jhkim@kku.ac.kr (*Corresponding author)

Abstract: Named data networking (NDN) has recently received much attention as a promising structure for information-
centric networking. The name lookup in NDN is a fairly complicated process because of the unbounded name space and its
variable string matching characteristics. This paper proposes a prefix caching scheme for fast name lookup in the forwarding
information base (FIB) of NDN. It is based on the critical distance that is the longest distance between a prefix and its
child prefixes. Caching a non-leaf prefix can lead to incorrect lookup results. In the proposed scheme the non-leaf prefix is
expanded for caching based on the critical distance to avoid such incorrect results. This scheme can be applied to any kind of
underlying FIB to employ the spatial locality. We also simulate and evaluate our scheme in comparison with other schemes.
Experiment results show that our scheme has a higher cache hit ratio than other schemes.

Keywords: Named data networking, Prefix caching, Fast forwarding, Critical distance, Prefix expansion.

http://www.sic.ici.ro

176 Jinsoo Kim, Junghwan Kim

about the distance between a prefix and its farthest
child prefix. The performance of our scheme is
evaluated using simulation in terms of cache hit
ratio, in section 5. Finally, we conclude the paper
in section 6.

2. Packet forwarding in NDN

There are two types of hosts in the NDN:
consumers and producers. While the consumer is
sending the Interest packet to get some content,
the producer responds with the Data packet
for the Interest. A packet contains the name to
identify some content. A name is represented by
a series of components separated by slashes [2].
For example, a name ‘/com/google/www/video’
comprises four components which are ‘/com’, ‘/
google’, ‘/www’, and ‘/video’. The NDN router
forwards the incoming packet based on its name.

The NDN router forwards packets using three data
structures: content store (CS), pending interest
table (PIT), and forwarding information base
(FIB). The CS is used to cache Data packets for
later use. The PIT stores the input faces of the
second and subsequent Interest packets with the
same name. The FIB is a repository containing
name prefixes. Figure 1 shows the algorithms used
to forward Interest and Data packets.

Algorithm Forward_Interest(name)
name: the name in Interest packet
1. if (name is in CS)
2. reply corresponding Data packet.
3. exit.
4. if (name is in PIT)
5. pend the incoming face to PIT.
6. exit
7. find LPM prefix to name in FIB.
8 forward the packet to outgoing face.
9. initiate a new PIT entry by name
10. exit.

Algorithm Forward_Data(name)
name: the name in Data packet
1. forward Data packet to
 each incoming face in PIT.
2. cache Data packet into CS.
3. exit

Figure 1. Packet forwarding algorithm

Several name lookup schemes have been proposed
to forward packets at the link speed. These are
usually based on Ternary Content-Addressable

Memory (TCAM), tries, hash structure, or a
combination of these.

A TCAM-based name lookup has been proposed
in [15]. TCAM is an associative memory that
searches all items simultaneously. Each cell
in TCAM can store a * (do not care) value in
addition to 0 or 1, so it is easy to store the prefixes
and find the LPM prefix. However, TCAM is
restrictively used in the name lookup by contrast
to the IP address lookup, because it is difficult
to accommodate an unlimited-length prefix and a
large number of prefixes.

Trie is a tree-like structure, and its degree for
name lookup is irregular and large. The name
component encoding (NCE) scheme [19] has
been proposed to resolve the irregularity of the
component length by encoding one component as
a unique integer. Several trie-based name lookup
techniques have been proposed to reduce the
actual number of memory accesses per lookup
using parallelization [18], path compression [7],
and pruning sub-tries [9].

Several hash-based name lookup techniques have
been presented to compare an Interest name with
candidate prefixes in the FIB by hashing a series
of components. Most of these schemes use Boom
filters together for efficiency, such as on-chip
Bloom filter [8], mapping Bloom filter [10], two
dimensional filter [14], and NameFilter [20]. An
efficient hash table was designed by using not
the real name components but their fingerprints
[17], and it has been extended to collision free
fingerprint-based hash table [16]. Some other hash-
based schemes improved the lookup performance
by reducing the search space [21, 22].

