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1. Introduction

Robot visual servo with one or more CCD 
cameras has received increasing attention recently. 
This field spans several disciplines including 
robotics, computer vision, and control theory. 
Vision servoing have been inserted to increase 
the accuracy and flexibility of control systems. 
Generally, vision can be used to control different 
dynamic systems, e.g., submarines, aircrafts, 
and vehicles. The purpose of the visual servoing 
approach is to control a system by using the 
information providing a vision system [12]. Vision 
systems used for robotic applications can typically 
categorize according to the function of vision 
sensors’ number. 

A camera is used for monocular visual servoing, 
either attached to a stable plane pointing toward 
the robotic workspace (fixed camera configuration) 
or assembled at the end effector of the robot 
(eye-in-hand configuration). Multicamera vision 
systems, in which multiple cameras are placed 
in the workspace, are used to obtain the mission-
specific data [24].

Robotic image-processing techniques have been 
extensively studied. Knoeppel et al. determined, 
with two CMOS cameras mounted on a car’s rear 
window, whether a vehicle was following the 
car at a maximum distance of 150 m away and 
between other vehicles [19]. 

Mondi et al. developed a ping-pong-playing robot 
arm. The coordinates of ping-pong balls were 
determined with image-processing techniques 

applied to real-time images taken with a CCD 
video camera [21]. 

Mundhra et al. implemented a mobile robot 
catching a ball that had fallen [22]. Choi, Ryu, 
and Kim realized a mobile robot moving without 
hitting the wall with sensors in a confined space, 
such as a maze [8]. Bustamante and Gu located 
an electrical plug and its coordinates with a 
camera attached to the robot arm by using pattern-
recognition algorithms [6]. Claudio et.al. realized 
an application using two visual-servoing on the 
humanoid robot [9]. 

Artificial neural networks (ANN) are also used 
for visual servoing applications and inverse 
kinematics solutions. Al-Junaid realized ANN 
based control of a nonlinear system with visual 
servoing. ANN was used to control a 6-axis robot 
arm in his study [2]. Feng et.al. used extreme 
learning machine to obtain PUMA 560 robot 
joint angles. Feedforward neural networks used 
in their study had a single hidden layer [13]. 
Raptis & Tzafestas obtained inverse kinematics 
of the PUMA 3R manipulator via Neurofuzzy and 
Neural Networks [23]. Almusawi et.al., proposed a 
multilayer neural network with 6 input variables to 
solve inverse kinematics of Denso VP6242 robotic 
arm [3]. Jha & Biswal compared the ANN and 
ANFIS results of the inverse kinematic solution of 
5R Manipulator [17]. Srisuk et.at., found inverse 
kinematics solution of the robotic arm with 3 DOF 
an ANN in MLP structure in 3D space [25]. 
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Sliding Mode Control (SMC) is also investigated 
to control the robotic manipulators in the 
presence of uncertainties, unknown external load 
disturbances [1]. Kara & Mary also presented 
an adaptive and robust control scheme, which 
is based on with proportional derivative control 
for trajectory tracking of nonlinear robotic 
manipulators [18].

In this study, an image-processing interface 
has been prepared for image acquisition, image 
processing, object coordinate finding, forward 
kinematics, inverse kinematics, simulation, and 
running functions. Monocular visual-servoing 
method is used to detect an object in the workspace.

The process comprises four main stages: object 
recognition, determination of the object’s location, 
inverse kinematics solution of the robot arm, and 
movement of the robot arm. The image of the object 
is transferred to the system by a camera placed at 
the top of the workspace. After the captured image 
is passed through some image-processing stages, 
it is determined whether the object is the desired 
one. Then, robotic arm inverse kinematics solution 
is realized using ANNs. Finally, objects are moved 
to the designated warehouse area using a six-axis 
educational robot arm.

This paper is organized as follows: Section 2 
presents the forward and inverse kinematics 
analysis of robotic arm. The proposed ANN is 
described in Section 3. Section 4 illustrates the 
image processing applications. Section 5 presents 
the experimental work and results. Finally, Section 
6 concludes this paper.

2. Visually Guided Robot Arm 

At the designed application, objects found in 
the workspace are firstly identified through 
image-processing techniques. Then, the inverse 
kinematics solution of the robot is computed. 
Finally, the object is moved to the desired 
location by the robotic arm. A block diagram of 
the designed system is shown in Figure 1. 

2.1 Forward Kinematic

In the forward kinematics problem, the end-
effector’s location in the Cartesian space. 
Conversely, given a desired end-effecter position 
and orientation, the inverse kinematics problem 
refers to finding the values of the joint variables 

that allow the manipulator to reach the given 
location. Denavit-Hartenberg (D-H) approach is 
used to determine the forward kinematics of serial 
robotic arm. In this approach, the D-H parameters 
are given using four parameters. These parameters 
completely specify the configuration of the frame 
( )i  system relative to the frame ( 1)i −  system [11]. 

