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1. Introduction

The state-space representation of systems is 
advantageous because of the manipulability of 
the matrices involved in state-space models. 
Accordingly, several methods have been 
developed to simulate the systems, to analyze 
their behaviours and to carry out the controller 
design in order to exhibit desired and/or imposed 
behaviours. In addition, as shown in [8] for 
optimal control, [24] for cascade control, [31] 
for robust control and [33] for minimum variance 
control, modelling the dynamics of complex 
systems by state-space models can guarantee high 
control system performance.

A special advantage of the state-space 
representation is the possibility to give 
geometrical interpretations in relation with 
the stability analysis. This is caused by the 
intuitiveness, which results in several control 
design approaches based on geometrical 
illustrations. Some recent approaches to the 
analysis and design of nonlinear state-space 
control systems, referred to also as state-
feedback control systems, are discussed as 
follows. The pole placement method is extended 
with optimization in [6] and [9], and applied 
to power systems stabilization. A reference 
state generator is designed by backstepping 
in [29] and included in an unmanned system 
control scheme. Nonlinear state-space models 
of rectifiers are employed in [4] to perform 
the voltage control in microgrids, while the 
optimal control of hidden Markov models is 
investigated in [16]. A bank of reduced-order 

Luenberger observers is designed in [7] to locate 
a specific fault source. The hybrid system-based 
combination of state-space partition and optimal 
control of multi-model for nonlinear systems 
is suggested in [35] and the state constrained 
control of nonlinear systems is treated in [3]. 
A nonlinear state observer for the estimation of 
different gas species concentration profiles is 
proposed in [18] and a state-space approach to 
predictive control is given in [17]. Robustness 
features are added in [40] to state-space control, 
while the combination with fuzzy modelling and 
control is treated in [1, 5, 12, 20, 32].

The analysis of the state-of-the-art reveals the 
fact that the illustrations usually concern systems 
with two state variables. The generalization to 
systems with arbitrary number of state variables 
is rather complicated.

This paper proposes an approach to the design of 
a general family of nonlinear state-space control 
systems. The approach is based on the original 
geometrical illustration of systems evolution in the 
state space, and makes use of Lyapunov’s direct 
method, the native behaviour and the desired 
system matrix.

The approach proposed in this paper is important 
in the context of the state-of-the-art presented 
above because of two reasons. First, it is relatively 
simply applicable to systems with arbitrary 
number of state variables. Second, it is applicable 
to wide classes of systems generally expressed 
as input-affine nonlinear systems. They include 
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classes of linear systems with constant and 
variable parameters, linear time-variant (LTV) 
systems, linear time-invariant (LTI) systems, and 
particular classes of nonlinear systems as Linear 
Parameter-Varying (LPV) systems and quasi-
Linear Parameter Varying (q-LPV) systems. The 
approach is validated on the pendulum-cart system 
laboratory equipment.

The paper is organized as follows: the geometrical 
interpretation of stability of nonlinear systems is 
presented and supported by a theorem in the next 
section. This new interpretation and the offered 
illustrations are used next in Section 3 to formulate 
the proposed control design approach. Section 4 
is dedicated to the case study that concerns the 
state-space control of a nonlinear pendulum-cart 
system, and experimental results are given. The 
conclusions are highlighted in Section 5.

2. Geometrical interpretation

The canonical form of a non-autonomous 
nonlinear state-space system model, viewed as 
the controlled process, is

x f x u x x

y g x u

( ) ( ( ), ( )), ( ) ,

( ) ( ( ), ( )),

t t t

t t t

= =
=

 0
0

	        
(1)

where x x( ), ( ) ,t t n ∈ℜ  is the state vector, the 

initial one is , , 1
00

×ℜ∈ nxx u u( ), ( ) ,t t p ∈ℜ  is 

the input vector, y y( ), ( ) ,t t q ∈ℜ  is the output 

vector, ,: , npn ℜ→ℜ +ff and qpn ℜ→ℜ +: , gg  
are nonlinear vector functions, and ,0 , ≥tt  is 
the independent continuous time argument. The 
variable t will be omitted in the sequel in certain 
equations for the sake of simplicity.

