
183

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Robot visual servo with one or more CCD
cameras has received increasing attention recently.
This field spans several disciplines including
robotics, computer vision, and control theory.
Vision servoing have been inserted to increase
the accuracy and flexibility of control systems.
Generally, vision can be used to control different
dynamic systems, e.g., submarines, aircrafts,
and vehicles. The purpose of the visual servoing
approach is to control a system by using the
information providing a vision system [12]. Vision
systems used for robotic applications can typically
categorize according to the function of vision
sensors’ number.

A camera is used for monocular visual servoing,
either attached to a stable plane pointing toward
the robotic workspace (fixed camera configuration)
or assembled at the end effector of the robot
(eye-in-hand configuration). Multicamera vision
systems, in which multiple cameras are placed
in the workspace, are used to obtain the mission-
specific data [24].

Robotic image-processing techniques have been
extensively studied. Knoeppel et al. determined,
with two CMOS cameras mounted on a car’s rear
window, whether a vehicle was following the
car at a maximum distance of 150 m away and
between other vehicles [19].

Mondi et al. developed a ping-pong-playing robot
arm. The coordinates of ping-pong balls were
determined with image-processing techniques

applied to real-time images taken with a CCD
video camera [21].

Mundhra et al. implemented a mobile robot
catching a ball that had fallen [22]. Choi, Ryu,
and Kim realized a mobile robot moving without
hitting the wall with sensors in a confined space,
such as a maze [8]. Bustamante and Gu located
an electrical plug and its coordinates with a
camera attached to the robot arm by using pattern-
recognition algorithms [6]. Claudio et.al. realized
an application using two visual-servoing on the
humanoid robot [9].

Artificial neural networks (ANN) are also used
for visual servoing applications and inverse
kinematics solutions. Al-Junaid realized ANN
based control of a nonlinear system with visual
servoing. ANN was used to control a 6-axis robot
arm in his study [2]. Feng et.al. used extreme
learning machine to obtain PUMA 560 robot
joint angles. Feedforward neural networks used
in their study had a single hidden layer [13].
Raptis & Tzafestas obtained inverse kinematics
of the PUMA 3R manipulator via Neurofuzzy and
Neural Networks [23]. Almusawi et.al., proposed a
multilayer neural network with 6 input variables to
solve inverse kinematics of Denso VP6242 robotic
arm [3]. Jha & Biswal compared the ANN and
ANFIS results of the inverse kinematic solution of
5R Manipulator [17]. Srisuk et.at., found inverse
kinematics solution of the robotic arm with 3 DOF
an ANN in MLP structure in 3D space [25].

Studies in Informatics and Control, 27(2) 183-190, June 2018

https://doi.org/10.24846/v27i2y201806

Visual Servoing Application for Inverse Kinematics of
Robotic Arm Using Artificial Neural Networks

Ayca AK 1*, Vedat TOPUZ1, Emregul ERSAN2
1 Marmara University Vocational School of Technical Sciences, Goztepe, Istanbul/Turkey
aycaak@marmara.edu.tr (*Corresponding author)
1 Marmara University Vocational School of Technical Sciences, Goztepe, Istanbul/Turkey
vtopuz@marmara.edu.tr
3 Zeytinburnu Industrial Vocational School, Zeytinburnu, Istanbul/Turkey
emregulersan@hotmail.com

Abstract: This paper presents novel approach for a visual servoing application of six axis robotic arm. Basic image-
processing techniques were used for object recognition and position determination of robotic arm. The inverse kinematics
solution of the robot arm was performed with artificial neural networks. Afterwards the robot’s inverse kinematics solution
was completed, the determined joint-angle values were used to control the robot arm. Performance of radial basis function
network (RBF) and multilayer perceptron (MLP) were also compared.

Keywords: Image processing, Robot control, Artificial neural network, Visual servoing, Inverse kinematic.

mailto:aycaak@marmara.edu.tr
mailto:aycaak@marmara.edu.tr

http://www.sic.ici.ro

184 Ayca Ak, Vedat Topuz, Emregul Ersan

Sliding Mode Control (SMC) is also investigated
to control the robotic manipulators in the
presence of uncertainties, unknown external load
disturbances [1]. Kara & Mary also presented
an adaptive and robust control scheme, which
is based on with proportional derivative control
for trajectory tracking of nonlinear robotic
manipulators [18].

