
33

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

In the development of CPSs, a model-based
approach can be an efficient way to master system
complexity through an iterative development.
In this paper we illustrate how a co-simulation
technology [6] can be used to gradually increase
the detail in a collaborative model (co-model)
following a “discrete event first” methodology. In
this approach, initial abstract models are produced
using a discrete event (DE) formalism (in this
case VDM) to identify the proper communication
interfaces and interaction protocols among
different models. These are gradually replaced
by more detailed models using appropriate
technologies, for example continuous time (CT)
models of physical phenomena.

The case study deals with the virtual design
and validation of a CPS-based manufacturing
system for assembling USB sticks that was
developed in the iPP4CPPS project [7]. It is a
representative example of a part of a distributed
and heterogeneous system in which products,
manufacturing resources, orders and infrastructure
are all cyber-physical [17]. In this setting, several
features (such as asynchronous communication,
messages flow, autonomy, self-adaptation, etc.)
should be investigated at design time, for example
using a collaborative modelling approach.

Consequently, the case study offers a balance
between being sufficiently simple to be easily
followed as a production line example, including
generating a tangible output, and at the same time
being sufficiently general to allow the study of
the co-simulation complexity. Furthermore, by
choosing a USB stick, the example opens the
possibility of extending the purpose of the study
to interactions between the generated hardware
and the generated software solutions in the
production line.

The paper demonstrates the effectiveness of the
DE-first approach in a setting with many different
constituent models. To enable any number of DE
and CT constituent models to be co-simulated,
the iPP4CPPS project employed the INTO-CPS
technology [2, 13] that generalizes previous
results in combining different models, such as
one DE and one CT model [5]. The remaining
part of this paper starts by introducing the INTO-
CPS technology. This is followed by Section 3
describing the CPS development approach for
starting out with DE models for each constituent
model and then gradually exchanging some of
these with more realistic models. Section 4
introduces the industrial case study and presents
the results of using co-simulation technology

Studies in Informatics and Control, 27(1) 33-42, March 2018

Multi-Paradigm Discrete-Event Modelling and
Co-simulation of Cyber-Physical Systems

Mihai NEGHINA1*, Constantin-Bala ZAMFIRESCU1, Peter Gorm LARSEN2,
Kenneth LAUSDAHL2, Ken PIERCE3

1 Lucian Blaga University of Sibiu, Faculty of Engineering, Department of Computer Science and
Automatic Control, 4 Emil Cioran Street, Sibiu, 550025, Romania
{mihai.neghina,zbcnanu}@gmail.com (*Corresponding author)
2 Aarhus University, Department of Engineering, Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark
{pgl,lausdahl}@eng.au.dk
3 School of Computing Science, Newcastle University, 1 Science Square, Science Central, Newcastle upon
Tyne, NE4 5TG, UK
kenneth.pierce@newcastle.ac.uk

Abstract: In the modelling of Cyber-Physical Systems (CPSs), there are different possible routes that can be followed
to gradually achieve a collection of constituent models that can be co-simulated with a high level of accuracy. This paper
demonstrates a methodology which initially develops all constituent models at a high level of abstraction with discrete-
event models expressed using the Vienna Development Method (VDM). Subsequently, a number of these are refined
(without changing the interfaces) by more detailed models expressed in different formalisms, and using tools that can
export Functional Mock-up Units (FMUs) for co-simulation through the Functional Mock-up Interface (FMI) standard.
The development team of each of these more detailed models can then experiment with the interactions with all the other
constituent models, using the high-level discrete-event versions until higher-fidelity alternatives are ready. The results
reported in this paper were obtained in an innovation experiment within the EU CPSE Labs research project, part of Smart
Anything Everywhere initiative.

Keywords: Co-Simulation, Cyber-physical Production Systems, Heterogeneous modelling.

https://doi.org/10.24846/v27i1y201804

http://www.sic.ici.ro

34 Mihai Neghina, Constantin-Bala Zamfirescu, Peter Gorm Larsen, Kenneth Lausdahl, Ken Pierce

both in a homogeneous and heterogeneous
setting on that case study. Finally, Section 5
provides some concluding remarks and future
uses of this approach. The paper is an extended
version of the presentation given in the 15th
Overture Worksop [16].

2. The INTO-CPS Technology

In the INTO-CPS project we start from the view
that disciplines such as software, mechatronics and
control engineering have evolved with notations
and theories that are tailored to their engineering
needs, and that it is undesirable to suppress this
diversity by enforcing uniform general-purpose
models [3,4,10,11,12]. Our goal is to achieve a
practical integration of diverse formalisms at
the semantic level, and to realise the benefits in
integrated tool chains. The overall workflow and
services from the tool chain used in this project
are illustrated in Figure 1.