Two assumptions are considered in order to 
specify the class of processes treated in this paper:

A1: The system (1) is controllable.

A2: The system (1) is fully state observable.

The assumptions are common to state feedback 
control. If A2 cannot be verified analytically, 
appropriate observers can be designed [14].

The state equation of the process model, referred 
to also as the native model of the process, is

x A x B u( ) ( ) ( ) ( ) ( ),t t t t t
n

= + 	                   (2)

where A A
n n

n nt t( ), ( ) , ∈ℜ ×  is the native system 
(or state) matrix. The model (2) can characterize 

LTV systems, LTI systems if const)( =tnA  and 
const)( =tB  and input-affine nonlinear systems 

if the expressions of the matrices in (2) depend 

on )(tx , namely A x
n

t( ( ))  and B x( ( ))t . In 
addition, the model (2) can also characterize LPV 

systems if the matrices nA  and B  are not constant 
and depend on certain parameters of the process as 

well as q-LPV systems if the matrices nA  and are 
also not constant but B  depend on )(tx .

The particular form of (1) expressed as the state-
space representation of a linear system is

x A x B u x x

y C x D u

( ) ( ) ( ) ( ) ( ), ( ) ,

( ) ( ) ( ) ( ) ( ),

t t t t t

t t t t t

= + =
= +

 0
0

     
(3)

where A A( ), ( ) ,t t n n ∈ℜ ×  is the system (or 

state) matrix, B B( ), ( ) ,t t n p ∈ℜ ×  is the input 

matrix, C C( ), ( ) ,t t q n ∈ℜ ×  is the output matrix, 

and D D( ), ( ) ,t t q p ∈ℜ ×  is the feedthrough (or 
feedforward) matrix.

The general non-homogenous state equation 
in (3) is transformed into its homogenous 
counterpart (i.e., 0u =)(t ) as the autonomous 
linear state equation

x A x x x( ) ( ) ( ), ( ) ,t t t= = 0
0 	                      (4)

which is also used in its approximated discrete-
time form

,11 skkk T++ += xxx  	                                   (5)

that is equivalent, via (4), to

,)(1 skkkk Tt xAxx +=+ 	                                   (6)

where sT  is the sampling period, ,0 , ≥kk tt  is 
the discrete time moment, ,0 , , ≥Ζ∈ kkk  is the 
index of the current time moment, and the notation 

kkt xx =)(  is used. This notation is justified 
because the variables are assumed to be constant 
over a sampling interval.

According to (3) and (6), the state variables are 
the necessary information at the discrete-time 

moment kt , which together with the model and 
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the input are sufficient to compute the output at 
the time moment 1+kt . The term )( ktA  in (6) is 
a transformation of rotation and scaling shown 
in Figure 1(a), where α  is the rotation angle. 
Equation (6) is illustrated in Figure 1(b) for a 
state vector that consists of two state variables 

1x  and 2x , i.e., n=2 and Txx ][ 21=x , where the 
superscript T indicates matrix transposition.

Figure 1. Geometrical transformation of state vector 
(a); illustration of discrete-time approximation (b)

The terminal point of the state vector )(tx  
describes a state trajectory in the state space. 
Figure 2 illustrates several canonical forms of 
state trajectories of two-dimensional systems, 
i.e., ., n=2 and Txx ][ 21=x .

Figures 1 and 2 are employed to interpret both 
the concept of stability and the relation between 
the angle α  between the state vector and its 
derivative. The stability is expressed in terms of 
the following theorem.