In this study, an image-processing interface
has been prepared for image acquisition, image
processing, object coordinate finding, forward
kinematics, inverse kinematics, simulation, and
running functions. Monocular visual-servoing
method is used to detect an object in the workspace.

The process comprises four main stages: object
recognition, determination of the object’s location,
inverse kinematics solution of the robot arm, and
movement of the robot arm. The image of the object
is transferred to the system by a camera placed at
the top of the workspace. After the captured image
is passed through some image-processing stages,
it is determined whether the object is the desired
one. Then, robotic arm inverse kinematics solution
is realized using ANNs. Finally, objects are moved
to the designated warehouse area using a six-axis
educational robot arm.

This paper is organized as follows: Section 2
presents the forward and inverse kinematics
analysis of robotic arm. The proposed ANN is
described in Section 3. Section 4 illustrates the
image processing applications. Section 5 presents
the experimental work and results. Finally, Section
6 concludes this paper.

2. Visually Guided Robot Arm

At the designed application, objects found in
the workspace are firstly identified through
image-processing techniques. Then, the inverse
kinematics solution of the robot is computed.
Finally, the object is moved to the desired
location by the robotic arm. A block diagram of
the designed system is shown in Figure 1.

2.1 Forward Kinematic

In the forward kinematics problem, the end-
effector’s location in the Cartesian space.
Conversely, given a desired end-effecter position
and orientation, the inverse kinematics problem
refers to finding the values of the joint variables

that allow the manipulator to reach the given
location. Denavit-Hartenberg (D-H) approach is
used to determine the forward kinematics of serial
robotic arm. In this approach, the D-H parameters
are given using four parameters. These parameters
completely specify the configuration of the frame
()i system relative to the frame (1)i − system [11].

Figure 1. Designed Visual Servoing Application
Block Diagram

For any particular link ()i , both rotation ()iα and
displacement ()ia are constant quantities solely
determined by particular kinematic configuration
of robotic arm. Furthermore, the two remaining
parameters vary: rotation of axis ()iθ if joint ()i is
revolute, or offset ()id if joint ()i is prismatic. The
complete configuration coordinate transformation
matrix (1i

iT
−) associated with these four operations

can readily be determined by composition of the
four transformation matrices associated with each
individual operation.

i
i

x x a z z dT R D R D
i

− =
− −

1
1 1() () () ()i i iα θ (1)

where R is a rotation and D is displacement
matrices about axis x and z respectively. This
equation can be clearly expressed as follows:

1

1 11

1 1

1 0 0 0 1 0 0 cos sin 0 0 1 0 0 0

0 sin 0 0 1 0 0 sin cos 0 0 0 1 0 0

0 sin 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

i i i

i i i ii

i

i i i

a

cos
T

cos d

θ θ

α α θ θ

α α

−

− −−

− −

−

−
=

       
       
       
       
       
       

(2)

As a result, the general transformation matrix is
obtained as Eq. 3.

The orientation of the end effector is represented in
the first three columns of the matrices, whereas the
position of the end effector is in the last column.
In this way, the D-H parameters can constitute to
calculate the forward kinematics of the robot.

1

1 1 1 11

1 1 1 1

cos sin 0
sin * cos * sin sin *
sin *sin cos *sin cos *

0 0 0 1

i i i

i i i i i i ii
i

i i i i i i i

a
cos cos d

T
cos d

θ θ
θ α θ α α α
θ α θ α α α

−

− − − −−

− − − −

− 
 − − =
 
 
 

(3)

	 185

ICI Bucharest © Copyright 2012-2018. All rights reserved

Visual Servoing Application for Inverse Kinematics of Robotic Arm Using Artificial Neural Networks

Used robotic arm and their rotation axes and links
are given in Figure 2. While the first 5 joints are
the basic joints that determine the position of
the end effector, the position of the sixth joint is
related to the on/off state of the end effector and
is not included in the kinematic calculations. The
rotation angle limit values of each joint are given
in Table 1.

