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1. Introduction

In the development of CPSs, a model-based 
approach can be an efficient way to master system 
complexity through an iterative development. 
In this paper we illustrate how a co-simulation 
technology [6] can be used to gradually increase 
the detail in a collaborative model (co-model) 
following a “discrete event first” methodology. In 
this approach, initial abstract models are produced 
using a discrete event (DE) formalism (in this 
case VDM) to identify the proper communication 
interfaces and interaction protocols among 
different models. These are gradually replaced 
by more detailed models using appropriate 
technologies, for example continuous time (CT) 
models of physical phenomena.

The case study deals with the virtual design 
and validation of a CPS-based manufacturing 
system for assembling USB sticks that was 
developed in the iPP4CPPS project [7]. It is a 
representative example of a part of a distributed 
and heterogeneous system in which products, 
manufacturing resources, orders and infrastructure 
are all cyber-physical [17]. In this setting, several 
features (such as asynchronous communication, 
messages flow, autonomy, self-adaptation, etc.) 
should be investigated at design time, for example 
using a collaborative modelling approach. 

Consequently, the case study offers a balance 
between being sufficiently simple to be easily 
followed as a production line example, including 
generating a tangible output, and at the same time 
being sufficiently general to allow the study of 
the co-simulation complexity. Furthermore, by 
choosing a USB stick, the example opens the 
possibility of extending the purpose of the study 
to interactions between the generated hardware 
and the generated software solutions in the 
production line.

The paper demonstrates the effectiveness of the 
DE-first approach in a setting with many different 
constituent models. To enable any number of DE 
and CT constituent models to be co-simulated, 
the iPP4CPPS project employed the INTO-CPS 
technology [2, 13] that generalizes previous 
results in combining different models, such as 
one DE and one CT model [5]. The remaining 
part of this paper starts by introducing the INTO-
CPS technology. This is followed by Section 3 
describing the CPS development approach for 
starting out with DE models for each constituent 
model and then gradually exchanging some of 
these with more realistic models. Section 4 
introduces the industrial case study and presents 
the results of using co-simulation technology 
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both in a homogeneous and heterogeneous 
setting on that case study. Finally, Section 5 
provides some concluding remarks and future 
uses of this approach. The paper is an extended 
version of the presentation given in the 15th 
Overture Worksop [16].

2. The INTO-CPS Technology

In the INTO-CPS project we start from the view 
that disciplines such as software, mechatronics and 
control engineering have evolved with notations 
and theories that are tailored to their engineering 
needs, and that it is undesirable to suppress this 
diversity by enforcing uniform general-purpose 
models [3,4,10,11,12]. Our goal is to achieve a 
practical integration of diverse formalisms at 
the semantic level, and to realise the benefits in 
integrated tool chains. The overall workflow and 
services from the tool chain used in this project 
are illustrated in Figure 1. 

Figure 1. The INTO-CPS tool chain used in this project

At the top level, the tool chain will allow 
requirements to be described using SysML with 
a new CPS profile made inside the Modelio tool 
[15]. This SysML profile allows the architecture 
of a CPS to be described, including both software 
and physical elements and based on this it is 
possible to automatically generate FMI model 
descriptions for each constituent model [18]. 
It is also possible to automatically generate the 
overall connection between different FMUs 
for a co-simulation. Note that although SysML 
also have diagrams to express behaviour the 
CPS profile in Modelio has not been extended 
to enable the generation of FMUs from such 
diagrams, so SysML in this work is primarily 
used at the high-level architecture describing 
how different constituent models are combined. 
It is also worth noting that the types that can be 
used in the interfaces for FMUs are quite basic 
so elaborate VDM values can only be exchanged 

using strings and in that case one need to have the 
same understanding of such structured values in 
the constituent models exchanging such values.

This type of FMI model description can 
subsequently be imported into all the baseline 
modelling and simulation tools included in the 
INTO-CPS tool suite. All of these can produce 
detailed models that can be exported as FMUs, 
each acting as independent simulation units that 
can be incorporated into an overall co-simulation. 
The constituent models can either be in the 
form of DE models or in the form of CT models 
combined in different ways. Thus, heterogeneous 
constituent models can then be built around this 
FMI interface, using the initial model descriptions 
as a starting point. A Co-simulation Orchestration 
Engine (COE) then allows these constituent 
models of a CPS to be evaluated through co-
simulation. The COE also allows real software and 
physical elements to participate in co-simulation 
alongside models, enabling both Hardware-in-the-
Loop and Software-in-the-Loop simulation.

