
65

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

Lots of data being generated at the edges need
support for sophisticated analysis. For example,
data that falls within normal parameters might
be ignored or routed to lower-cost storage for
archival, while that which falls outside the norm
could trigger an alert and be sent to the Big Data
analytics platform. For that reason, it is better to
do some of the pre-processing or filtering of the
data closer to where the data is being created. One
solution that aims for scalability and efficiency is
to distribute the analytics to the edge, or very close
to it [2]. Smart devices, or the devices themselves,
with relative low cost computational power
could run (some part of) analytics. Additionally,
upwards in the hierarchy, intelligent gateways
with potentially more compute power could
enable more complex distributed analytics and
intelligence, close to the edge.

In order to provide Edge analytics capabilities the
Fog computing platform must include software
components that support provisioning additional
services like data distribution and control, data
storage, aggregation and analysis, metadata
management and data quality assurance. The
implementation of these components is best
suited as a distributed middleware layer named
Gateway Tier.

IoT Gateways play a central role in many Internet
of Things applications. They are the link between
(wireless) low-power sensor networks, on the
one side, and Cloud or enterprise systems on the
other side. Typically, an IoT Gateway is based on
a powerful processor like e. g. ARM Cortex or

Studies in Informatics and Control, 27(1) 65-72, March 2018

https://doi.org/10.24846/v27i1y201807

Towards an IoT Platform with
Edge Intelligence Capabilities

Vladimir FLORIAN1*, Gabriel NEAGU1

1National Institute for Research and Development in Informatics,
8-10 Marshal Averescu Blvd., Bucharest 1, RO-011455, ROMANIA
vladimir@ici.ro (*Corresponding author), gneagu@ici.ro

Abstract: A specific feature of the IoT systems consists in continuously generated data by sensors and smart devices,
which makes necessary enabling real time pre-processing and filtering as close as possible to their location. To cope with
this specificity, the intermediary architectural level of Fog computing has been considered for this class of systems. The
paper presents a solution for implementing this architectural extension to a current, cloud-oriented pilot IoT platform. The
theoretical background on which this solution is based includes as its main topics the Fog computing, the Edge analytics
and the Publish/subscribe interaction model. Based on their analysis, the architecture extension requirements specific to
each topic are detailed. The adopted approach combines features and functionalities of both content-based and topic-based
publish/subscribe models, with the aim to promote Edge Analytics principles by moving computation closer to where data
resides and providing required performance for data-in-motion analysis.

Keywords: Fog computing, Edge analytics, Internet of Things, Health monitoring, Publish/subscribe interaction model,
Subscription matching, Event delivery architecture.

1. Introduction

Fog computing, a distributed computing paradigm
proposed by Enterprise Networking Labs of
Cisco Systems [6], extends Cloud computing
and services to the edge of the network. A more
recent definition emphasizes the connection to the
cloud [19]: “Fog computing is a geographically
distributed computing architecture with a resource
pool that consists of one or more ubiquitously
connected heterogeneous devices (including
edge devices) at the edge of network and not
exclusively seamlessly backed by cloud services,
to collaboratively provide elastic computation,
storage and communication (and many other new
services and tasks) in isolated environments to a
large scale of clients in proximity”.

Before IoT emerged, the specifics of data intensive
and Big Data analytics applications consisted in
moving the data to the location where processing
and storing took place. This paradigm is working
well where large volumes of historical data or
static data are involved, like for example, batch
processing seismic or satellite image data. It also
works for cases where data transmission requires
low bandwidth and not real time.

The IoT system specific use cases imply that
sensors or smart devices that monitor variables
like temperature, humidity, vibration, acceleration
or numerous others, generate data that need to be
handled by back-end systems very fast and very
often (e. g. every millisecond). This huge amount of
data streaming from things could saturate networks,
or exceed storage and processing capabilities.

http://www.sic.ici.ro

66 Vladimir Florian, Gabriel Neagu

Intel SoC and runs a Linux operating system. The
applications running on these devices, typically,
acquire some data from connected sensors or
devices, pre-process this data, and send it to a
Cloud or enterprise server for further processing
and/or storage.