Figure 2. Rotation axes of robots

 Table 1. Robot Angle Limit Values

Rotation Axes
(degree) 1θ 2θ 3θ 4θ 5θ

Maximum 100 83 115 120 80

Minimum -95 -110 -100 -100 -80

In order to calculate the forward kinematic matrix
of the robot arm, the limit values of the rotation
angles, the offset and displacement values of each
link were measured. Obtained D-H parameters for
the robotic manipulator are listed in Table 2.

Table 2. D-H Parameters of Robot

Link (i) 1 2 3 4 5

Rotation (o) 1()iα − 0 -90 0 0 90

Displacement
(mm) 1()ia −

0 0 90 70 110

Rotation (o) ()iθ θ1 θ2 θ3 θ4 θ5

Offset (mm) ()id 200 12 12 30 0

If the D-H parameters are substituted in the
translation matrix in Eq. 3, the translation
matrices for each axes (Eq. 4) and overall forward
kinematics matrices are obtained (Eq.5).

1 1 2 2 3 3 2

1 1 2 2 3 30 1 2
1 2 3

1

4 4 3* 4

4 4 3* 43
4

cos sin 0 0 cos 0 sin 0 cos sin 0
sin cos 0 0 sin 0 cos 0 sin cos 0 0

, , ,
0 0 1 h 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

cos sin 0 cos
sin cos 0 sin

0 0

h

T T T

h
h

T

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ
θ θ θ

−     
     − − −     = = =
     −
     
     

−
−

=

5 5 4 5

5 5 4 54
5

5

cos 0 sin h *cos
sin 0 cos h *sin

,
1 0 1 0 0

0 0 0 1 0 0 0 1

T
h

θ θ θ
θ θ θ

−   
   −   =
   −
   
   

(4)

0 0 1 2 3 4
5 1 2 3 4 5

0 1 0 0
0 0 1 5

* * * *
0 0 1 (h1 h 2 h 3 h 4)
0 0 0 1

h
T T T T T T

− 
 − = =
 + + +
 
 

(5)

2.2 Inverse Kinematics

The inverse kinematics can state as to find the
evaluating of the joints’ variables that will
realize the required position and orientation for
a requisite location of the arm’s limit. It can be
expressed as follows:

(x, y, z)i fθ = 			 (6)

where (x, y, z) represent the position at the Cartesian
coordinate system and ()iθ are joint angles.

The inverse kinematic solution could be realized
using three methods; complete analytical solution
(closed form), semi-analytical solutions and
numerical solutions. There may not be adequate
closed form solutions when coupling of the
orientation and position kinematics happens.
Using ANN’s to solve the inverse kinematics
problems in this case is better [26].

3. ANN Model for Inverse Kinematics

Because of above statement, ANNs are a
widespread approach used for the inverse
kinematic solution of the robot arm. Given
a sample vector, ANN is capable to map the
connection between inputs and outputs. When
the ANN is trained, it can generalize related
output for an input set data. In the learning
process, training algorithm iteratively modifies
the connection weights.

In this study, this nonlinear modeling feature of
ANN was used. The inputs values are robot joint
angles which were generated between robot axes
limit angles. The output values are robot Cartesian
coordinate values. This data set was inversely used
for the inverse kinematic solution of the robotic
arm with ANN. MLP and RBF models were
proposed to measure the performance of the ANN.

http://www.sic.ici.ro

186 Ayca Ak, Vedat Topuz, Emregul Ersan

3.1 Multi-Layer Perceptron (MLP)

Typically, MLP network is formed in neurons
layers. Here each neuron in the layer calculates
the sum of its input data 1 2 3 4 5[, , ,]θ θ θ θ θx = , . Then,
this sum is applied to an activation function ()f .
The output of the network [, ,]x y z=o is defined
as a matrix form;

2 2 1 1 1 2(())f f= + +o W W x b b 	 	 (7)
where (W) are weight matrices, (b) are bias
vectors and (f) are the sigmoid and linear
activation functions.