3. Prefix caching and related works

3.1 Prefix caching and prefix expansion

The forwarding engine in the FIB can improve the
speed of name lookup if it stores the latest lookup
results by using the cache in front of the original
forwarding table. The prefix caching utilizes a
kind of spatial locality. For incoming packets with
names that result in the same LPM prefix, it can
increase the cache hit ratio.

Figure 2 shows a forwarding table with four
prefixes from p to s in the form of a tree-like trie
structure. Assume that the four Interest packets,
whose names are name1, name2, name3, and

	 177

ICI Bucharest © Copyright 2012-2018. All rights reserved

An Efficient Prefix Caching Scheme for Fast Forwarding in Named Data Networking

name4 in Figure 2, are input in order. Since
the name in the first packet is name1 = /house/
h1, the LPM prefix is p = /house. The prefix
caching scheme caches the prefix p which is the
first lookup result. The LMP prefix for name2 =
/house/h2 is p as well. Thus, the name lookup
result of the second packet can be used to get fast
results using p in the cache.

Figure 2. An example of prefix caching

Figure 2 also illustrates that prefix caching can
yield incorrect lookup results. Since the third
Interest packet contains the name name3 = /
auto/body/wheel/w1, the prefix q = /auto could
be cached as the matched prefix. Note that
the prefix q in the cache could be matched for
name4 = /auto/body/window as well. Thus, when
name lookup is performed for the fourth packet,
the prefix q is considered as the LMP owing to
the cache hit. However, the actual LMP in the
forwarding table is s = /auto/body/window, so q
is the incorrect result. In Figure 2, prefixes p, r,
and s are leaves, whereas prefix q is a non-leaf.
The incorrect result of the prefix caching is caused
by caching non-leaf prefixes such as prefix q in
this figure. To avoid such wrong results, either
only leaf prefixes should be cached, or non-leaf
prefixes together with all their descendants should
be cached. To cache only leaf prefixes is fairly
restrictive in cache performance, and also it is
not easy to manage all descendants of non-leaf
prefixes in the cache.

Prefix expansion is one of the easiest ways to
resolve the incorrect results of prefix caching.
If we cache the proxy prefix q' = /auto/body/
wheel instead of the prefix q = /auto for the third
name lookup, the correct result can be yielded
for name4. Since name4 = /auto/body/window
does not match prefix q', a cache miss occurs.
The process of obtaining prefix q’ from prefix q
is called prefix expansion. The expanded prefix is
chosen between the name and its LPM prefix. The
closer the expanded prefix is to the LPM prefix,
the more efficient it can be.

3.2 Previous prefix caching schemes

Prefix caching in the name lookup can exploit
spatial locality by caching not the individual
name but the prefix to be shared by some names.
Several prefix caching techniques have already
been proposed to speed up the IP address lookup,
and more recently there have been some studies
on applying the above to the name lookup of the
FIB. Most of these methods cache the expanded
prefix to solve the problem of caching the non-
leaf prefix.

Liu [11] has presented three prefix extension
methods, which are no prefix expansion (NPE),
complete prefix tree expansion (CPTE), and
partial prefix tree expansion (PPTE), to solve the
non-leaf prefix caching problems in prefix caching
for IP lookup. While NPE doesn’t cache the non-
leaf prefix, CPTE and PPTE cache the completely
and partially expanded prefixes. CPTE and
PPTE increase the size of the forwarding table.
Furthermore, it is not feasible to apply such prefix
extensions to name lookups where the degrees are
not uniform.

Kasnavi et al. [5] have developed a multi-zone
pipelined cache (MPC) to use the prefix caching
and IP address caching for short and long prefixes,
respectively. The reverse routing cache with
minimal expansion (RRC-ME) [1] has been
proposed to expand non-leaf prefixes on the fly
without modifying the original forwarding table.
However, it is only applicable to the trie-based
IP lookup engine. Apart from that, a new type of
prefix caching called a bitmap-based prefix cache
(BMCache) [6] has been proposed without any
additional prefix entries in the forwarding table.