The different modelling and simulation tools used 
in this experiment included Overture [8], 20-sim 
[8] and 4DIAC [19] technologies. The original 
intention was also to include Catia to model the 
robotic arm in the case study, but unfortunately a 
license was not available for the version of this 
tool capable of generating FMUs. The benefit of 
the co-simulation approach is that Catia could be 
replaced by an equivalent 20-sim model.

In order to have an user-friendly interface to 
manage this process, a web-based INTO-CPS 
Application has been produced. This can be 
used to launch the COE, enabling multiple co-
simulations to be defined and executed, and the 
results to be collated and presented automatically. 
The tool chain allows multiple co-simulations to 
be defined and executed using its design space 
exploration capabilities.

3. Discrete-Event First Modelling 
with INTO-CPS

3.1 Initial Models

Given a set of FMI model descriptions generated 
from a SysML model using Modelio, initial 
creation of the constituent models can begin. 
In general, this means importing the model 
descriptions into modelling tools (e.g. Overture, 
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20-sim), modelling behaviour in each, generating 
FMUs and then bringing them together in the 
INTO-CPS Application to run a co-simulation.

This direct approach can however be prone to 
failure. It requires that FMUs are available for all 
constituent models before co-simulations can be 
made. If each model is produced by a different 
team, then delays in one team may well delay all 
other teams. Similarly, if a single team produces 
constituent models in turn, then co-simulation can 
only begin at the end of modelling.

One way to overcome this challenge is to produce 
quick, first version FMUs as early as possible 
to perform initial integration testing. These can 
then subsequently be replaced iteratively by 
increasingly detailed models, with integration 
testing performed each time a model is available, 
falling back to older versions as required. This 
however may be more difficult to do in some 
modelling paradigms.

An alternative is to take a DE-first approach. Here, 
a simple, abstract model of the entire system is 
created in the DE modelling environment, 
e.g. VDM and Overture, in order to sketch out 
the behaviour of all constituent models. This 
approach in a two-model setting is described 
in Fitzgerald et al. [5], including guidelines for 
simplifying continuous behaviour in DE models. 
It is worth noting that this type of approach is 
conceptually similar to a traditional component-
based development approach, where stub-modules 
are commonly used in the initial phases.

3.2 Discrete-Event First with VDM/Overture

Given a SysML model and model descriptions for 
each constituent model, the suggested approach 
is to begin by building a single VDM-Real-Time 
(VDM-RT) [20] project in Overture with the 
following elements:

-- A class for each constituent representing 
an FMU. Each class should define 
porttype instance variables (i.e. of type 
IntPort, RealPort, BoolPort or StringPort) 
corresponding to the model description and a 
constructor to take these ports as parameters. 
Each FMU class should also define a thread 
that calls a Step operation, which should 
implement some basic, abstract behaviour 
for the FMU.

-- A System class that instantiates port and FMU 
objects based on the connections diagram. 

Ports should be passed to constructor of each 
FMU object. Each FMU object should be 
deployed on its own CPU.

-- A World class that starts the thread of each 
FMU objects.

Class and object diagrams giving an example of 
the above is shown in Figure 2.

Figure 2. Class diagram showing two simplified 
FMU classes created within a single VDM-RT 

project, and an object diagram showing them being 
instantiated as a test

In this example, there are two constituent models 
(called FMU1 and FMU2) joined by a single 
connection of type real. Such a model can be 
simulated within Overture to test the behaviour 
of the FMUs. Once the behaviour of the FMU 
classes has been tested, FMUs can be produced 
for each and integrated into a first co-model. To 
generate FMUs, a project must be created for each 
constituent model, comprising:

-- One of the FMU classes from the main project.

-- A HardwareInterface class that defines 
the ports and annotations required by the 
Overture FMU export plug-in, reflecting 
those defined in the model description.

-- A system class that instantiates the FMU 
class and passes the port objects from the 
HardwareInterface class to its constructor.

-- A World class that starts the thread of the 
FMU class.

The above structure is shown in Figure 3. A 
skeleton project with a correctly annotated 
HardwareInterface class can be generated 
using the model description import feature of 
the Overture FMU plug-in. The FMU classes 
can be linked into the projects (rather than hard 
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copies being made) from the main project, so 
that any changes made are reflected in both the 
main project and in the individual FMU projects. 
Note that if the FMU classes need to share type 
definitions, these can be created in a class (e.g. 
called Types) in the main project, and then this 
class can be linked into each of the FMU projects 
in the same way.