Figure 1. The INTO-CPS tool chain used in this project

At the top level, the tool chain will allow
requirements to be described using SysML with
a new CPS profile made inside the Modelio tool
[15]. This SysML profile allows the architecture
of a CPS to be described, including both software
and physical elements and based on this it is
possible to automatically generate FMI model
descriptions for each constituent model [18].
It is also possible to automatically generate the
overall connection between different FMUs
for a co-simulation. Note that although SysML
also have diagrams to express behaviour the
CPS profile in Modelio has not been extended
to enable the generation of FMUs from such
diagrams, so SysML in this work is primarily
used at the high-level architecture describing
how different constituent models are combined.
It is also worth noting that the types that can be
used in the interfaces for FMUs are quite basic
so elaborate VDM values can only be exchanged

using strings and in that case one need to have the
same understanding of such structured values in
the constituent models exchanging such values.

This type of FMI model description can
subsequently be imported into all the baseline
modelling and simulation tools included in the
INTO-CPS tool suite. All of these can produce
detailed models that can be exported as FMUs,
each acting as independent simulation units that
can be incorporated into an overall co-simulation.
The constituent models can either be in the
form of DE models or in the form of CT models
combined in different ways. Thus, heterogeneous
constituent models can then be built around this
FMI interface, using the initial model descriptions
as a starting point. A Co-simulation Orchestration
Engine (COE) then allows these constituent
models of a CPS to be evaluated through co-
simulation. The COE also allows real software and
physical elements to participate in co-simulation
alongside models, enabling both Hardware-in-the-
Loop and Software-in-the-Loop simulation.

The different modelling and simulation tools used
in this experiment included Overture [8], 20-sim
[8] and 4DIAC [19] technologies. The original
intention was also to include Catia to model the
robotic arm in the case study, but unfortunately a
license was not available for the version of this
tool capable of generating FMUs. The benefit of
the co-simulation approach is that Catia could be
replaced by an equivalent 20-sim model.

In order to have an user-friendly interface to
manage this process, a web-based INTO-CPS
Application has been produced. This can be
used to launch the COE, enabling multiple co-
simulations to be defined and executed, and the
results to be collated and presented automatically.
The tool chain allows multiple co-simulations to
be defined and executed using its design space
exploration capabilities.

3. Discrete-Event First Modelling
with INTO-CPS

3.1 Initial Models

Given a set of FMI model descriptions generated
from a SysML model using Modelio, initial
creation of the constituent models can begin.
In general, this means importing the model
descriptions into modelling tools (e.g. Overture,

	 35

ICI Bucharest © Copyright 2012-2018. All rights reserved

Multi-Paradigm Discrete-Event Modelling and Co-simulation of Cyber-Physical Systems

20-sim), modelling behaviour in each, generating
FMUs and then bringing them together in the
INTO-CPS Application to run a co-simulation.

This direct approach can however be prone to
failure. It requires that FMUs are available for all
constituent models before co-simulations can be
made. If each model is produced by a different
team, then delays in one team may well delay all
other teams. Similarly, if a single team produces
constituent models in turn, then co-simulation can
only begin at the end of modelling.

One way to overcome this challenge is to produce
quick, first version FMUs as early as possible
to perform initial integration testing. These can
then subsequently be replaced iteratively by
increasingly detailed models, with integration
testing performed each time a model is available,
falling back to older versions as required. This
however may be more difficult to do in some
modelling paradigms.

An alternative is to take a DE-first approach. Here,
a simple, abstract model of the entire system is
created in the DE modelling environment,
e.g. VDM and Overture, in order to sketch out
the behaviour of all constituent models. This
approach in a two-model setting is described
in Fitzgerald et al. [5], including guidelines for
simplifying continuous behaviour in DE models.
It is worth noting that this type of approach is
conceptually similar to a traditional component-
based development approach, where stub-modules
are commonly used in the initial phases.

3.2 Discrete-Event First with VDM/Overture

Given a SysML model and model descriptions for
each constituent model, the suggested approach
is to begin by building a single VDM-Real-Time
(VDM-RT) [20] project in Overture with the
following elements:

-- A class for each constituent representing
an FMU. Each class should define
porttype instance variables (i.e. of type
IntPort, RealPort, BoolPort or StringPort)
corresponding to the model description and a
constructor to take these ports as parameters.
Each FMU class should also define a thread
that calls a Step operation, which should
implement some basic, abstract behaviour
for the FMU.

-- A System class that instantiates port and FMU
objects based on the connections diagram.

Ports should be passed to constructor of each
FMU object. Each FMU object should be
deployed on its own CPU.