Chen et al. [3] have recently proposed a technique
for caching an expanded prefix on the fly in the
name lookup of the FIB, in a similar way to the

http://www.sic.ici.ro

178 Jinsoo Kim, Junghwan Kim

RRC-ME of the IP address lookup. This scheme is
also only applicable to the trie-based name lookup
engine. Each component that could constitute a
name corresponds to a node in the trie for FIB.
Thus, unlike IP address lookup, the original trie
for name lookup is inherently irregular in its
degree and its implementation may be infeasible.

4. Proposed prefix caching

4.1 Critical distance-based prefix expansion

Prefix caching incurs incorrect cache hits if
there is no appropriate restriction. To avoid such
incorrect results we adopted the critical distance-
based prefix expansion.

Definition: The critical distance of a prefix
is the highest value among distances to all its
child prefixes.

For each prefix, critical distance is calculated
and stored in FIB. Figure 3 shows an example
of critical distance for a given set of prefixes.
For example, the critical distance of prefix p is
2 since the farthest child is s among its children
(q, r, and s) and the distance to s is 2. If a prefix
has no child, i.e., it is a leaf prefix, then its critical
distance should be zero.

Figure 3. An example of critical distance

When FIB is looked up for a given input name, the
critical distance of the matched prefix is exploited

for prefix expansion. Suppose that a name n1 = /
com/food/meat/beef is given as an input for FIB
lookup. Then, the prefix p is returned as LMP.
Since its critical distance is 2, p is expanded by
two levels. The expanded prefix /com/food/meat
will be stored in the cache. Critical distance-based
prefix expansion guarantees that the cache lookup
result is always correct. For any input name which
should be matched with q, r, or s, it cannot be
matched with /com/food/meat in the cache.

The component level of a prefix or a name is the
number of components in it. For example, the
component level of /a/b/c/d is 4. If the component
level of a given Interest name is shorter than that
of the matched prefix plus its critical distance, the
expansion actually does not occur. For example,
suppose that a given Interest name /com/food
is matched with p = /com. But /com cannot be
expanded to the component level 3 because the
component level of /com/food is 2. In that case,
/com/food itself should be cached and that entry
will be marked as exact matching instead of
prefix matching. If the matched entry in a cache
is marked as exact matching, then its component
level should be the same as that of the input name.

4.2 Lookup procedure

Lookup(name)
name: an Interest name
1. e = cache_lookup(name);
2. if (e == NULL or
3. (e.flag == exact_match and
4. e.level != name.level)) { // miss
5. e = FIB_lookup(name);
6. if (name.level < e.level + e.cd) {
7. e.pr = name.pr;
8. e.flag == exact_match;
9. } else {
10. e.pr = expand(name, e.cd);
11. e.flag == prefix_match;
12. }
13. cache_insert(e);
14. }
15. return e.face;

Figure 4. Lookup procedure

Figure 4 describes the lookup procedure for a
given Interest name. First, this procedure looks
up the cache. If the cache hit occurs, it checks
whether the hit entry is marked as an exact_match

	 179

ICI Bucharest © Copyright 2012-2018. All rights reserved

An Efficient Prefix Caching Scheme for Fast Forwarding in Named Data Networking

or not. If so, the cache hit is finally accepted only
when the component level of the Interest name
is the same as that of the retrieved cache entry.
In case of cache miss, FIB is looked up and the
matched entry is inserted into the cache. The
matched entry should be marked either as exact_
match or not before being inserted.

4.3 Organization of name lookup

Figure 5 shows an overall name lookup structure
which has a prefix cache. On a cache miss FIB is
looked up with the given Interest name. As lookup
results, a name prefix and the associated critical
distance are extracted. Then, the expansion logic
expands the given Interest name with the critical
distance. If no expansion occurs, the match type
should be marked as E (Exact match). Otherwise,
it should be marked as P (Prefix match).

The prefix cache consists of TCAM and
SRAM. TCAM is an associative memory which
facilitates the function for finding the LMP for
a given Interest name. For a matched entry, the
corresponding entry in SRAM is consulted. In
case that the match type is E, it is finally decided
as matching only when its level is the same level
as the component level of the Interest name.