Figure 1. Designed Visual Servoing Application 
Block Diagram

For any particular link ( )i , both rotation ( )iα and 
displacement ( )ia  are constant quantities solely 
determined by particular kinematic configuration 
of robotic arm. Furthermore, the two remaining 
parameters vary: rotation of axis ( )iθ  if joint ( )i  is 
revolute, or offset ( )id  if joint ( )i  is prismatic. The 
complete configuration coordinate transformation 
matrix ( 1i

iT
− ) associated with these four operations 

can readily be determined by composition of the 
four transformation matrices associated with each 
individual operation.  

i
i

x x a z z dT R D R D
i

− =
− −

1
1 1( ) ( ) ( ) ( )i i iα θ                      (1)

where R  is a rotation and D  is displacement 
matrices about axis x and z respectively. This 
equation can be clearly expressed as follows: 
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As a result, the general transformation matrix is 
obtained as Eq. 3. 

The orientation of the end effector is represented in 
the first three columns of the matrices, whereas the 
position of the end effector is in the last column. 
In this way, the D-H parameters can constitute to 
calculate the forward kinematics of the robot.
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Used robotic arm and their rotation axes and links 
are given in Figure 2. While the first 5 joints are 
the basic joints that determine the position of 
the end effector, the position of the sixth joint is 
related to the on/off state of the end effector and 
is not included in the kinematic calculations. The 
rotation angle limit values of each joint are given 
in Table 1.

Figure 2. Rotation axes of robots

 Table 1. Robot Angle Limit Values

Rotation Axes 
(degree) 1θ 2θ 3θ 4θ 5θ

Maximum 100 83 115 120 80

Minimum -95 -110 -100 -100 -80

In order to calculate the forward kinematic matrix 
of the robot arm, the limit values of the rotation 
angles, the offset and displacement values of each 
link were measured. Obtained D-H parameters for 
the robotic manipulator are listed in Table 2.

Table 2. D-H Parameters of Robot

Link (i) 1 2 3 4 5

Rotation (o) 1( )iα − 0 -90 0 0 90

Displacement 
(mm) 1( )ia −

0 0 90 70 110

Rotation (o) ( )iθ θ1 θ2 θ3 θ4 θ5

Offset (mm)  ( )id 200 12 12 30 0

If the D-H parameters are substituted in the 
translation matrix in Eq. 3, the translation 
matrices for each axes (Eq. 4) and overall forward 
kinematics matrices are obtained (Eq.5).
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2.2 Inverse Kinematics

The inverse kinematics can state as to find the 
evaluating of the joints’ variables that will 
realize the required position and orientation for 
a requisite location of the arm’s limit. It can be 
expressed as follows:

(x, y, z)i fθ = 			                      (6)

where (x, y, z) represent the position at the Cartesian 
coordinate system and ( )iθ  are joint angles.

The inverse kinematic solution could be realized 
using three methods; complete analytical solution 
(closed form), semi-analytical solutions and 
numerical solutions. There may not be adequate 
closed form solutions when coupling of the 
orientation and position kinematics happens. 
Using ANN’s to solve the inverse kinematics 
problems in this case is better [26]. 

3. ANN Model for Inverse Kinematics

Because of above statement, ANNs are a 
widespread approach used for the inverse 
kinematic solution of the robot arm. Given 
a sample vector, ANN is capable to map the 
connection between inputs and outputs. When 
the ANN is trained, it can generalize related 
output for an input set data. In the learning 
process, training algorithm iteratively modifies 
the connection weights. 

In this study, this nonlinear modeling feature of 
ANN was used. The inputs values are robot joint 
angles which were generated between robot axes 
limit angles. The output values are robot Cartesian 
coordinate values. This data set was inversely used 
for the inverse kinematic solution of the robotic 
arm with ANN. MLP and RBF models were 
proposed to measure the performance of the ANN.



http://www.sic.ici.ro

186 Ayca Ak, Vedat Topuz, Emregul Ersan

3.1 Multi-Layer Perceptron (MLP)

Typically, MLP network is formed in neurons 
layers. Here each neuron in the layer calculates 
the sum of its input data 1 2 3 4 5[ , , , ]θ θ θ θ θx = ,  . Then, 
this sum is applied to an activation function ( )f . 
The output of the network [ ,  ,  ]x y z=o  is defined 
as a matrix form; 

2 2 1 1 1 2( ( ) )f f= + +o W W x b b 	     	        (7) 
where (W) are weight matrices, (b) are bias 
vectors and ( f ) are the sigmoid and linear 
activation functions. 