Figure 3. Class and object diagrams showing a 
linked class within its own project for FMU creation

From these individual projects, FMUs can be 
exported and co-simulated within the INTO-CPS 
tool chain. These FMUs can then be replaced as 
higher-fidelity versions become available. They 
can also be retained and used for regression and 
integration testing through different co-model 
configurations for each combination.

4. Case Study: Manufacturing USB Sticks

The case study below concerns the manufacturing 
of USB sticks. The case study was chosen as a 
representative plant that might potentially be 
expanded into a full production line.

The USB sticks considered have two lids and the 
main body. The production line received orders 
from virtual users, containing the requested 
characteristics of the item, as well as additional 
information, such as urgency of the order (the 
requested transportation speed between the 
warehouse and the test station), change requests 
(indicating a new set of stick characteristics to be 
assembled and tested) or cancellation requests (for 
dropping orders). The assembly takes place in the 
warehouse unit, and the generated item is moved 
on wagons to the test station for validating the 
components of the item. If the item is rejected (the 
test fails to confirm the requested characteristics 
of the stick), then the process is automatically 
re-started, and a new request is made to the 
warehouse unit.

4.1 The Constituent Systems

Figure 4 shows the plant layout as realized 
during the project, with emphasis on the 
physical entities where the control units will be 
embedded. These are:

W: Warehouse - buffer unit;

R: Robotic Arm - processing station;

C: Wagons – transportation units;

T: Test Station - processing station.

In addition, to capture the value adding processes 
in Industry 4.0 [14,18,20], the case study includes 
distinct units to reflect the users who place orders 
for assembling the USB sticks, and the required 
infrastructure that make possible for the others 
CPSs to exist. These are:

H: HMI (Human-Machine Interface),

P: Part Tracker - reflecting the infrastructure

U: Unity – dynamic 3D graphics of the simulation, 
providing the image in Figure 4.

Figure 4. Layout of the production line as depicted 
in the 3D rendering of the simulation: 1) the 
warehouse stacks; 2) the assembly box at the base 
of the warehouse stacks; 3) the memory boxes of 
the warehouse unit; 4) the robotic arm for moving 
parts around the warehouse; 5) wagons on different 
locations of the track; 6) the loading station; 7) the 
test station; 8) the circular track for the wagons

The HMI unit handles the user interface; it 
communicates only with the Part Tracker. On the 
deployment of the solution, the HMI allows for 
real-time placing of orders, change requests and 
cancellations through an app running on smart 
devices. The Part Tracker is the central logical 
unit that handles orders; it communicates with all 
other units except the Robotic Arm.

The Warehouse assembles the USB from 
the component parts; it consists of stacks for 
each type of component, an assembly box for 
the actual assembly of the items and memory 
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boxes for storing components that do not fit the 
current order. The memory boxes may also be 
a source of components for new orders, if the 
requested colour is available. It communicates 
only with the Part Tracker and the Robotic Arm, 
used for moving USB components from one 
location to another, including the waiting line 
at the loading station.

The Robotic Arm moves parts or pieces from 
one location to another; it communicates only 
with the Warehouse. As with other models, the 
Overture/VDM-RT model of the Robotic Arm is 
on purpose incomplete, since the time required to 
move a part or piece from one location to another 
is implemented simply as a delay through a 
countdown timer.

The purpose of the Wagons is to transport the items 
from the waiting room (at the loading station) to 
the test station. The wagons communicate with 
the Part Tracker and to each other. Each wagon 
can be certain of its location only at the loading 
or test station, while in between the position is 
estimated periodically from the previous known 
position, time and own speed.

The Test Station reads the item characteristics 
and reports on their conformity to requirement. 
It communicates only with the Part Tracker, from 
which it receives the requested set of colours for 
the item and to which it reports the test result. 
From the test station the item is then pushed either 
to the pile of rejected items or to the end user, 
while the empty wagon returns to the loading 
station for transporting further items.

Besides these units, the co-simulation includes a 
3D rendering unit that dynamically displays what 
is happening in the simulation.

4.2 Homogeneous Co-Simulations 

The first step in the modelling of the case study 
was generating a functional, albeit not fully 
featured, model of the components (units) that 
would make up the USB stick production line. 
Each component was first modelled abstractly in 
VDM by using the Overture tool, following the 
approach described in Section 3. The goal of this 
homogeneous co-simulation was to identify the 
right interaction protocols (signals) among the 
various components (stations) of the prototype, 
and not on the model’s accuracy. Therefore, the 
VDM simulation model includes distinct models 
for each component of the system (see Figure 5).