Theorem: An autonomous state-space system 
will convergence asymptotically to the 
equilibrium point at the origin 0x =)(t  if the 

angle α  between the state vector )(tx  and its 
derivative )(tx  fulfils the constraints

, ,2/322/2 Ζ∈π+π<α<π+π mmm 	        (7)

which are equivalent to

.0  0)()( >∀< tttT xx 	                                   (8)

Proof: Lyapunov’s direct method will be used. 
Let the positive definite Lyapunov function 
candidate be

V t t t tT( ( )) ( ) ( ), .x x x= >
1

2
0 

	                     
(9)

Lyapunov’s asymptotic stability theorem 
requires that

V t t t tT( ( )) ( ) ( ), .x x x= >
1

2
0 

	                   
(10)

Using (9) the expression of ))(( tV x  is



V t t tT( ( )) ( ) ( ).x x x= 	  (11)

Therefore, equation (8) is proved due to (9) and 
(11). In addition, using (10) in the condition (11) 
and the geometrical interpretation of the inner 
product of the vectors )(tx  and )(tx leads us to

.0cos <α 	   (12)
Hence, the condition (7) is proved due to (11) and 
to the sign of the cos function. Concluding, both 
(7) and (8) are proved.

Figure 2. Canonical forms of state trajectories: (a) and (d) spirals with attractor and repeller, respectively, (b) 
and (e) nodes with attractor and repeller, respectively, (c) centre, (f) saddle
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Several cases of rotations are illustrated in Figure 
3. Figure 3(a) shows a general case, where the 
rotation angle α  indicates stability. Since )(tx  
is an eigenvector of the system matrix, Figure 
3(b) outlines a special case and a well-known 
property: the eigenvalues of the state matrix 
must be negative in order to ensure the stability. 
Figure 3(c) points out a simple stable case, where 
no asymptotic stability is ensured. These three 
cases can be related to the three state trajectories 
illustrated in Figure 2(a), (b) and (c).

Each system has its own input-output 
behaviour, which will be referred to as follows 
as native behaviour. This behaviour can be 
illustrated for two-dimensional systems (n=2 
and Txx ][ 21=x ) by the state trajectories built 
using vector fields. These trajectories depend 
on the system matrix )(tA  of the linear systems 
(3). For example, the linearized autonomous 
state-space model of a pendulum system got 
by measurements units scaling is

,
1

10

2

1

2

1
















−−

=







x
x

bx
x




	                                 
(13)

where 1x  is the angular position of the pendulum, 

2x  is the angular velocity of the pendulum, and 
,0 , ≥bb  is the viscous friction in the pendulum 

joint. The native behaviour of this system is 
presented in Figure 4(a) and (b) accounting or 
not, respectively, for the viscous friction in the 
pendulum joint.

3. State-space control design 
approach

The native behaviour of systems is usually not 
acceptable, and it is subjected to transformations. 
These transformations are organized so as to 
target the desired and/or imposed control systems 
specifications (resulting in desired behaviours), 
and to represent the goals of the control systems 
designer. If the assumptions A1 and A2 are 
fulfilled, the transformations can be carried out 
using appropriately designed control laws stored 
in the input vector )(tu  viewed as the control 
signal vector.

The geometrical illustrations of state trajectories 
outlined in the previous section give the intuition 
of the state-space control design approaches: if 
the desired behaviour resumes to the convergence 
to a certain state and the trajectory to the desired 
state is not important, then the first control design 
approach transforms the desired state into an 
attractor. This is organized in terms of the control 
design approach formulated as follows.

Figure 3. Three cases of rotation

Figure 4. State trajectories of a pendulum with (a) (for b=1) and without (b) (i.e., b=0) joint viscous friction
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The desired final state vector )(tdx  is the initial 
known data in the first control design approach. 
More demanding control system performance 
specifications are characterized by additional data 
as the desired convergence, i.e., the convergence 
speed (the values of the eigenvalues of the system 
matrix) and the asymptotes to the state trajectory 
(the types of eigenvectors) are shown in Figure 2. 

Therefore, the desired (or final) state vector dx , 

the eigenvalues ,...1 , nii =λ  and the process model 
are known. The state equation of the native model 
of the process is given in (2).