-- A World class that starts the thread of each
FMU objects.

Class and object diagrams giving an example of
the above is shown in Figure 2.

Figure 2. Class diagram showing two simplified
FMU classes created within a single VDM-RT

project, and an object diagram showing them being
instantiated as a test

In this example, there are two constituent models
(called FMU1 and FMU2) joined by a single
connection of type real. Such a model can be
simulated within Overture to test the behaviour
of the FMUs. Once the behaviour of the FMU
classes has been tested, FMUs can be produced
for each and integrated into a first co-model. To
generate FMUs, a project must be created for each
constituent model, comprising:

-- One of the FMU classes from the main project.

-- A HardwareInterface class that defines
the ports and annotations required by the
Overture FMU export plug-in, reflecting
those defined in the model description.

-- A system class that instantiates the FMU
class and passes the port objects from the
HardwareInterface class to its constructor.

-- A World class that starts the thread of the
FMU class.

The above structure is shown in Figure 3. A
skeleton project with a correctly annotated
HardwareInterface class can be generated
using the model description import feature of
the Overture FMU plug-in. The FMU classes
can be linked into the projects (rather than hard

http://www.sic.ici.ro

36

copies being made) from the main project, so
that any changes made are reflected in both the
main project and in the individual FMU projects.
Note that if the FMU classes need to share type
definitions, these can be created in a class (e.g.
called Types) in the main project, and then this
class can be linked into each of the FMU projects
in the same way.

Figure 3. Class and object diagrams showing a
linked class within its own project for FMU creation

From these individual projects, FMUs can be
exported and co-simulated within the INTO-CPS
tool chain. These FMUs can then be replaced as
higher-fidelity versions become available. They
can also be retained and used for regression and
integration testing through different co-model
configurations for each combination.

4. Case Study: Manufacturing USB Sticks

The case study below concerns the manufacturing
of USB sticks. The case study was chosen as a
representative plant that might potentially be
expanded into a full production line.

The USB sticks considered have two lids and the
main body. The production line received orders
from virtual users, containing the requested
characteristics of the item, as well as additional
information, such as urgency of the order (the
requested transportation speed between the
warehouse and the test station), change requests
(indicating a new set of stick characteristics to be
assembled and tested) or cancellation requests (for
dropping orders). The assembly takes place in the
warehouse unit, and the generated item is moved
on wagons to the test station for validating the
components of the item. If the item is rejected (the
test fails to confirm the requested characteristics
of the stick), then the process is automatically
re-started, and a new request is made to the
warehouse unit.

4.1 The Constituent Systems

Figure 4 shows the plant layout as realized
during the project, with emphasis on the
physical entities where the control units will be
embedded. These are:

W: Warehouse - buffer unit;

R: Robotic Arm - processing station;

C: Wagons – transportation units;

T: Test Station - processing station.

In addition, to capture the value adding processes
in Industry 4.0 [14,18,20], the case study includes
distinct units to reflect the users who place orders
for assembling the USB sticks, and the required
infrastructure that make possible for the others
CPSs to exist. These are:

H: HMI (Human-Machine Interface),

P: Part Tracker - reflecting the infrastructure

U: Unity – dynamic 3D graphics of the simulation,
providing the image in Figure 4.

Figure 4. Layout of the production line as depicted
in the 3D rendering of the simulation: 1) the
warehouse stacks; 2) the assembly box at the base
of the warehouse stacks; 3) the memory boxes of
the warehouse unit; 4) the robotic arm for moving
parts around the warehouse; 5) wagons on different
locations of the track; 6) the loading station; 7) the
test station; 8) the circular track for the wagons

The HMI unit handles the user interface; it
communicates only with the Part Tracker. On the
deployment of the solution, the HMI allows for
real-time placing of orders, change requests and
cancellations through an app running on smart
devices. The Part Tracker is the central logical
unit that handles orders; it communicates with all
other units except the Robotic Arm.

The Warehouse assembles the USB from
the component parts; it consists of stacks for
each type of component, an assembly box for
the actual assembly of the items and memory

Mihai Neghina, Constantin-Bala Zamfirescu, Peter Gorm Larsen, Kenneth Lausdahl, Ken Pierce

	 37

ICI Bucharest © Copyright 2012-2018. All rights reserved

Multi-Paradigm Discrete-Event Modelling and Co-simulation of Cyber-Physical Systems

boxes for storing components that do not fit the
current order. The memory boxes may also be
a source of components for new orders, if the
requested colour is available. It communicates
only with the Part Tracker and the Robotic Arm,
used for moving USB components from one
location to another, including the waiting line
at the loading station.