The development of IoT systems has enabled a
new class of applications with real time processing
and high data transfer rates requirements. These
applications collect the individual streams of data
generated by IoT connected devices in order to
gain important insights, optimize processes, etc.
To cope with inherit heterogeneity of devices,
platforms and services, specific to IoT systems,
data oriented architectural solutions have been
proposed, based on the IoT data cycle. An
example is the Data Tweet architecture, which
implement four generic services: data collection,
data dissemination, data consumption, and
configuration management [9].

In health monitoring, due to the fact that unlabeled
and continuous data are usually dealing with,
the data mining tasks must be preceded by pre-
processing such as: data cleaning, noise removing,
data filtering and compressing as a part of any
physiological data monitoring framework [4].

The aim of the paper is to present a solution
for the extension of the current, cloud oriented
architecture of a pilot IoT platform for health
monitoring [18], according to the above mentioned
architectural trend. The current pilot belongs to
the context-aware platforms, integrating three
emergent technologies (Wireless Sensor Networks,
Internet of Things and Cloud Computing) [13].

The remaining part of the paper is organized as
follows: Section 2 presents the main theoretical
background topics that were considered for to
achieve the above mentioned aim: Fog computing,
Edge analytics and Publish/ subscribe Interaction
Model. On this basis, Section 3 synthesizes the
extension requirements for the IoT platform
architecture. The proposed extension solution is
presented in Section 4. In the framework provided
by the publish/subscribe model two additional
architectural sub-layers are detailed: content-based
matching and event delivery. Some concluding
remarks are included in the final section.

2. Theoretical Background

2.1 Fog Computing

Fog computing services are situated between
end devices and the Cloud, offering various

benefits such as low latency, location awareness
and mobility support. Fog and Cloud use the
same resource types (networking, compute, and
storage), and the same mechanisms and attributes
(virtualization, multi-tenancy, containerization)
[5]. However, there exist some fundamental
differences. Fog addresses applications and
services that do not fit well the Cloud paradigm,
benefitting more from computing and storage
distribution simultaneously with using Core
Cloud services.

The Fog computing model supports very well IoT
applications, characterized by latency constraints
and requirements for mobility and geographical
distribution [6].

From architectural and system perspective, the
Fog is a complex, highly virtualized, distributed
infrastructure encompassing several vertical levels
[5], comprising a number of Fog nodes. These
are heterogeneous resources (servers, embedded
systems, edge routers, access points, set-top
boxes), with a wide variety of hardware and
software capabilities, placed between end devices
and traditional Cloud computing Data Centers.

A Fog computing platform provides compute,
storage and networking services supporting
various communication protocols, various end
devices such as sensors, actuators or mobile
phone sensors, with heterogeneous interfaces
and ensuring integration with the Cloud [8].
The components of a Fog based application are
running on the Fog nodes as well as on edge
devices [16], between sensors and the Cloud (i.e.
on smart gateways, routers or other dedicated Fog
devices)(Figure 1).

Figure 1. The Fog conceptual architecture

In contrast with Cloud computing, where resources
are deployed and managed in a centralized

	 67

ICI Bucharest © Copyright 2012-2018. All rights reserved

Towards an IoT Platform with Edge Intelligence Capabilities

mode, paper [6] points out that because the geo-
distributed nature of the sensor placement, there
is a need for a distributed intelligent platform
at the Edge able to provide management and
orchestration mechanisms.

The Fog software architecture components can be
included in one of the following functional layers:

-- Fog Abstraction Layer [5]. It hides the
underlying platform heterogeneity, ensuring
uniform and transparent access to resources
for monitoring and management. It relies
on virtualization technologies and exposes
specialized APIs.

-- Orchestration Layer and Policy-based
services [10]. It contains several components
for data management and sharing across
the Fog platform and for dynamic service
orchestration. The orchestration concerns
the management of the life-cycle of services
and policy based security management. This
layer provides a specialized Data API and an
Orchestration API through which supports
data aggregation, decision making, data
sharing and migration. Based on these, core
analytics and intelligence services can be
further implemented.

-- Service Verticals Layer [5]. The Service
verticals are domain specific applications
residing on the platform and functioning in
multi-tenancy mode.