A different state matrix is defined in order to 
ensure the desired convergence. This matrix is 

called the desired state matrix , , nn
dd

×ℜ∈AA  
and is expressed in the controllable canonical form

,

...
1...000
...............
0...100
0...010

121






















−−−−

=

−− aaaa nnn

dA

	      

(14)

where ,...1 , niai =  are the coefficients of the 
characteristic equation

.0... 1
1

1 =++++ −
−

nn
nn asasas 	                    (15)

The coefficients in (15) are computed using 
Vieta’s formulas from the known eigenvalues:

....1 ,....)1( 21 nia m

n

im
imim

i
i =λλλ−= ∑

=
+−+−

	      
(16)

The following state-feedback control law is 
proposed for the process modelled in (2):

u K x K
0

( ) ( ) ( ) ( ).t t t t= + 	                    (17)

The two gain matrices K K( ), ( ) ,t t p n ∈ℜ ×  and 

K K
0 0
( ), ( ) ,t t p ∈ℜ ×1  are computed by imposing 

the dynamics of the state error vector )(te  with 

respect to the final state vector dx

e x x( ) ( ),t t
d

= − 	                                 (18)

which is subjected to the desired behaviour 
imposed to the closed-loop control system by 

means of dA :

e A e( ) ( ).t t
d

= 	                                 (19)

The condition (19) ensures the convergence of 
)(te  to 0 , and next (18) ensures the convergence 

of )(tx  to dx .

Using )(tu  from (17) in (2) and next )(tx  in (19) 
and the definition (18) of )(te , the following 
relationship is obtained:

A x x

A x B K x K
0

d d

n

t

t t t t t t

( ( ))

( ) ( ) ( )( ( ) ( ) ( )).

−
= + +    

(20)

The left- and right-hand terms in )(tx  and the 
remaining terms in (20) are identified resulting in

.)()(
,)()()(

dd

dn

tt
ttt
xAKB

AAKB

0 =
−=+

	                    
(21)

The left-multiplication of (21) by )(tTB  leads to 
the expressions of the gain matrices in (17)

K B B B A A

K B B B
0

( ) ( ( ) ( )) ( )( ( )),

( ) ( ( ) ( )) (

t t t t t

t t t t

T T

d n

T T

= − +

=

−

−

1

1 )) .A x
d d    

(22)

The control design approach consists of the 
following steps:

Step 1. Set the desired state vector dx , the 
eigenvalues ,...1 , nii =λ  and the native model of 
the process given in (2).

Step 2. Apply (22) to obtain the gain matrices of 
the state-space control law (17).

The application of this design approach is 
exemplified in the next section.

4. Case study and experimental results

The pendulum-cart system is considered as a case 
study to validate the control design approaches. 
This is an important nonlinear system benchmark 
which can illustrate, compare and evaluate several 
complex and nontrivial problems of control theory. 
The structure of a pendulum-cart system according 
to [38] is shown in Figure 5 [25], where [23, 25]: 

1x  – the first state variable, i.e., the cart position 

(the distance from the centre of the rail), 2x  – the 
second state variable, i.e., the pendulum angular 
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position (the angle between the upward vertical 
and the ray pointing at the mass centre of the cart), 

02 =x  for the upright position of the pendulum, 
F – the control force, parallel to the rail, produced 
by the direct current (DC) motor and applied to 
the cart, F is proportional to the pulse-width 
modulation (PWM) voltage signal (the control 

signal) u constrained to 0|)(| max >≤ utu , cm  – 

the equivalent mass of the cart, pm  – the mass of 

the pendulum (pole + load), and dl  – the distance 
from the axis of rotation to the centre of mass. 
The experimental setup is illustrated in Figure 6.

Figure 5. Schematic of pendulum-cart system

Figure 6. Experimental setup of pendulum-cart 
system in the Intelligent Control Systems Laboratory 
of the University Polithnica of Timisoara, Romania

As shown in [25] and [26], the two control 
problems representing the operating modes of 
the pendulum-cart system are the crane mode 
and the self erecting mode illustrated in Figure 
7, with the reference input of the pendulum 
position control system set to rad  π  for the 
crane mode and the reference input of the 
pendulum position control system set to rad  0  
for the self erecting one. Figure 7 [25] also 
illustrates some industrial applications of the 
cart-pendulum system.

Figure 7. Operating modes of pendulum-cart system

The self erecting mode will be considered 
as follows. The first control design approach 
presented in the previous section is applied 
next. This approach is characterized by the 

transformation of the desired state vector 0x =d  
imposed in the Step 1 into a node with attractor 
illustrated in Figure 2(b).