MLP network with one hidden layer used in this
study is shown in Figure 3. Backpropagation
algorithm is used to update the weights of the
MLP network [16]. The following equation is used
to minimize the mean square error for adjusting
the weights in this algorithm;

2

1

1 ()
2

p

e t oγ γ

γ =

= −∑
			

(8)

W1 f1

x

y

z

∑
f2

∑
f2

1θ

2θ

3θ

4θ

5θ

∑

b

∑

∑

∑

W 2

∑
f2

1

b1
b2

∑

Figure 3. Realized MLP network structure

Network error is decreased iteratively by the
steepest descent algorithm:

w (k+1)= w(k)- · e
w

b (k+1)= b(k)- · e
b

m

m

∂
∂
∂
∂ 		

(9)

where; o is output, γ is the sampling instant in q
size and t is a target and η is learning rate.

3.2 Radial Basis Network (RBF)

RBF is a feed-forward neural network comprising
two layers. These are a nonlinear hidden layer and
a linear output layer (Figure 4). The hidden layer
activation function used in this study is Gaussian
kernel ()Ψ function.

Ψ

Ψ

Ψ3

j

∑

∑

x

y

z

3θ

1θ

2θ

4θ

5θ

Ψ4

Ψ1

∑
f 2

W1

W 2

f 2

f 2

2

Figure 4. Realized RBF structure

The output layer performs the linear
combination of the basic function responses
expressed as follows:

1

q

i, j j
j

b w
=

= + Ψ∑o

			
(10)

where q is the model dimension and Ψj is the
kernel function of the jth hidden neuron defined as;

2

2exp
2

j

j

c
j

σ

 −
 Ψ = −
 
 

x

			
(11)

RBF training procedure has two phases. In the first
phase, the input data set is used to define the center
positions (cj). For this purpose, unsupervised
clustering method such as the K-means algorithm
is used. The radius (

jσ) is determined by the
k-nearest neighbor precept. Output layer’s weights
(W) is updated in the second phase while keeping
the (

jc) and (
jσ) which are fixed [15].

3.3 Inverse Kinematic Solution with ANN

For each axis of the robot arm, 800 inputs

1 2 3 4 5(, , ,)θ θ θ θ θ, were generated randomly within
the rotation axis limit values given in Table 1. The
dataset output values (, ,)x y z are calculated by
using D-H parameters of the robotic arm as a
given in Eq. 5. Among this created datasets, 600 of
them were randomly selected for training and the
rest of them used for the testing procedure. This
dataset was inversely used the inverse kinematic
solution of the robot arm using ANN. That means
ANN input values are the Cartesian coordinate
matrix (, ,)x y z and the targets are rotation angles

1 2 3 4 5(, , ,)θ θ θ θ θ, . This configuration is shown in
Figure 5. After ANN training, test procedures
were carried out and to show the MLP and RBF
networks performance.

	 187

ICI Bucharest © Copyright 2012-2018. All rights reserved

Visual Servoing Application for Inverse Kinematics of Robotic Arm Using Artificial Neural Networks

Forward
Kinematic

Model Data Set

ANN Model
(MLP,RBF)

Σx
y
z

1θ
2θ

5θ

Σ

Σ
Σ

Σ

+
+

+
+

+

-

-
-

-
-

Figure 5. The inverse kinematic solution with ANN

4. Image Processing

To create a digital image, the perceived
continuous data must be converted to a digital
format. The digitization process includes two
processes: sampling and quantization [14]. The
resolution of the digital image is determined
through the sampling process (i.e.,1024 × 768)
and the color depth of the image is determined
through quantization. Initially, camera calibration
process must be used to correct the convex view
obtained from the camera. Then, color images
must be converted to black and white image so
that the object searched is clearly visible. Finally,
desired object Cartesian coordinate values must be
obtained. In this study, it is not necessary to find
the z coordinate value (height) because the white
table tennis ball was used as the desired object to
be found.

4.1 Camera Calibration

Figure 6a. Calibration panel images in the different
distances and angles

In this study, the obtained images are dished
(convex) because the camera uses a wide-angle
lens. Elimination of this convex corruption
and converting the picture to plane form are
necessary to avoid wrong measurements of the
object coordinates within the workspace. For
this procedure, MATLAB Camera Calibration
Toolbox software is used [6]. The calibration page
in view of a checkerboard consists of 2.8 × 2.8
cm squares, with 7 pieces on the vertical and 9
pieces on the horizontal axis. Using twenty-five
images captured at different angles and distances
in front of the camera pictures and their obtained

direction and position are given in Figure 6a and
6b respectively.