Having an early (working) co-simulation also 
provides other advantages, such as validating the 
interaction protocols, decomposing the project into 
units which could then be worked on separately, 
and the possibility of gradually increasing the 
complexity of the simulation and replacing units 
of the model one by one with more accurate FMUs 
generated from dedicated platforms.

The VDM models do not need to have 
complete functionality for the homogeneous co-
simulation, only the bare minimum from which 
the communication lines between units can be 
determined. The incompleteness of the VDM 
models is related to details of the inner workings 
of the components, not necessarily respecting 
all the constraints of reality, such as randomly 
generating colours for USB parts and ignoring the 
physical capacity limit of the memory boxes in 
the warehouse, randomly choosing a duration for 
piece relocation for the robotic arm, or randomly 

Figure 5. Connections between VDM models
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considering the test successful or unsuccessful 
in the test station. Another example is breaking 
continuity: the warehouse model generates 
random colours for USB parts and can react to 
order cancellations. But if an order comes and the 
warehouse was able to select the correct colour 
for two of the three parts of the USB before the 
order was cancelled, when a new order arrives 
the warehouse just starts generating coloured 
parts anew and those leftover coloured parts are 
not considered (the reality of already being a part 
of a certain colour in a certain place is ignored 
and continuity is broken). Such aspects of the 
functionality are minor details with respect to the 
DE modelling used for the abstract validation. The 
internal states however are all well-established, 
along with the communication patterns and lines 
between modules, such that the behaviour of the 
refined modules does not diverge substantially 
from the behaviour of the abstract models. Once 
established, the communication lines and the 
types of data they carry become hard constraints 
of the simulation that cannot be easily changed, 
but new lines of communication could be added if 
necessary. For instance, new communication lines 
have been added later in the development of the 
project, for transmitting (to the Part Tracker) the 
level of perturbation recorded by each unit.

The Comma-Separated Variables (CSV) library 
from the Overture tool is used in the HMI model to 
provide test data for orders in the production line. 
This approach is both flexible and powerful. The 
flexibility stems from the possibility of creating 
various scenarios with various amounts of orders 
and order/cancellation time delays for covering 
statistical scenarios, while the power comes from 
the repeatability of experiments. Having the same 
input CSV file, the co-simulation can be run 
with various parameters, but having exactly the 
same input orders at exactly the same time, thus 
generating a detailed picture of the behaviour of 
the system in controlled, repeatable experiments. 
The influence of certain system parameters may 
also be analysed.

The VDM model for the Warehouse is on purpose 
incomplete, since it randomly generates parts of 
various colours until the necessary (requested) 
colour is available. There is no stack of parts 
with pre-defined colours (therefore there is no 
possibility of ever running out of a colour) and 

there is no memory box where unused parts are 
deposited temporarily until a stick request with 
those characteristics comes around.

The abstract VDM model for the Wagons is 
idealised in the sense that the wagons can change 
speeds (accelerate or decelerate) immediately after 
receiving the command from the Part Tracker, 
(un)loading is instantaneous and that their 
estimated positions always correspond to the real 
positions on the track, which probably will not 
necessarily be true in the real implementation. 
Also, the wagons have no possibility of stopping 
unexpectedly, losing the load or falling outside 
the track.

The abstract VDM model of the Test Station is 
also incomplete. It simply waits for a time and 
randomly outputs true or false as the test result. 
The only parameter of controlling the output is the 
frequency of rejecting an item.

4.3 Communication between Units

The communication between units contains both 
simple (straightforward) messages, requesting 
the setting of a certain value or indicating the 
current value or state of a component, as well as 
composed messages that need to be decoded and 
the information extracted from them before that 
information can become useful. The purpose of 
the composed messages is twofold: to ensure that 
certain bits of information arrive simultaneously 
(as opposed to them coming on different message 
lines that may become unsynchronised or for 
which further synchronisation logic might have 
been needed) and to account for the possibility 
of coded messages (that might be interesting in 
applications with significant noise, where error 
correcting codes might become useful).