Figure 5. Lookup structure with prefix cache

The critical distance-based prefix expansion
has the advantage that there is no restriction
on the organization of FIB. Whatever the FIB
is constituted from, it is sufficient if it contains
critical distance for each name prefix to determine
how long the prefix should be expanded. FIB may
be constituted by hashing or even TCAM. Unless
it has critical distances, it is necessary to use the
trie-based structure to determine the length of
prefix expansion.

5. Performance evaluation

5.1 Simulation environments

The proposed scheme was simulated and evaluated
with a FIB and several random traces. Since there
is no real-world FIB for NDN, we used dmoz
name set instead [24]. The dmoz name set is a
large set of urls for open content directory. We
extracted name prefixes from a dmoz name set of
March 12/2017. The urls were transformed into
name prefixes. For example, http://auto.com/body/
window/ was transformed into /com/auto/body/
window/. Table 1 shows the characteristics of
prefixes in the FIB which was used in simulation.
The prefix level of a prefix is the number of
ancestor prefixes (including itself), which should
be distinguished from the component level. For
example, if there exist two prefixes, /a and /a/b/
c/d, then the prefix level of /a is 1 and the prefix
level of /a/b/c/d is 2. However, the component
level of /a/b/c/d is 4.

Table 1. Characteristics of FIB

prefixes 3,055,734
Max. component level 18
Max. prefix level 9
Highest frequent component level 3
Highest frequent prefix level 1

The input traces were randomly generated using
the prefixes in FIB. Each Interest name was made
by the process of appending several random
suffixes to a randomly selected prefix. The traces
were generated so as to follow Zipf’s law. For
our experiment, 4 traces each of which had one
million names were generated on α = { 0.7, 0.8,
0.9, 1.0 }.

http://www.sic.ici.ro

180 Jinsoo Kim, Junghwan Kim

5.2 Experiment results

Figure 6 shows the distribution of prefix level and
component level. Most prefixes are at prefix level
1 (72.3%), and the prefixes at level 2 and level 3
account for 13.9% and 8.4%, respectively.

Figure 7 shows the distribution of critical distance.
Most prefixes are at critical distance = 0, i.e., leaf
prefixes (92.5%). The prefixes at critical distance
= 1 and 2 account for 5.7% and 1.2%, respectively.

15

Component Level

10

5
9876543

Prefix

Level

21

10 4

10 2

10 0

10 6

of

 P
re

fix
es

Figure 6. Distribution of prefix level and
component level

Component
Level

15

10

5
15

10
Critical

Distance

5

10 4

10 6

10 0

10 2

0

of

 P
re

fix
es

Figure 7. Distribution of critical distance

In Figure 8, the cache hit ratios at α = 0.8 are
compared as the cache size is increased. EPC
denotes Expanded Prefix Caching which is the
proposed scheme. LPCO denotes Leaf Prefix
Caching Only and NPC denotes No Prefix
Caching. In LPCO only the leaf prefixes are
cacheable and non-leaf prefixes should not be
cached to avoid incorrect hits. In NPC the Interest
names are cached instead of the matched prefixes,
and cache lookup is performed as exact matching.

NPC shows the worst hit ratio among them since
it does not exploit spatial locality. The proposed
scheme, EPC, shows the best hit ratio, and it
achieves nearly 0.999 at 8K of cache size.

The cache hit ratios of EPC, LPCO, and NPC are
presented in Figure 9, 10, and 11, respectively. The
higher α-based trace, the higher cache hit ratio is
observed. As the cache size is increased, EPC and
LPCO converges to some hit ratio irrespective of
α whereas there is no such effect in NPC. It can
be explained by the fact that NPC does not exploit
spatial locality.

When a cache hit occurs, the matched entry is
either E (Exact Match) or P (Prefix Match). The
Prefix Match is either Leaf Prefix Match or Non-
leaf Prefix Match. As shown in Figure 12, there
are some Non-leaf Prefix Matches in case of EPC,
which accounts for the effectiveness of critical
distance-based prefix expansion. LPCO and NPC
do not have any Non-leaf Prefix Match, and even
NPC has only Exact Matches.