The Robotic Arm moves parts or pieces from
one location to another; it communicates only
with the Warehouse. As with other models, the
Overture/VDM-RT model of the Robotic Arm is
on purpose incomplete, since the time required to
move a part or piece from one location to another
is implemented simply as a delay through a
countdown timer.

The purpose of the Wagons is to transport the items
from the waiting room (at the loading station) to
the test station. The wagons communicate with
the Part Tracker and to each other. Each wagon
can be certain of its location only at the loading
or test station, while in between the position is
estimated periodically from the previous known
position, time and own speed.

The Test Station reads the item characteristics
and reports on their conformity to requirement.
It communicates only with the Part Tracker, from
which it receives the requested set of colours for
the item and to which it reports the test result.
From the test station the item is then pushed either
to the pile of rejected items or to the end user,
while the empty wagon returns to the loading
station for transporting further items.

Besides these units, the co-simulation includes a
3D rendering unit that dynamically displays what
is happening in the simulation.

4.2 Homogeneous Co-Simulations

The first step in the modelling of the case study
was generating a functional, albeit not fully
featured, model of the components (units) that
would make up the USB stick production line.
Each component was first modelled abstractly in
VDM by using the Overture tool, following the
approach described in Section 3. The goal of this
homogeneous co-simulation was to identify the
right interaction protocols (signals) among the
various components (stations) of the prototype,
and not on the model’s accuracy. Therefore, the
VDM simulation model includes distinct models
for each component of the system (see Figure 5).

Having an early (working) co-simulation also
provides other advantages, such as validating the
interaction protocols, decomposing the project into
units which could then be worked on separately,
and the possibility of gradually increasing the
complexity of the simulation and replacing units
of the model one by one with more accurate FMUs
generated from dedicated platforms.

The VDM models do not need to have
complete functionality for the homogeneous co-
simulation, only the bare minimum from which
the communication lines between units can be
determined. The incompleteness of the VDM
models is related to details of the inner workings
of the components, not necessarily respecting
all the constraints of reality, such as randomly
generating colours for USB parts and ignoring the
physical capacity limit of the memory boxes in
the warehouse, randomly choosing a duration for
piece relocation for the robotic arm, or randomly

Figure 5. Connections between VDM models

http://www.sic.ici.ro

38

considering the test successful or unsuccessful
in the test station. Another example is breaking
continuity: the warehouse model generates
random colours for USB parts and can react to
order cancellations. But if an order comes and the
warehouse was able to select the correct colour
for two of the three parts of the USB before the
order was cancelled, when a new order arrives
the warehouse just starts generating coloured
parts anew and those leftover coloured parts are
not considered (the reality of already being a part
of a certain colour in a certain place is ignored
and continuity is broken). Such aspects of the
functionality are minor details with respect to the
DE modelling used for the abstract validation. The
internal states however are all well-established,
along with the communication patterns and lines
between modules, such that the behaviour of the
refined modules does not diverge substantially
from the behaviour of the abstract models. Once
established, the communication lines and the
types of data they carry become hard constraints
of the simulation that cannot be easily changed,
but new lines of communication could be added if
necessary. For instance, new communication lines
have been added later in the development of the
project, for transmitting (to the Part Tracker) the
level of perturbation recorded by each unit.

The Comma-Separated Variables (CSV) library
from the Overture tool is used in the HMI model to
provide test data for orders in the production line.
This approach is both flexible and powerful. The
flexibility stems from the possibility of creating
various scenarios with various amounts of orders
and order/cancellation time delays for covering
statistical scenarios, while the power comes from
the repeatability of experiments. Having the same
input CSV file, the co-simulation can be run
with various parameters, but having exactly the
same input orders at exactly the same time, thus
generating a detailed picture of the behaviour of
the system in controlled, repeatable experiments.
The influence of certain system parameters may
also be analysed.

The VDM model for the Warehouse is on purpose
incomplete, since it randomly generates parts of
various colours until the necessary (requested)
colour is available. There is no stack of parts
with pre-defined colours (therefore there is no
possibility of ever running out of a colour) and

there is no memory box where unused parts are
deposited temporarily until a stick request with
those characteristics comes around.

The abstract VDM model for the Wagons is
idealised in the sense that the wagons can change
speeds (accelerate or decelerate) immediately after
receiving the command from the Part Tracker,
(un)loading is instantaneous and that their
estimated positions always correspond to the real
positions on the track, which probably will not
necessarily be true in the real implementation.
Also, the wagons have no possibility of stopping
unexpectedly, losing the load or falling outside
the track.

The abstract VDM model of the Test Station is
also incomplete. It simply waits for a time and
randomly outputs true or false as the test result.
The only parameter of controlling the output is the
frequency of rejecting an item.