The concrete implementation of the Fog (Figure
1) is organized as a hierarchical structure (tree
or connected graph), composed of interconnected
“Fog nodes”, which exist at many layers of the
hierarchy forming a rich interconnect topology
with links between themselves, to smart objects
and to Cloud layers.

A node is a heterogeneous virtualized component,
scalable and adaptable, deployable in a variety
of environments. It can be configured to perform
specific functions, required at the various
levels of the hierarchy. Fog nodes lower in the
network hierarchy (closer to the endpoints)
could have relatively simple hardware and
software configurations and modest capacity and
performance specifications, while those higher in
the hierarchy (closer to the Cloud) could be more
complex, with performance equal to high-end
servers and high bandwidth networking equipment.

2.2 Edge Analytics

Edge analytics is an approach to data collection and
analysis in which some analytical computation is
performed on data at sensors and other in-network
devices instead of sending it to a centralized data
store. Edge analytics introduces an additional
layer of intelligence and automation where the
data is created, at the edge of the network. So,
decisions on what information is worth sending
upwards into a cloud or on-premises data store
for later use can be taken. The advantages of this
approach include:

-- Reduction of network bottlenecks
and congestions;

-- Faster response times, enabling real-time
analysis and decision-making, by analyzing
data as it are generated;

-- Greater scalability, by pushing analytics
algorithms to sensors and network devices it
is easy to maintain performance, even as the
number of connected devices being deployed
in the network and the amount of data being
generated and collected increases;

-- Big Data Analytics is performed on
actionable data (ingested data is filtered and
only necessary data is analyzed or sent on for
further analysis);

-- Reduction of the risk to personal privacy by
limiting data exposure through embedding of
raw data processing at the sensing points.

2.3 Publish/subscribe Interaction Model

A typical publish/subscribe system is based on
a loosely coupled, communication model that
provides a spatial, temporal, and synchronization
decoupling between publishers and subscribers.
Publishers generate events called publications.
Information is transferred in form of notifications
following the production of events. Subscribers
register their interest in an event, or a pattern
of events, and are subsequently asynchronously
notified of events generated by publishers.
Event delivery consists in finding the interested
subscribers and sending them appropriate
notifications about those events. It relies on an
event notification service providing storage
and management for subscriptions and efficient
delivery of events [11]. It acts as a neutral
mediator between publishers, acting as producers
of events, and subscribers, acting as consumers.

http://www.sic.ici.ro

68 Vladimir Florian, Gabriel Neagu

The Event Service or Notification Service
basically realizes the followings: (i) stores all
the subscriptions associated with the respective
subscribers, (ii) receives all the notifications
from publishers and (iii) dispatches the published
notifications to the correct subscribers [17]. In
case of distributed implementation, it is composed
of a set of nodes distributed over a communication
network usually using an overlay network
of brokers as a substrate [3]. The publishing
and subscription calls are processed by any of
the brokers that share the load of managing
subscriptions and publications.

By decoupling of message sources and destinations
the publish/subscribe interaction pattern provides
scalability as it can handle vast amounts of
publishers (data sources) and subscribers (data
sinks) [11]. Additionally it can provide a control
of data flowing from the end node devices in the
platform to the processing components.

The performance of a publish/subscribe system
is determined by the manner it solves two related
problems: the matching between the events and
subscriptions, and event delivery [3]. Event-
subscription matching is the problem of finding all
the subscriptions that match a given notification,
especially to efficiently match large numbers
of events and subscriptions. Event delivery is
the task of delivering the notification to the set
of interested subscribers selected by matching.
This implies the routing of messages through
the system and delivering them to subscribers
ensuring certain Quality of Service requirements.

Different ways for specifying the notifications of
interest have led to the identification of several
subscription models providing different levels
of expressiveness for subscriptions. Depending
on the subscription model used publish/
subscribe systems can be classified into three
broad categories: topic-based, subject-based and
content-based schemes.