For instance, request from the Part Tracker to the 
Wagons to assume a certain speed or the feedback 
of the Wagon positions to the Part Tracker is 
done with straightforward messages (the value 
requested) on dedicated lines (that only carry 
these types of messages and nothing else). On the 
other hand, the order requests from the HMI to the 
Part Tracker or their acknowledgement (feedback) 
contain multiple pieces of information each. 
Finally, the perturbation levels of all the units 
are gathered by the Part Tracker, merged into one 
composed message and sent together to the HMI 
for display purposes.
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4.4 Heterogeneous Co-Simulations

The heterogeneous co-simulation covers the 
successful attempts to replace the Overture-
generated FMUs with more detailed and 
complete FMUs generated by specialized tools 
using appropriate formalisms. Table 1 shows the 
correspondence between the use case units and 
the adequately suited program for implementing a 
complete simulation for each. As may be noted the 
complete simulation covers all the required types 
of CPSs included in the reference architecture 
described in [21].  

Having already established a homogeneous 
co-simulation (with all FMUs generated from 
Overture), the improvements to various parts of the 
project can be achieved independently from each 
other, because any newly generated FMU would 
simply replace the corresponding Overture/VDM-
RT FMU if the interfaces between units remained 
unchanged. Thus, the order of integration for 
completely-functional FMUs is determined by 
the progress of individual teams rather than pre-
defined dependencies. Teams were able at any 
time to rely on a working DE-first co-simulation 
and only replace their unit. Furthermore, the co-
simulation could at any time be assembled from 
any combination of FMUs (generated by Overture 
or other tools).

Table 1. Technologies used for different system units

Type System 
Units

Technology 

Planning and 
control HMI

4DIAC + 
MQTT Overture 

(VDM)

Infrastructure Part Tracker Overture 
(VDM)

Production Warehouse 20-sim
Production Robotic 

Arm
Catia v6

Production Wagons 4DIAC
Production Test Station 4DIAC

General 
overview Unity 20-sim /   Unity 

animation

While for most units the FMU generated by the 
specialised program is simply an improvement (a 
more realistic or more detailed simulation) over 
the Overture model, the test case captures two 
exceptions: the HMI and the Part Tracker. The 

HMI is different from the rest of the units in the 
sense that the two FMUs are meant to complement 
each other, although they cannot be used both at 
the same time. The Overture/VDM-RT FMU reads 
the orders from a CSV file, and can be used for 
performing benchmark like tests with completely 
controlled and repeatable sequences of orders. The 
4DIAC-MQTT FMU implements user heuristics, 
allowing for real-time placement of orders 
and real user interaction with the simulation. 
Furthermore, because orders can be requested 
from a smartphone or tablet, the 4DIAC-MQTT 
FMU also implements a graphical interface. On 
the other hand, since the Part Tracker handles the 
flow of the process, it is a logical unit rather than 
a physical one. Therefore, the Part Tracker is the 
only unit whose FMU is generated in Overture 
throughout the heterogeneous co-simulation 
phase, also being the only complete VDM model.

For one of the other units, the flexibility of the 
co-simulation allows for a back-up plan to be 
used. As described in Table 1, the generation of 
an FMU for the Robotic Arm was intended to be 
produced in Catia v6, of which unfortunately only 
the academic version of 2013 was available to the 
team. This presented a major problem, because 
the libraries necessary for generating an FMU 
were theoretically available only since Catia V6 
2015 FD01 (Dymola) and the support received 
from the producer of the tool was rather limited. 
Because of the modularity of the co-simulation, 
it was possible to use 20-sim to produce an 
alternative FMU and replace the envisaged Catia 
FMU model.

The co-simulation in the heterogeneous phase 
allows for the analysis of interactions between the 
units that have been simulated using specialised 
programs. All messages exchanged between 
VDM FMUs (or their more rigorous versions) are 
available for display in the co-simulation engine 
and INTO-CPS Application. Figure 6 shows the 
communication between the HMI unit and the Part 
Tracker for two orders.

Figure 6. Orders and acknowledgements exchanged 
between HMI and Part Tracker
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Figure 7. Acknowledgement messages for stages of 
assembly sent by the Part Tracker

Figure 8. Wagon positions on a circular track of 
length 100

Two orders are sent from the HMI and 
acknowledged by the Part Tracker. The progress 
of assembly on the orders is clearly noticeable in 
Figure 7 because acknowledgement messages are 
sent back to the HMI whenever the item reaches 
the next stage. Furthermore, the acknowledgement 
messages contain the ID of the order, which 
would make the process easy to follow even in 
case of items being assembled in parallel, as if 
in a pipeline. Figure 8 shows the capability of 
the co-simulation tool to display multiple graphs 
simultaneously, especially useful when trying 
to visualize signals having different scales. The 
positions of the wagons on the circular track 
of length 100 (upper left graph) and the frontal 
distance as reported by each wagon (lower left 
graph) have the range 0 to 99, but composed 
message containing the positions of all wagons, 
sent by the Part Tracker to the HMI (upper right 
graph) goes into the millions, and the intended 
speed of the wagons (lower right graph) rarely 
goes above 10.