4.3 Communication between Units

The communication between units contains both
simple (straightforward) messages, requesting
the setting of a certain value or indicating the
current value or state of a component, as well as
composed messages that need to be decoded and
the information extracted from them before that
information can become useful. The purpose of
the composed messages is twofold: to ensure that
certain bits of information arrive simultaneously
(as opposed to them coming on different message
lines that may become unsynchronised or for
which further synchronisation logic might have
been needed) and to account for the possibility
of coded messages (that might be interesting in
applications with significant noise, where error
correcting codes might become useful).

For instance, request from the Part Tracker to the
Wagons to assume a certain speed or the feedback
of the Wagon positions to the Part Tracker is
done with straightforward messages (the value
requested) on dedicated lines (that only carry
these types of messages and nothing else). On the
other hand, the order requests from the HMI to the
Part Tracker or their acknowledgement (feedback)
contain multiple pieces of information each.
Finally, the perturbation levels of all the units
are gathered by the Part Tracker, merged into one
composed message and sent together to the HMI
for display purposes.

Mihai Neghina, Constantin-Bala Zamfirescu, Peter Gorm Larsen, Kenneth Lausdahl, Ken Pierce

	 39

ICI Bucharest © Copyright 2012-2018. All rights reserved

Multi-Paradigm Discrete-Event Modelling and Co-simulation of Cyber-Physical Systems

4.4 Heterogeneous Co-Simulations

The heterogeneous co-simulation covers the
successful attempts to replace the Overture-
generated FMUs with more detailed and
complete FMUs generated by specialized tools
using appropriate formalisms. Table 1 shows the
correspondence between the use case units and
the adequately suited program for implementing a
complete simulation for each. As may be noted the
complete simulation covers all the required types
of CPSs included in the reference architecture
described in [21].

Having already established a homogeneous
co-simulation (with all FMUs generated from
Overture), the improvements to various parts of the
project can be achieved independently from each
other, because any newly generated FMU would
simply replace the corresponding Overture/VDM-
RT FMU if the interfaces between units remained
unchanged. Thus, the order of integration for
completely-functional FMUs is determined by
the progress of individual teams rather than pre-
defined dependencies. Teams were able at any
time to rely on a working DE-first co-simulation
and only replace their unit. Furthermore, the co-
simulation could at any time be assembled from
any combination of FMUs (generated by Overture
or other tools).

Table 1. Technologies used for different system units

Type System
Units

Technology

Planning and
control HMI

4DIAC +
MQTT Overture

(VDM)

Infrastructure Part Tracker Overture
(VDM)

Production Warehouse 20-sim
Production Robotic

Arm
Catia v6

Production Wagons 4DIAC
Production Test Station 4DIAC

General
overview Unity 20-sim / Unity

animation

While for most units the FMU generated by the
specialised program is simply an improvement (a
more realistic or more detailed simulation) over
the Overture model, the test case captures two
exceptions: the HMI and the Part Tracker. The

HMI is different from the rest of the units in the
sense that the two FMUs are meant to complement
each other, although they cannot be used both at
the same time. The Overture/VDM-RT FMU reads
the orders from a CSV file, and can be used for
performing benchmark like tests with completely
controlled and repeatable sequences of orders. The
4DIAC-MQTT FMU implements user heuristics,
allowing for real-time placement of orders
and real user interaction with the simulation.
Furthermore, because orders can be requested
from a smartphone or tablet, the 4DIAC-MQTT
FMU also implements a graphical interface. On
the other hand, since the Part Tracker handles the
flow of the process, it is a logical unit rather than
a physical one. Therefore, the Part Tracker is the
only unit whose FMU is generated in Overture
throughout the heterogeneous co-simulation
phase, also being the only complete VDM model.

For one of the other units, the flexibility of the
co-simulation allows for a back-up plan to be
used. As described in Table 1, the generation of
an FMU for the Robotic Arm was intended to be
produced in Catia v6, of which unfortunately only
the academic version of 2013 was available to the
team. This presented a major problem, because
the libraries necessary for generating an FMU
were theoretically available only since Catia V6
2015 FD01 (Dymola) and the support received
from the producer of the tool was rather limited.
Because of the modularity of the co-simulation,
it was possible to use 20-sim to produce an
alternative FMU and replace the envisaged Catia
FMU model.

The co-simulation in the heterogeneous phase
allows for the analysis of interactions between the
units that have been simulated using specialised
programs. All messages exchanged between
VDM FMUs (or their more rigorous versions) are
available for display in the co-simulation engine
and INTO-CPS Application. Figure 6 shows the
communication between the HMI unit and the Part
Tracker for two orders.