Figure 6b. Calculated directions and camera-
centered positions of the calibrated images

After the calibration process, all images obtained
from the camera can be easily corrected with the
software. After the calibration process, the raw
image of the calibration worksheet is brought
into the image plane to enable common and metric
readings. An image of the calibration board before
and after the calibration process is given in Figure
7(a) and 7(b), respectively.

(a) Before (b) after the calibration process

Figure 7. Calibration board image

4.2 Image Processing

Conversion of the received image to a binary
image and thresholding operations are carried
out in this part. Initially, the global threshold
value is determined (Figure 8a) after obtaining
the threshold value of the image. Then, a new
threshold value is manually selected as shown
in (Figure 8b).

Figure 8. Threshold. (a) with the global threshold
value and (b) with a new threshold value

http://www.sic.ici.ro

188 Ayca Ak, Vedat Topuz, Emregul Ersan

4.3 Object Cartesian Coordinate Values

The object recognition process consists of two
phases; recognition of object shape and center
point of recognized object. The total number of
pixels is used as the basis for defining the object
in the work done. Since a fixed camera system is
used, the total pixel number of the object will not
change for each case [4]. Total pixel of white areas
is found as follows;

 1

1 (,)
(x, y) , where (,)

0 (,)

n m

k
x y

if B x y k
A B B x y

if B x y k=

∈
= =  ∉
∑∑

(12)

where Ak is the field of the object and B(x, y)
represents the x column and the y line value of
a labeled picture that has m rows and n columns.

The position of the object is determined by
computing the center of mass. The x and y
coordinates of the center of mass are detected
with Eq. (14).

* (,) * (,)
1 1 1 1,

n m n m
i B i j j B i j

i j i jx y
A Ak k

∑ ∑ ∑ ∑
= = = == =

 	

(13)

After determining the center of mass, it is
determined whether the coordinate values are
inside the workspace area. Values obtained in the
previous section are presented in the coordinate
plane in this part of the interface given in Figure 2.

4.4 User Interface

The interface and sub functions were developed
under Matlab. The main interface of the
application designed for visual servoing is shown
in Figure 9. In image acquiring section, the image
is taken from the selected camera and the camera
can be calibrated. In image processing section,
the color picture is converted to the black and
white picture at the desired threshold value.
The coordinate finding of the object evaluates
whether the object on the screen is the wanted
object, and when the object sought is found, the
coordinate values of the object’s center point in
cm are calculated. In the image acquiring process,
the camera calibration toolbox, the robot forward
kinematic, and the robotic toolbox [10] for the
simulation functions and the ANN toolbox for the
inverse kinematic operation were used.

5. Experimental Results

A well-trained MLP and RBF networks structure
could predict the output for any input data from

the input space. The correlation coefficients
(R) are used to compare the performance of
the networks trained after the test procedure.
The correlation coefficient is a dimensionless
measure of the degree of a linear association of
two random variables, with value in the interval
[−1, 1]. 0 means no linear association, (1) means
linear association and (−1) is a linear association
with opposite directions.

Figure 9. The user interfaces main screen

Figure 10. MLP and RBF networks scattering
diagrams and correlation coefficients (R)

Scattering diagrams showing the performances of
MLP and RBF networks are given in Figure 10.
As can be seen, the RBF network’s correlation
coefficient (R = 0.997) is slightly better than the
MLP network’s (R = 0.983). This means that
both structures can be used to solve the inverse

	 189

ICI Bucharest © Copyright 2012-2018. All rights reserved

Visual Servoing Application for Inverse Kinematics of Robotic Arm Using Artificial Neural Networks

kinematic problems and there is no obvious
difference between them.

To examine this proposal in detail, the results
obtained from the MLP and RBF network tests
are given in Figures 11 and 12, respectively, in
comparison with the forward kinematic input
values of the robot. Only 80 datasets were given
to show the figure clearly and. In these figures,
rotation angles are given in radian.