Topic-based and subject-based publish/ subscribe
models enable information consumers to register
to a set of predefined topics organized into a
hierarchy. Most of the presently implemented
open source messaging systems can be broadly
categorized as topic-based. These provide
mechanisms to identify a subject (topic) and to
maintain a list of subscribers for that subject.
When events occur, they notify each subscriber on
the subscription list. They are based on standards

and protocols for message passing at “Session
layer” (MQTT, AMQP, DDS, etc.), proposed by
different standardization organizations. They are
IP applications and use TCP or UDP as Transport
layer standard protocols.

The content-based publish/subscribe model (or
property-based [11]), introduces a subscription
scheme based on the actual content of the
published messages, following an attribute/value
schema. In other terms, events are not classified
according to some predefined external criterion
(e.g., topic name), but according to the properties
of the events themselves.

In a topic-based system, processes exchange
information through a set of predefined subjects
(topics) which represent many-to-many distinct
(and fixed) logical channels. In a content-
based system, messages are only delivered to a
subscriber if the attributes or content of those
messages match constraints defined by the
subscriber. The subscriber is responsible for
classifying the messages.

Content-based publish/subscribe systems allow
more flexibility in specifying subscriber interests
as subscriptions are related to specific information
content. Subscriptions specify filters on event
contents. Only those events with attributes
matching the filters are delivered to the subscriber.
Thus, it becomes possible the implementation
of distributed hierarchical publish/subscribe
mechanisms. Based on these, messages can
intelligently be routed to their final destination
based on their content. On the intermediate nodes
of the hierarchy several in-network processing and
data filtering algorithms can be embedded.

However, the complexity of content-based
event-subscriber matching requires sophisticated
subscription management strategies to be
implemented. Consequently, the routing only of
the filtered events is preferred. Therefore, the
overhead for subscription processing and event
matching is considerably higher in content-based
matching than in topic-based matching.

Event routing is the core mechanism behind a
distributed publish/subscribe system [3]. The
event routing algorithms used have to provide
performance and scalability. That is, an increase
of the number of brokers, subscriptions and
publications should not cause a substantial
degradation of performance.

	 69

ICI Bucharest © Copyright 2012-2018. All rights reserved

Towards an IoT Platform with Edge Intelligence Capabilities

Event delivery, in the case of content-based
publish/subscribe system, is a problem of
multicasting publications to interested subscribers
when the set of destination hosts can change
with every message, i. e. dynamic multicasting.
Solving this problem becomes more difficult if
the system has to scale to support a large number
of publishers, subscribers and events.

3. Architecture Extension
Requirements

The essential features that must be implemented
by an ideal Fog computing platform for IoT
applications have been emphasized in [14]. These,
could be summarized as following.

-- dynamic discovery of Internet objects;

-- dynamic configuration and device management;

-- multi-protocol support both at communication
level and application level;

-- support for mobility of gateway devices and
temporary connections among the gateways
and the smart objects (devices) on the edge;

-- multi-source and heterogeneous data
management capabilities;

-- context discovery and awareness;

-- capability to use semantic metadata to
annotate a given resource;

-- limited computational capabilities of the
gateway devices (only the most common
data analytical capabilities, such as average,
ignoring outliers, etc.);

-- security and privacy ensuring capabilities;

-- ability to communicate with cloud
IoT platforms.

•	 In order to support the development and
embedding of edge analytics applications the
platform has to:

-- provide capabilities so that IoT devices and
apps can adapt continuously and react locally
to their environments and also to commands
from neighboring devices;

-- enable developers to access, configure, and
adjust the algorithms implemented;

-- be able adapt and accommodate algorithms to
the device size at the IoT edge or at gateways;

-- support execution of all or most IoT
processing locally, reducing or eliminating
the need to round-trip many capabilities back
to cloud-based computing clusters;

-- capability to scale to support the size,
volume, and speed of data from the various
IoT devices;

-- capability to distribute execution of analytic
algorithms dynamically out to disparate edge
devices in order to maximize end-to-end
application speed, throughput, and agility;

From this perspective it becomes obvious that it
is necessary a middleware solution able to fulfill
the various requirements of both simple and
complex Fog nodes, including sensor and also
actuator controllers.