Cache Size(K)
0.5 1 2 4 8

H
it

R
at

io

0

0.2

0.4

0.6

0.8

1

EPC

LPCO

NPC

Figure 8. Cache hit ratio at α=0.8

Cache Size(K)
0.5 1 2 4 8

H
it

R
at

io

0.2

0.4

0.6

0.8

1

=0.7
=0.8
=0.9
=1.0

Figure 9. Cache hit ratio of EPC

	 181

ICI Bucharest © Copyright 2012-2018. All rights reserved

An Efficient Prefix Caching Scheme for Fast Forwarding in Named Data Networking

Cache Size(K)
0.5 1 2 4 8

H
it

R
at

io

0.2

0.4

0.6

0.8

1

=0.7
=0.8
=0.9
=1.0

Figure 10. Cache hit ratio of LPCO

Cache Size(K)
0.5 1 2 4 8

H
it

R
at

io

0

0.1

0.2

0.3

0.4

=0.7
=0.8
=0.9
=1.0

Figure 11. Cache hit ratio of NPC

EPC LPCO NPC

R
at

io

0

0.2

0.4

0.6

0.8

1

Exact Match

Leaf Prefix Match

Non-leaf Prefix Match

Figure 12. Ratio of matching type

6. Conclusion

The name lookup for Interest packet forwarding
can be improved by prefix caching. The latest FIB
lookup result is stored in a prefix cache and the
next lookup can be performed faster in the cache.
Instead of storing a lookup key, that is, an Interest
name, the cache stores a prefix which covers some
name space.

Though the prefix cache gives better performance
than a name cache, it has a problem that produces
incorrect results when caching non-leaf prefixes.
We proposed a technique which expands matched
prefixes based on critical distances to avoid
incorrect results. The technique can be adopted for
any forwarding engine using a simple expansion
logic irrespective of the FIB lookup scheme. The
simulation results show that our prefix caching
scheme has a higher hit ratio than leaf prefix
caching or no prefix caching.

REFERENCES

1.	 Akhbarizadeh, M. J. & Nourani, M. (2004,
August). Efficient prefix cache for network
processors. In Proceedings. 12th Annual
IEEE Symposium on High Performance
Interconnects, 2004 (pp. 41-46). IEEE.

2.	 Bari, M. F., Chowdhury, S. R., Ahmed, R.,
Boutaba, R. & Mathieu, B. (2012). A survey
of naming and routing in information-centric
networks, IEEE Communications Magazine,
50(12).

3.	 Chen, X., Zhang, G. & Cui, H. (2018).
Investigating Route Cache in Named Data
Networking, IEEE Communications Letters,
22(2), 296-299.

4.	 Florian, V. & Neagu, G. (2018). Towards
an IoT Platform with Edge Intelligence
Capabilities, Studies in Informatics and
Control, 27(1), 65-72.

5.	 Kasnavi, S., Berube, P., Gaudet, V. & Amaral,
J. N. (2008). A cache-based internet protocol
address lookup architecture, Computer
Networks, 52(2), 303-326.

6.	 Kim, J., Ko, M. C., Nam, J. & Kim, J. (2014).
Bitmap-based Prefix Caching for Fast IP
Lookup, KSII Transactions on Internet and
Information Systems (TIIS), 8(3), 873-889.

7.	 Lee, J. & Lim, H. (2016). A new name
prefix trie with path compression. In IEEE
International Conference on Consumer
Electronics-Asia (ICCE-Asia) (pp. 1-4).

8.	 Lee, J., Shim, M. & Lim, H. (2016). Name
prefix matching using bloom filter pre-
searching for content centric network, Journal
of Network and Computer Applications, 65,
36-47.

http://www.sic.ici.ro

182 Jinsoo Kim, Junghwan Kim

9.	 Li, D., Li, J. & Du, Z. (2016, June). An
improved trie-based name lookup scheme for
Named Data Networking. In IEEE Symposium
on Computers and Communication (ISCC),
2016 (pp. 1294-1296).