In order to test the obtained results in the real-
time, 10 test points were randomly produced in the
x, y Cartesian coordinate plane within the robot
working area. The work area is in the size of 200
x 300 mm and the axis origin point is determined
as the upper left corner.

The rotation angles calculated by the ANN models
for these test points and the locations of the robot
arm end points for these angles are given in Table
3. As seen in the table, the error value in the
results obtained from both ANN models is within
the limits of ±4 mm. Also, the error performance
of the RBF network structure is better than the
MLP structure.

Figure 11. Robot rotation angles for forward
kinematic model and MLP network

Figure 12. Robot rotation angles for forward
kinematic model and RBF Network

6. Conclusion

In this study, visual servoing application of a robot
arm whose inverse kinematic solution realized
with ANN was performed.

Firstly, distortion caused by the convex camera
lens was eliminated. Thus, it is provided to give
real distance values on the two-dimensional
Cartesian coordinate system of the image taken
from the camera. The identity and midpoint of
the object were determined by developing an

object identification algorithm based on the total
number of pixels on the image. Object-detection
algorithm was also tested on different types of
objects. The algorithm does not allow the robot
arm to move when an unrecognized object enters
the workspace.

The MLP and RBF models were used to obtain
inverse kinematic solution based on the forward
kinematic solution. According to the results
obtained from the testing of RBF and MLP
network structures, both network structures can be
used in robot inverse kinematics calculation even
if the RBF network structure performs slightly
better. According to the results of RBF and MLP
network structures, both network structures can be
used in robot inverse kinematics calculation even
if the RBF network structure performs slightly
better. The designed system was tested in real time
and similar results were achieved.

According to all these results, it was concluded
that the system would be an alternative to a real-
time visual servoing application.

Table 3. Real time robot rotational angles
and obtained cartesian coordinate values

REFERENCES

1.	 Ahmed, S., Wang, H. & Tian Y. (2018). Fault
Tolerant Control Using Fractional-order
Terminal Sliding Mode Control for Robotic
Manipulators, Studies in Informatics and
Control, 27(1), 55-64. ISSN 1220-1766.

2.	 Al-Junaid, H. (2015). ANN Based Robotic
Arm Visual Servoing Nonlinear System,
Procedia Computer Science, 62, 23-30.

http://www.sic.ici.ro

190 Ayca Ak, Vedat Topuz, Emregul Ersan

3.	 Almusawi, A. R. J., Dülger, L. C. &
Kapucu, A. (2016). New Artificial Neural
Network Approach in Solving Inverse
Kinematics of Robotic Arm (Denso
VP6242), Computational Intelligence and
Neuroscience, 2016.

4.	 Benjamin, B. C. & Charles, L. (1992).
Inverse Kinematics Problem in Robotics
Using Neural Networks, NASA Technical
Memorandum, 105869.

5.	 Bingul, Z., Ertunc, H. M & Oysu, C.
(2005). Comparison of Inverse Kinematics
Solutions Using Neural Network for
6R Robot Manipulator with Offset. In
Computational Intelligence Methods and
Applications Congress.

6.	 Bustamante, L. & Gu, J. (2007). Localization
of Electrical Outlet for a Mobile Robot Using
Visual Servoing. In Canadian Conference on
Electrical and Computer Engineering.

7.	 Camera Calibration Toolbox for Matlab,
<http://www.vision.caltech.edu/bouguetj/
calib_doc/>.

8.	 Choi, W., Ryu, C. & Kim, H. (1999).
Navigation of a Mobile Robot Using Mono-
Vision and Mono-Audition. In Proceedings.
1999 IEEE International Conference on
Systems, Man, and Cybernetics, vol. 4.

9.	 Claudio, X. G., Agravante, D. J., Spindler,
F. & Chaumette, F. (2016). Dual Arm
Manipulation and Whole Body Control
with the Humanoid Robot Romeo by
Visual Servoing, Journées Nationales de la
Recherche Humanoïde. Toulouse, France.