Introducing the cart velocity as the third state 

variable 13 xx =  and the pendulum angular 
velocity as the fourth state variable 24 xx = , 4=n  
in (1) and the expressions of the state vector x and 
of the input vector u are

. ,][ 4
4321 ℜ∈=ℜ∈= uxxxx T ux 	      (23)

Using the notations AI  for the pendulum inertia 
momentum computed at the centre of mass, b for 
the viscous friction which acts on the pendulum 
at the centre of mass and g for the gravitational 
acceleration, the first principles model of the 
process (the time is omitted for the sake of 
simplicity) is

),sin(      

 )cos(

),sin(     

)cos()(
,
,

2

3324

2
2
4

423

42

31

xlgm
xbxxlmxI

xlxmu

xxlmxmm
xx
xx

dp

dpA

dp

dpcp

=

+−

−=

−+
=
=









	                    

(24)

where the values of the parameters are 
b = ⋅ −6 65 10 5.  N m s/rad , I

A
=0 00282 2.  kg m , 

g = 9 8.  m/s 2 , m
p
=0 052.  kg , m

c
=0 76.  kg  and 

l
d
=0 11.  m .

The manipulation of the first principle equations 
(24) in order to obtain the native model of the 
process given in (2) leads to the following 
expressions of the matrices specific to (2):
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(25)

with the matrix coefficients

a m gl x x E

a bm l x E

a m I

n p d

n p d

n p

32

2 2

2 2

33 2

34

2 2=
= −
= −

sin( )/( ),

cos( )/ ,

AAd

n p c p d

n p

x x E

a m m m g l x x E

a b m

sin( ) / ,

( ) sin( )/( ),

(

2 4

42 2 2

43

= +
= − +

 

mm

a m l x x E

b I E b m l x

c

n p d

n A n p d

),

sin( ) /( ),

/ , cos( )/

44

2 2

2 4

3 4 2

2 2= −
= = EE

E m m I m l x
p c A p d

,

( ) cos ( ).= + − 2 2 2

2 	      

(26)

The eigenvalues are imposed in the Step 1 as

.4 ,4 ,5.0 ,5.0 4321 −=λ−=λ−=λ−=λ 	    (27)
The Step 2 is characterized by the state-feedback 
control law (17) with the gain matrices given in 
(22) using the process model system matrices 
according to (25) and (26).

Figure 8. Real-time experimental results: state 
trajectories of the state-space control system obtained 

by the control design approach

The state trajectories of the state-space control 
system are presented in Figure 8 in terms of 
real-time experimental results for the initial state 

vector T]000[0 π=x .

5. Conclusion

This paper proposes a cost-effective approach 
to the design of nonlinear state-space control 
systems. The approach is validated on the 
pendulum-cart system laboratory equipment in 
the Intelligent Control Systems Laboratory of the 
University  Politehnica of Timisoara, Romania.

The validation on the pendulum-cart system 
illustrates the successful design expressed 
as trajectories of the control system with a 
stabilizing state-feedback control law. The 
simplicity of the design approach is highlighted.

The main limitation of the approach is its 
dependence on the process model. However, this 
is a general shortcoming that can be mitigated 
by model-free data-driven control.

Since the approach is general and applicable 
to LTI, LTV, LPV and q-LPV systems, future 
research will be focused on the stable control 
of fuzzy systems and systems resulted from 
Tensor Product model transformation, as 
nonlinear systems with illustrative results 
related to general theory [2], type-2 fuzzy 
control [19], three-tank systems [27], Anti-
lock Braking Systems [28] and q-LPV systems 
[36]. The optimal design of state-space control 
systems in terms of classical algorithms applied 
to drilling processes [10], input shapers [11], 
large-scale complex systems [13], predictive 
functional control [34], compartment models 
[37] and networked control systems [41], and 
nature-inspired algorithms applied to fuzzy 
model identification [15], fuzzy cognitive 
maps [39], routing problems [21], fuzzy 
control [22] and robust PID control [30], will 
be targeted and validated on other real-world 
process applications.
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