4.5 Deployment

The units modelled and tested by the 
heterogeneous co-simulation have been deployed 
in a demo stand for fine tuning under real-life 
conditions. Figure 9 shows the actual demo stand 
layout, with all physical units present.

The HMI is a virtual unit, which was the first to 
be implemented on smartphones and tablets as an 
app, communicating with the other units through 

MQTT even during the heterogeneous phase of 
the project. The Part Tracker is a logical unit for 
which the FMU was generated by the Overture 
tool in both the homogeneous and heterogeneous 
phases. For deployment, the C code was 
generated directly from Overture and deployed 
on a Raspberry Pi 3, also employing MQTT as 
communication protocol [1].

The Warehouse, mainly consisting of stacks 
and memory locations, colour sensors and 
pneumatic pistons, uses a Raspberry Pi 3 with 
UniPi Expansion Board for deploying the 20-
sim generated C code of the heterogeneous co-
simulation. The Robotic Arm is a Stäubli robot 
with no internal logic, just following the lead of 
the Warehouse. The Wagons, being the moving 
parts of the stand, contain DC motors (with PWM 
drivers), position sensors for detecting the loading 
and testing station, anti-collision ultrasonic 
sensors to avoid collision with other wagons and 
embedded Raspberry Pi boards for the internal 
logic generated from the 4DIAC FMU. Finally, the 
testing station uses a camera for image processing 
and also includes actuators to push the USB sticks 
from the wagons into the pile of rejected items or 
towards the end user.

Figure 9. Demo stand for deployment of the co-
simulated units, containing: 1) the warehouse 
stacks; 2) the assembly box at the base of the 
warehouse stacks; 3) the memory boxes of the 
warehouse unit; 4) the robotic arm for moving 
parts around the warehouse; 5) wagons on different 
locations of the track; 6) the loading station; 7) the 
test station; 8) the circular track for the wagons

5. Concluding Remarks
This paper presented a methodology for modelling 
CPSs, as well as the steps for achieving a working 
heterogeneous co-simulation (with units modelled 
in various dedicated tools) for the development 
of an assembly line of USB sticks. The test case 
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chosen was sufficiently simple to be easily followed, 
but still with enough complexity to allow the 
exploration of the capabilities and the limitations of 
both the methodology and the tools. The production 
line was first modelled completely in Overture/
VDM-RT and the models were co-simulated using 
the INTO-CPS technology (a homogeneous co-
simulation). The flexibility of the co-simulation 
engine allowed for the gradual integration of closer-
to-reality and more detailed FMUs, generated in 
dedicated tools (4DIAC, 20-sim).

The test case also emphasised key possibilities of 
the methodology, such as:

-- The initial development of the homogeneous 
co-simulation in VDM was particularly 
useful in driving cooperation and making 
clear the assumptions of the distributed 
teams involved in modelling the specific 
components; this phase proved to be the 
most difficult and time-consuming phase 
in building the co-simulation, requiring a 
very intensive communication for a shared 
understating of the requirements;

-- Once the VDM co-simulation is running, the 
independent development of units may be 
integrated and validated in the co-simulation 
in any order, and using any formalism, e.g. 
some units to remain modelled in Overture, 
while the others in their own formalisms;

-- An improved capability to handle some 
unpredictable requirements; the employment 
of co-simulations when designing an 
automated production system avoids the build-
up inertia of subsequent design constraints, 
facilitating the low and late commitment for 
these decisions, i.e. the specific controllers or 

PLCs, the plant layout, the number of storage 
stacks from the warehouse, etc.

Further investigations in the co-simulation 
capabilities on the current test case include:

-- The improvement of visualisation and 
debugging features for co-simulations;

-- The inclusion of perturbations in the 
production line for a more realistic simulation;

-- The optimisation of parameters for one 
or multiple units, depending on the 
perturbations, the amount and distribution of 
input orders and the physical constraints of 
the units (using the Design Space Exploration 
capabilities);

-- The integration of FMUs generated by tools 
different from the ones mentioned in this 
paper (e.g. Catia for the robot arm);

-- The possibility of extending the purpose of 
the study to interactions between generated 
hardware and generated software solutions, 
in the case of the production line, writing 
data onto the USB sticks and verifying it as 
part of the production process.
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