According to [12] the specific requirements a
publish/subscribe system should fulfill to be used
in cloud-based IoT deployments are the followings:

-- Capability to match the publishers and
subscribers based on symbolic addresses and
also to address and contact certain devices;

-- Capability to filter the subscriptions and to
control the expressiveness of the filters; while
a topic-based filtering is mandatory, being
suitable for basic subscriptions to certain
sensors, a content-based scheme is highly
desirable being able to inform on complex
events like thresholds, alarms etc.;

-- Support for QoS; some sensor data messages
might require guaranteed delivery of
messages. The middleware should therefore
enable annotating subscriptions and messages
with QoS requirements;

-- Capability to accommodate various message
formats required by the heterogeneity of the
sensor devices used.

4. Proposed Extension Solution

4.1 Publish/Subscribe Framework

In the IoT context, the objective of data analysis
is to extract information from the low level
sensor data and deliver them to the high level
knowledge representation. Regardless of the
specific algorithms used, a generic architecture for
analytical processing and mining data gathered
from IoT data sources must support several or all
of the following functional capabilities: data pre-

http://www.sic.ici.ro

70 Vladimir Florian, Gabriel Neagu

processing, feature extraction and selection, data
aggregation and modeling or input features learning
[4]. From a technology perspective, this means it is
needed a system that can do the following:

-- Capture data in form of message streams
coming in high volumes and at high velocity;
each message may not be huge in size, but
the throughput can be quite substantial;

-- Ensures the required capacity and scalability
to process these streams and run these
transformations and aggregations very quickly.
Sometimes, it is necessary to access data from
other sources while running the process;

-- Provide quick insight to processing results,
and persist these messages, at scale.

Presently, there is a trend to implement
these functionalities using publish/subscribe
architectural pattern and protocols [12]. In order to
accommodate the Edge analytics model with the
platform, an appropriate publish/subscribe model
has to be adopted.

Therefore, our approach in fulfilling the
architecture extension requirements (see Section
3) is based on principles presented in [15]. They
try to avoid the difficulty to implement a general
optimal solution with a monolithic approach by
solving two sub-problems of the content based
publish/subscribe, separately. It results a layering
of the system, in two sub-layers: content-based
matching and event delivery.

The adopted approach and the architecture
designed (Figure 2), is relying on using as a base
component, a trusted, on the shelf available, topic-
based message broker. For this purpose, several
distributed, massively scalable, extensible message
brokers (servers) open-source solutions are
available. These are able to support both MQTT
V3.1 and V3.1.1 protocol specifications, and at
the same time, other industrial used protocols like:
AMQP, MQTT-SN, CoAP, WebSocket, STOMP,
or SockJS. Such a system is able to manage the
communication tasks for a large number of devices,
including basic requirements of IoT architectures.

For more complex tasks (like edge analytics),
the topic-based message broker is complemented
with a mechanism which transforms the topic
notifications provided as outputs, in complex
event streams. The event streams are matched
with higher level attribute-based subscriptions in

order to detect complex event occurrences. This
matching problem is treated as pattern matching
over event streams.

Figure 2. The proposed extended architecture

4.2 The event stream generation mechanism

A stream generation process is started by a IoT
data producer, usually a sensor, that connects to
the broker, creates a topic and begins acting as a
topic publisher by sending messages to the broker.
Topics are identified by name. Their names look
very similar to URLs. A topic is a simple string that
can have more hierarchy levels, which are separated
by a slash. A sample topic for sending temperature
data from a sensor could be room_no/patient_id/
temperature. The messages send by the publisher
are identified by the publisher id, topic name and
in their payload, contain the actual data that is sent
(in this example temperature value).

Analogously, a stream generation process is
terminated by the sensor that disconnects from
the broker.

The listener component (Figure 2), implemented
as a plugin of the topic-based message broker
intercepts every connect/disconnect message and
triggers the dynamic creation/destruction of an
event stream generator instance. The event stream
generator component acts as a subscriber to the
topic of the corresponding message. It connects
to and receives notifications from the broker. It
attaches time stamps to the notifications received
and transforms them into complex events i. e.
tuples of attribute-value pairs.