10.	 Li, Z., Liu, K., Liu, D., Shi, H. & Chen, Y.
(2017). Hybrid wireless networks with FIB-
based Named Data Networking, EURASIP
Journal on Wireless Communications and
Networking, 2017(1), 54.

11.	 Liu, H. (2001). Routing prefix caching in
network processor design. In Proceedings.
Tenth International Conference on Computer
Communications and Networks, 2001 (pp.
18-23). IEEE.

12.	 Pan, J., Paul, S. & Jain, R. (2011). A survey of
the research on future internet architectures,
IEEE Communications Magazine, 49(7).

13.	 Saxena, D., Raychoudhury, V., Suri, N.,
Becker, C. & Cao, J. (2016). Named data
networking: a survey, Computer Science
Review, 19, 15-55.

14.	 Shubbar, R. & Ahmadi, M. (2017). Efficient
name matching based on a fast two-
dimensional filter in named data networking,
International Journal of Parallel, Emergent
and Distributed Systems, 1-19.

15.	 Sun, Y., Egi, N., Shi, G. & Wu, J. (2012,
December). Content-based route lookup
using CAMs. In Global Communications
Conference (GLOBECOM), 2012 IEEE (pp.
2677-2682).

16.	 Yuan, H., Crowley, P. & Song, T.
(2017). Enhancing Scalable Name-
Based Forwarding. In Proceedings of the
Symposium on Architectures for Networking
and Communications Systems (pp. 60-69).

17.	 Yuan, H. & Crowley, P. (2015, May). Reliably
scalable name prefix lookup. In ACM/IEEE

Symposium on Architectures for Networking
and Communications Systems (ANCS), 2015
(pp. 111-121).

18.	 Wang, Y., Dai, H., Jiang, J., He, K., Meng,
W. & Liu, B. (2011, December). Parallel
name lookup for named data networking.
In Global Telecommunications Conference
(GLOBECOM 2011), 2011 IEEE (pp. 1-5).

19.	 Wang, Y., He, K., Dai, H., Meng, W., Jiang,
J., Liu, B. & Chen, Y. (2012). Scalable
name lookup in NDN using effective
name component encoding. In Proc. of the
International Conference on Distributed
Computing Systems (ICDCS) (pp. 688-697).

20.	 Wang, Y., Pan, T., Mi, Z., Dai, H., Guo, X.,
Zhang, T., Liu, B. & Dong, Q. (2013, April).
Namefilter: Achieving fast name lookup
with low memory cost via applying two-
stage bloom filters. In Proceedings IEEE
INFOCOM, 2013 (pp. 95-99).

21.	 Wang, Y., Xu, B., Tai, D., Lu, J., Zhang, T.,
Dai, H., Zhang, B. & Liu, B. (2014, May).
Fast name lookup for named data networking.
In IEEE 22nd International Symposium of
Quality of Service (IWQoS), 2014 (pp. 198-
207). IEEE.

22.	 Wang, Y., Qi, Z., Dai, H., Wu, H., Lei, K. &
Liu, B. (2017, May). Statistical Optimal Hash-
based Longest Prefix Match. In Proceedings
of the Symposium on Architectures for
Networking and Communications Systems
(pp. 153-164).

23.	 Xylomenos, G., Ververidis, C. N., Siris, V.
A., Fotiou, N., Tsilopoulos, C., Vasilakos,
X., Katsaros, K. V. & Polyzos, G. C. (2014).
A survey of information-centric networking
research, IEEE Communications Surveys &
Tutorials, 16(2), 1024-1049.

24.	 http://www.dmoz.org/.

http://www.dmoz.org/

	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK109
	OLE_LINK110
	OLE_LINK62
	OLE_LINK63
	OLE_LINK64
	OLE_LINK111
	OLE_LINK112
	OLE_LINK73
	OLE_LINK113
	OLE_LINK114
	OLE_LINK70
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK179
	OLE_LINK177
	OLE_LINK178
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK5
	OLE_LINK6
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_Hlk516717825
	_GoBack
	_GoBack
	bbib0185
	_GoBack
	_Ref498657999
	_GoBack
	_GoBack
	_GoBack
	_GoBack