Figure 6. Orders and acknowledgements exchanged
between HMI and Part Tracker

http://www.sic.ici.ro

40

Figure 7. Acknowledgement messages for stages of
assembly sent by the Part Tracker

Figure 8. Wagon positions on a circular track of
length 100

Two orders are sent from the HMI and
acknowledged by the Part Tracker. The progress
of assembly on the orders is clearly noticeable in
Figure 7 because acknowledgement messages are
sent back to the HMI whenever the item reaches
the next stage. Furthermore, the acknowledgement
messages contain the ID of the order, which
would make the process easy to follow even in
case of items being assembled in parallel, as if
in a pipeline. Figure 8 shows the capability of
the co-simulation tool to display multiple graphs
simultaneously, especially useful when trying
to visualize signals having different scales. The
positions of the wagons on the circular track
of length 100 (upper left graph) and the frontal
distance as reported by each wagon (lower left
graph) have the range 0 to 99, but composed
message containing the positions of all wagons,
sent by the Part Tracker to the HMI (upper right
graph) goes into the millions, and the intended
speed of the wagons (lower right graph) rarely
goes above 10.

4.5 Deployment

The units modelled and tested by the
heterogeneous co-simulation have been deployed
in a demo stand for fine tuning under real-life
conditions. Figure 9 shows the actual demo stand
layout, with all physical units present.

The HMI is a virtual unit, which was the first to
be implemented on smartphones and tablets as an
app, communicating with the other units through

MQTT even during the heterogeneous phase of
the project. The Part Tracker is a logical unit for
which the FMU was generated by the Overture
tool in both the homogeneous and heterogeneous
phases. For deployment, the C code was
generated directly from Overture and deployed
on a Raspberry Pi 3, also employing MQTT as
communication protocol [1].

The Warehouse, mainly consisting of stacks
and memory locations, colour sensors and
pneumatic pistons, uses a Raspberry Pi 3 with
UniPi Expansion Board for deploying the 20-
sim generated C code of the heterogeneous co-
simulation. The Robotic Arm is a Stäubli robot
with no internal logic, just following the lead of
the Warehouse. The Wagons, being the moving
parts of the stand, contain DC motors (with PWM
drivers), position sensors for detecting the loading
and testing station, anti-collision ultrasonic
sensors to avoid collision with other wagons and
embedded Raspberry Pi boards for the internal
logic generated from the 4DIAC FMU. Finally, the
testing station uses a camera for image processing
and also includes actuators to push the USB sticks
from the wagons into the pile of rejected items or
towards the end user.

Figure 9. Demo stand for deployment of the co-
simulated units, containing: 1) the warehouse
stacks; 2) the assembly box at the base of the
warehouse stacks; 3) the memory boxes of the
warehouse unit; 4) the robotic arm for moving
parts around the warehouse; 5) wagons on different
locations of the track; 6) the loading station; 7) the
test station; 8) the circular track for the wagons

5. Concluding Remarks
This paper presented a methodology for modelling
CPSs, as well as the steps for achieving a working
heterogeneous co-simulation (with units modelled
in various dedicated tools) for the development
of an assembly line of USB sticks. The test case

Mihai Neghina, Constantin-Bala Zamfirescu, Peter Gorm Larsen, Kenneth Lausdahl, Ken Pierce

	 41

ICI Bucharest © Copyright 2012-2018. All rights reserved

Multi-Paradigm Discrete-Event Modelling and Co-simulation of Cyber-Physical Systems

chosen was sufficiently simple to be easily followed,
but still with enough complexity to allow the
exploration of the capabilities and the limitations of
both the methodology and the tools. The production
line was first modelled completely in Overture/
VDM-RT and the models were co-simulated using
the INTO-CPS technology (a homogeneous co-
simulation). The flexibility of the co-simulation
engine allowed for the gradual integration of closer-
to-reality and more detailed FMUs, generated in
dedicated tools (4DIAC, 20-sim).

The test case also emphasised key possibilities of
the methodology, such as:

-- The initial development of the homogeneous
co-simulation in VDM was particularly
useful in driving cooperation and making
clear the assumptions of the distributed
teams involved in modelling the specific
components; this phase proved to be the
most difficult and time-consuming phase
in building the co-simulation, requiring a
very intensive communication for a shared
understating of the requirements;

-- Once the VDM co-simulation is running, the
independent development of units may be
integrated and validated in the co-simulation
in any order, and using any formalism, e.g.
some units to remain modelled in Overture,
while the others in their own formalisms;

-- An improved capability to handle some
unpredictable requirements; the employment
of co-simulations when designing an
automated production system avoids the build-
up inertia of subsequent design constraints,
facilitating the low and late commitment for
these decisions, i.e. the specific controllers or

PLCs, the plant layout, the number of storage
stacks from the warehouse, etc.