MLP network with one hidden layer used in this 
study is shown in Figure 3. Backpropagation 
algorithm is used to update the weights of the 
MLP network [16]. The following equation is used 
to minimize the mean square error for adjusting 
the weights in this algorithm;

2
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Figure 3. Realized MLP network structure

Network error is decreased iteratively by the 
steepest descent algorithm: 

w (k+1)= w(k)- · e
w

b (k+1)= b(k)- · e
b

m

m

∂
∂
∂
∂ 		         

(9)

where; o is output, γ is the sampling instant in q 
size and t is a target and η is learning rate. 

3.2 Radial Basis Network (RBF)

RBF is a feed-forward neural network comprising 
two layers. These are a nonlinear hidden layer and 
a linear output layer (Figure 4). The hidden layer 
activation function used in this study is Gaussian 
kernel ( )Ψ  function.

Ψ

Ψ

Ψ3

j

∑

∑

x

y

z

3θ

1θ

2θ

4θ

5θ

Ψ4

Ψ1

∑
f 2

W1

W 2

f 2

f 2

2

Figure 4. Realized RBF structure

The output layer performs the linear 
combination of the basic function responses 
expressed as follows:

1

q

i, j j
j

b w
=

= + Ψ∑o

			        
(10)

where q is the model dimension and Ψj is the 
kernel function of the jth hidden neuron defined as;
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RBF training procedure has two phases. In the first 
phase, the input data set is used to define the center 
positions (cj). For this purpose, unsupervised 
clustering method such as the K-means algorithm 
is used. The radius (

jσ ) is determined by the 
k-nearest neighbor precept. Output layer’s weights 
(W) is updated in the second phase while keeping 
the (

jc ) and (
jσ ) which are fixed [15].

3.3 Inverse Kinematic Solution with ANN

For each axis of the robot arm, 800 inputs 

1 2 3 4 5( , , , )θ θ θ θ θ,  were generated randomly within 
the rotation axis limit values given in Table 1. The 
dataset output values ( ,  ,  )x y z  are calculated by 
using D-H parameters of the robotic arm as a 
given in Eq. 5. Among this created datasets, 600 of 
them were randomly selected for training and the 
rest of them used for the testing procedure. This 
dataset was inversely used the inverse kinematic 
solution of the robot arm using ANN. That means 
ANN input values are the Cartesian coordinate 
matrix ( ,  ,  )x y z and the targets are rotation angles 

1 2 3 4 5( , , , )θ θ θ θ θ,  . This configuration is shown in 
Figure 5. After ANN training, test procedures 
were carried out and to show the MLP and RBF 
networks performance.
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Figure 5. The inverse kinematic solution with ANN

4. Image Processing

To create a digital image, the perceived 
continuous data must be converted to a digital 
format. The digitization process includes two 
processes: sampling and quantization [14]. The 
resolution of the digital image is determined 
through the sampling process (i.e.,1024 × 768) 
and the color depth of the image is determined 
through quantization. Initially, camera calibration 
process must be used to correct the convex view 
obtained from the camera. Then, color images 
must be converted to black and white image so 
that the object searched is clearly visible. Finally, 
desired object Cartesian coordinate values must be 
obtained. In this study, it is not necessary to find 
the z coordinate value (height) because the white 
table tennis ball was used as the desired object to 
be found.

4.1 Camera Calibration

Figure 6a. Calibration panel images in the different 
distances and angles

In this study, the obtained images are dished 
(convex) because the camera uses a wide-angle 
lens. Elimination of this convex corruption 
and converting the picture to plane form are 
necessary to avoid wrong measurements of the 
object coordinates within the workspace. For 
this procedure, MATLAB Camera Calibration 
Toolbox software is used [6]. The calibration page 
in view of a checkerboard consists of 2.8 × 2.8 
cm squares, with 7 pieces on the vertical and 9 
pieces on the horizontal axis. Using twenty-five 
images captured at different angles and distances 
in front of the camera pictures and their obtained 

direction and position are given in Figure 6a and 
6b respectively.

Figure 6b. Calculated directions and camera-
centered positions of the calibrated images

After the calibration process, all images obtained 
from the camera can be easily corrected with the 
software. After the calibration process, the raw 
image of the calibration worksheet is brought 
into the image plane to enable common and metric 
readings. An image of the calibration board before 
and after the calibration process is given in Figure 
7(a) and 7(b), respectively.

(a) Before (b) after the calibration process

Figure 7. Calibration board image

4.2 Image Processing 

Conversion of the received image to a binary 
image and thresholding operations are carried 
out in this part. Initially, the global threshold 
value is determined (Figure 8a) after obtaining 
the threshold value of the image. Then, a new 
threshold value is manually selected as shown 
in (Figure 8b). 