10.	 Corke, P. I. (2017). Robotics, Vision &
Control. Springer. ISBN 978-3-319-54413-7.

11.	 Craig, J. (2005). Introduction to Robotics.
Prentice Hall.

12.	 Ezio, M. (2002). Survey of Vision-based
Robot Control. In European Naval Ship
Design, Captain Computer IV Forum,
ENSIETA. Brest, France.

13.	 Feng, Y., Yao-nan, W. & Yi-min, Y. (2012).
Inverse Kinematics Solution for Robot
Manipulator based on Neural Network
under Joint Subspace, Int. J. of Computer
Communications & Control, 17(3).

14.	 Gonzalez, R. C. & Woods, R. E. (2008).
Digital Image Processing (3rd Edition).
Prentice Hall.

15.	 Hagan, M. T., Demuth, H. B., Beale, M. H. &
De Jesús, O. (2002). Neural Network Design
(2nd Edition). ISBN-10: 0-9717321-1-6.

16.	 Haykin, S. (1999). Neural Networks and
Learning Machines (3rd Edition). ISBN-10:
0-13-147139-2.

17.	 Jha, P. & Biswal, B. B. (2015). Inverse
Kinematic Solution of 5R Manipulator Using
ANN and ANFIS, IAES Int. J. of Robotics
and Automation (IJRA), 4(2).

18.	 Kara, T. & Mary, A. H. (2017). Adaptive
PD-SMC for Nonlinear Robotic Manipulator
Tracking Control, Studies in Informatics and
Control, 26(1), 49-58. ISSN 1220-1766.

19.	 Knoeppel, C., Schanz, A. & Michaelis, B.
(2000). Robust Vehicle Detection at Large
Distance Using Low Resolution Cameras. In
Proceedings of the IEEE Intelligent Vehicles
Symposium. Dearborn.

20.	 Lou, Y. F. & Brunn, P. (1999). A Hybrid
Artificial Neural Network Inverse Kinematic
Solution for Accurate Robot Path Control.
In Proc. of the Inst. of Mech. Eng., Part I:
Journal of Systems and Control Eng., 213(1)
(pp. 23-32).

21.	 Mondi, K. P., Sahin, F. & Saber, E. (2005).
An Application of Human Robot Interaction:
Development of a Ping-Pong Playing Robotic
Arm. In IEEE Int. Conference on System,
Man and Cybernetics, vol. 2.

22.	 Mundhra, K., Suluh, A., Sugar, T. &
McBeath, M. (2002). Intercepting a Falling
Object: Digital Video Robot. In Proceeding
of the IEEE Int.Conf. on Robotics and Aut.

23.	 Raptis, S. N., Tzafestas, E. S. & Tzafestas, S. G.
(2007). Robot Inverse Kinematics via Neural
and Neurofuzzy Networks: Architectural
and Computational Aspects for Improved
Performance, Journal of Information and
Optimization Sciences, 28(6).

24.	 Sahin. T. & Zergeroglu, E. (2006).
Adaptive 3D Visual Servo Control of Robot
Manipulators via Composite Camera Input,
Turkish J. of Elec. Eng, 14(2).

25.	 Srisuk, P., Sento, A. & Kitjaidure, Y.
(2017). Inverse Kinematics Solution using
Neural Networks from Forward Kinematics
Equations. In 9th International Conference on
Knowledge and Smart Technology.

26.	 Yang S. S., Moghavvemi, M. & Tolman
J. D. (2000). Modeling of Robot Inverse
Kinematics Using Two ANN Paradigms. In
TENCON Proceedings. Int. Sys. and Tec. for
the New Millennium, vol. 3 (pp. 173-177).

	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK109
	OLE_LINK110
	OLE_LINK62
	OLE_LINK63
	OLE_LINK64
	OLE_LINK111
	OLE_LINK112
	OLE_LINK73
	OLE_LINK113
	OLE_LINK114
	OLE_LINK70
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK179
	OLE_LINK177
	OLE_LINK178
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK5
	OLE_LINK6
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_Hlk516717825
	_GoBack
	_GoBack
	bbib0185
	_GoBack
	_Ref498657999
	_GoBack
	_GoBack
	_GoBack
	_GoBack