Further investigations in the co-simulation
capabilities on the current test case include:

-- The improvement of visualisation and
debugging features for co-simulations;

-- The inclusion of perturbations in the
production line for a more realistic simulation;

-- The optimisation of parameters for one
or multiple units, depending on the
perturbations, the amount and distribution of
input orders and the physical constraints of
the units (using the Design Space Exploration
capabilities);

-- The integration of FMUs generated by tools
different from the ones mentioned in this
paper (e.g. Catia for the robot arm);

-- The possibility of extending the purpose of
the study to interactions between generated
hardware and generated software solutions,
in the case of the production line, writing
data onto the USB sticks and verifying it as
part of the production process.

Acknowledgements

This work has been supported through the
iPP4CPPS project (Horizon 2020, grant agreement
no. 644400, experiment no. 16-UK-GERS-01) and
DiFiCIL project (contract no. 69/08.09.2016, ID
P_37_771, web: http://dificil.grants.ulbsibiu.ro),
co-funded by ERDF through the Competitiveness
Operational Programme 2014-2020.

REFERENCES

1.	 Bandur, V., Tran-Jørgensen, W. V. P.,
Hasanagić, M. & Lausdahl, K. (September
2017). Code-generating VDM for Embedded
Devices. In The 15th Overture Workshop:
New Capabilities and Applications for
Model-based Systems Engineering, CS-
TR-1512-2017.

2.	 Blochwitz, T. (2014). Functional Mock-
up Interface for Model Exchange and Co-
Simulation. <https://www.fmi-standard.org/
downloads>.

3.	 Fitzgerald, J., Gamble, C., Larsen, P. G.,
Pierce, K. & Woodcock, J. (May 2015).

Cyber-Physical Systems design: Formal
Foundations, Methods and Integrated Tool
Chains. In FormaliSE: FME Workshop on
Formal Methods in Software Engineering,
ICSE 2015, Florence, Italy.

4.	 Fitzgerald, J., Gamble, C., Payne, R., Larsen,
P. G., Basagiannis, S. & Mady, A.E.D. (July
2016). Collaborative Model-based Systems
Engineering for Cyber-Physical Systems
– a Case Study in Building Automation. In
INCOSE 2016, Edinburgh, Scotland.

5.	 Fitzgerald, J., Larsen, P. G. & Verhoef, M.
(eds.) (2014). Collaborative Design for

http://www.sic.ici.ro

42

Embedded Systems – Co-modelling and Co-
simulation. Springer.

6.	 Gomes, C., Thule, C., Broman, D.,
Larsen, P. G. & Vangheluwe, H.
(Feb 2017). Co-simulation: State of
the art. Tech. rep, arXiv.org 157.

7.	 Hermann, M., Pentek, T. & Otto, B. Design
Principles for Industrie 4.0 Scenarios. In:
2016 49th Hawaii International Conference
on System Sciences (HICSS) (pp. 3928-3937).

8.	 Integrated product-production co-simulation
for cyber-physical production system,
iPP4CPS, accessed on November 2017.
<http://centers.ulbsibiu.ro/incon/index.php/
ipp4cpps/ >.

9.	 Kleijn, C. (November 2006). Modelling and
Simulation of Fluid Power Systems with 20-
sim, Intl. Journal of Fluid Power, 7(3).

10.	 Larsen, P. G., Battle, N., Ferreira, M.,
Fitzgerald, J., Lausdahl, K. & Verhoef, M.
(January 2010). The Overture Initiative –
Integrating Tools for VDM, SIGSOFT Softw.
Eng. Notes, 35(1), 1-6.

11.	 Larsen, P. G., Fitzgerald, J., Woodcock, J.,
Fritzson, P., Brauer, J., Kleijn, C., Lecomte, T.,
Pfeil, M., Green, O., Basagiannis, S. &
Sadovykh, A. (April 2016). Integrated Tool
Chain for Model-based Design of Cyber-
Physical Systems: The INTO-CPS Project.
In CPS Data Workshop, Vienna, Austria.

12.	 Larsen, P. G., Fitzgerald, J., Woodcock, J. &
Lecomte, T. (September 2016). Chapter 8:
Collaborative Modelling and Simulation for
Cyber-Physical Systems, Trustworthy Cyber-
Physical Systems Engineering. Chapman and
Hall/CRC, iSBN 9781498742450.