Figure 8. Threshold. (a) with the global threshold 
value and (b) with a new threshold value
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4.3 Object Cartesian Coordinate Values

The object recognition process consists of two 
phases; recognition of object shape and center 
point of recognized object. The total number of 
pixels is used as the basis for defining the object 
in the work done. Since a fixed camera system is 
used, the total pixel number of the object will not 
change for each case [4]. Total pixel of white areas 
is found as follows;

 1

1  ( , )
(x, y) , where ( , )

0  ( , )

n m

k
x y

if B x y k
A B B x y

if B x y k=

∈
= =  ∉
∑∑

  
(12)

where Ak is the field of the object and B(x, y) 
represents the x column and the y line value of 
a labeled picture that has m rows and n columns. 

The position of the object is determined by 
computing the center of mass. The x and y 
coordinates of the center of mass are detected 
with Eq. (14).

* ( , ) * ( , )
1 1 1 1,

n m n m
i B i j j B i j

i j i jx y
A Ak k

∑ ∑ ∑ ∑
= = = == = 
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After determining the center of mass, it is 
determined whether the coordinate values are 
inside the workspace area. Values obtained in the 
previous section are presented in the coordinate 
plane in this part of the interface given in Figure 2. 

4.4 User Interface 

The interface and sub functions were developed 
under Matlab. The main interface of the 
application designed for visual servoing is shown 
in Figure 9. In image acquiring section, the image 
is taken from the selected camera and the camera 
can be calibrated. In image processing section, 
the color picture is converted to the black and 
white picture at the desired threshold value. 
The coordinate finding of the object evaluates 
whether the object on the screen is the wanted 
object, and when the object sought is found, the 
coordinate values of the object’s center point in 
cm are calculated. In the image acquiring process, 
the camera calibration toolbox, the robot forward 
kinematic, and the robotic toolbox [10] for the 
simulation functions and the ANN toolbox for the 
inverse kinematic operation were used. 

5. Experimental Results

A well-trained MLP and RBF networks structure 
could predict the output for any input data from 

the input space. The correlation coefficients 
(R) are used to compare the performance of 
the networks trained after the test procedure. 
The correlation coefficient is a dimensionless 
measure of the degree of a linear association of 
two random variables, with value in the interval 
[−1, 1]. 0 means no linear association, (1) means 
linear association and (−1) is a linear association 
with opposite directions. 

Figure 9. The user interfaces main screen

Figure 10. MLP and RBF networks scattering 
diagrams and correlation coefficients (R)

Scattering diagrams showing the performances of 
MLP and RBF networks are given in Figure 10. 
As can be seen, the RBF network’s correlation 
coefficient (R = 0.997) is slightly better than the 
MLP network’s (R = 0.983). This means that 
both structures can be used to solve the inverse 
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kinematic problems and there is no obvious 
difference between them.

To examine this proposal in detail, the results 
obtained from the MLP and RBF network tests 
are given in Figures 11 and 12, respectively, in 
comparison with the forward kinematic input 
values of the robot. Only 80 datasets were given 
to show the figure clearly and. In these figures, 
rotation angles are given in radian.

In order to test the obtained results in the real-
time, 10 test points were randomly produced in the 
x, y Cartesian coordinate plane within the robot 
working area. The work area is in the size of 200 
x 300 mm and the axis origin point is determined 
as the upper left corner. 

The rotation angles calculated by the ANN models 
for these test points and the locations of the robot 
arm end points for these angles are given in Table 
3. As seen in the table, the error value in the 
results obtained from both ANN models is within 
the limits of ±4 mm. Also, the error performance 
of the RBF network structure is better than the 
MLP structure.

Figure 11. Robot rotation angles for forward 
kinematic model and MLP network

Figure 12. Robot rotation angles for forward 
kinematic model and RBF Network

6. Conclusion

In this study, visual servoing application of a robot 
arm whose inverse kinematic solution realized 
with ANN was performed. 

Firstly, distortion caused by the convex camera 
lens was eliminated. Thus, it is provided to give 
real distance values on the two-dimensional 
Cartesian coordinate system of the image taken 
from the camera. The identity and midpoint of 
the object were determined by developing an 

object identification algorithm based on the total 
number of pixels on the image. Object-detection 
algorithm was also tested on different types of 
objects. The algorithm does not allow the robot 
arm to move when an unrecognized object enters 
the workspace. 

The MLP and RBF models were used to obtain 
inverse kinematic solution based on the forward 
kinematic solution. According to the results 
obtained from the testing of RBF and MLP 
network structures, both network structures can be 
used in robot inverse kinematics calculation even 
if the RBF network structure performs slightly 
better. According to the results of RBF and MLP 
network structures, both network structures can be 
used in robot inverse kinematics calculation even 
if the RBF network structure performs slightly 
better. The designed system was tested in real time 
and similar results were achieved.

According to all these results, it was concluded 
that the system would be an alternative to a real-
time visual servoing application.

Table 3. Real time robot rotational angles 
and obtained cartesian coordinate values
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