13.	 Larsen, P. G., Fitzgerald, J., Woodcock,
J., Nilsson, R., Gamble, C. & Foster,
S. (2016). Towards Semantically
Integrated Models and Tools for Cyber-
Physical Systems Design, 171-186.
Springer International Publishing, Cham.

14.	 Larsen, P. G., Fitzgerald, J. Woodcock, J.,
Gamble, C., Payne, R. & Pierce K. (September
2017). In Features of Integrated Model-
based Co-modelling and Co-simulation
Technology, CoSim-CPS workshop organised
in connection with the SEFM, Trento, Italy.

15.	 Modelio, accessed on November 2017.
<https://www.modelio.org/>.

16.	 Neghina, M., Zamfirescu, C. B., Larsen, P. G.,
Lausdahl, K. & Pierce, K. A (2017). Discrete
Event-first Approach to Collaborative
Modelling of Cyber-Physical Systems. In The
15th Overture Workshop New Capabilities
and Applications for Model-based Systems
Engineering, Newcastle University.

17.	 Nof, S. Y. (ed.) (2009). Springer Handbook
of Automation. Springer-Verlag.

18.	 Quadri, I., Bagnato, A., Brosse, E. & Sadovykh,
A. (December 2015). Modeling Methodologies
for CyberPhysical Systems: Research Field
Study on Inherent and Future Challenges, Ada
User Journal, 36(4), 246-253.

19.	 Strasser, T., Rooker, M., Ebenhofer,
G., Zoitl, A., Sunder, C., Valentini,
A. & Martel, A. (July 2008).
Framework for distributed industrial
automation and control (4diac). In 2008 6th

IEEE International Conference on Industrial
Informatics (pp. 283-288).

20.	 Verhoef, M., Larsen, P. G. & Hooman, J.
(2006). Modeling and Validating Distributed
Embedded RealTime Systems with VDM++.
In: Misra, J., Nipkow, T., & Sekerinski, E.
(eds.), FM 2006: Formal Methods. Lecture
Notes in Computer Science, 4085, 147-162.
Springer-Verlag.

21.	 Zamfirescu, C. B., Parvu, B. C., Schlick, J. &
Zühlke, D. (2013). Preliminary Insides for an
Anthropocentric Cyber-physical Reference
Architecture of the Smart Factory, Studies in
Informatics and Control, 22(3), 269-278.

Mihai Neghina, Constantin-Bala Zamfirescu, Peter Gorm Larsen, Kenneth Lausdahl, Ken Pierce

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_Hlk497614700
	_Hlk505778092
	GrindEQpgref59f4cc342
	GrindEQpgref59f4cc343
	_Hlk505298614
	GrindEQpgref59f4cc348
	GrindEQpgref59f4cc349
	GrindEQpgref59f4cc3410
	GrindEQpgref59f4cc3411
	GrindEQpgref59f4cc3412
	GrindEQpgref59f4cc3413
	GrindEQpgref59f4cc3414
	GrindEQpgref59f4cc3415
	GrindEQpgref59f4cc3416
	GrindEQpgref59f4cc3417
	GrindEQpgref59f4cc3418
	GrindEQpgref59f4cc3419
	GrindEQpgref59f4cc3420
	GrindEQpgref59f4cc3421
	_Hlk505779573
	_Hlk505779648
	_GoBack
	_GoBack
	OLE_LINK13
	OLE_LINK14
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK23
	OLE_LINK24
	OLE_LINK15
	OLE_LINK16
	OLE_LINK4
	OLE_LINK5
	OLE_LINK19
	OLE_LINK20
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_GoBack
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_GoBack
	_GoBack
	_GoBack
	_Ref507614518
	_Ref501653945
	_Ref501615680
	_Ref507614877
	_GoBack
	_Ref501736753
	_Ref501654657
	_Ref501654686
	_Ref501654121
	_Ref501960608
	_Ref501656240
	_Ref501617825
	_Ref501654748
	_Ref501618068
	_Ref501657773
	_Ref501618932
	_Ref501615645
	_Ref501617587
	_Ref501748318
	_Ref501652873
	_Ref501619465
	_Ref501657837
	_Ref507614749
	_Ref501657792
	_Ref507614685
	_Ref501657822
	_Ref501618445
	_Ref501618324
	_Ref501652960
	_Ref501615657
	_Ref501615690
	_Ref501960737
	_Ref501657810
	_Ref501618202
	_Ref501617691
	_Ref501619472
	_Ref501748054
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	baep-author-id9
	baep-author-id10
	baep-author-id11
	_GoBack
	_Hlk508353157
	_Hlk508353158
	_Hlk508353161
	_Hlk508353162
	_Hlk508353164
	_Hlk508353165
	_GoBack
	_Hlk509230735
	_GoBack