The second task of the listener component is to
update the topic registry component whenever a

	 71

ICI Bucharest © Copyright 2012-2018. All rights reserved

Towards an IoT Platform with Edge Intelligence Capabilities

topic is created/deleted. This implies creating and
deleting a corresponding record in the registry for
that topic.

4.3 Complex event matching service

Its objective is to implement a scalable and elastic
event matching service in the Fog computing
environment. Unlike the classical process of
selecting from a large volume of subscriptions
those that successfully match against the occurring
events, the event matching aims to detect previous
subscribed attribute-based patterns (subscriptions)
in the incoming event streams.

Pattern matching over event streams is a
processing paradigm where continuously arriving
events are matched against complex patterns and
the events used to match each pattern are selected
for output. The patterns are formulated as complex
queries that specify constraints on extent, order,
values, and quantification of matching events.

The systems that implement this paradigm are
called Complex Event Processing (CEP) systems.
These match incoming events continuously
against long-running queries that are previously
registered by the user. The CEP model is inverse to
the typical database management model. Whereas
a typical database stores data, and runs queries
against the data, a CEP system stores queries, and
runs data through the queries.

The main techniques which the CEP systems
are based on are: automata, tree structures, and
logic-based rules. The automata based approach
consists in using a SQL like declarative language
to express the patterns which are further compiled
into Nondeterministic Finite State Automata
(NFAs), used by the event processing engine.

Presently, there are a number of open source
implementations of such systems which fulfill
the scalability, fault tolerance and distribution
requirements to be used in implementing the
framework. Prominent examples are SASE+ [1]
and Cayuga [7].

4.4 Event delivery service

This component has a double-sided functionality.
It provides the adaptation interface between the
query/answer synchronous access mode required
by the CEP matching service and the complex

predicate subscriptions coming from the user
applications in asynchronous mode. Also, it
implements the notification of event occurrence
to the subscribing applications. It has to be a
distributed scalable notification service able
to reside on several Fog nodes and to deliver
messages to the subscribers by exposing a content
based publish/subscribe specific API.

The applications are enabled to formulate complex
subscriptions by accessing the Topic Registry.

5. Conclusions

By placing data, processing and services at the
edge of the network instead of entirely in the
Cloud, Fog computing and Edge analytics are able
to support complex features as distributed analytics
and edge intelligence. Thus, efficient applications
for pervasive health monitoring can be developed,
to support smart care decision making (like e. g.:
early predictors and novel biomarkers discovery),
in connected health scenarios.

The research contribution consists in the approach
combining features and functionalities of both
content-based and topic-based publish/subscribe
models in order to provide a solution with high
availability, computational efficiency and greater
expressiveness in specifying and filtering the
event contents.

The approach is considered to be validated within
the effort to further develop the available IoT
pilot platform.

Acknowledgements

This work was supported by the Institutional
research programme PN 1609 “COGNOTIC -
Systems, technologies, methods and models for
knowledge development in ICT” (2016-2017),
project PN 1609-04-01, funded by the Ministry
of Research and Innovation.

http://www.sic.ici.ro

72 Vladimir Florian, Gabriel Neagu

REFERENCES

1.	 Agrawal, J., Diao, Y., Gyllstrom, D. &
Immerman, N. (2008). Efficient pattern
matching over event streams. In Proceedings
of the 2008 ACM SIGMOD International
Conference on Management of Data (pp. 147-
160). ACM.

2.	 Anand, M. (2014). The New Analytics
Imperative. CISCO Blog entry (11.12.2014).
Available <http://blogs.cisco.com/news/the-
new-analytics-imperative>.

3.	 Baldoni, R., Querzoni, L., Tarkoma, S. &
Virgillito, A. (2009). Distributed event routing
in publish/subscribe systems, Middleware for
Network Eccentric and Mobile Applications,
219-244. Springer, Berlin, Heidelberg.

4.	 Banaee, H., Ahmed, M. U. & Loutfi, A. (2013).
Data mining for wearable sensors in health
monitoring systems: a review of recent trends
and challenges, Sensors, 13(12), 17472-17500.

5.	 Bonomi, F., Milito, R., Natarajan, P. & Zhu, J.
(2014). Fog computing: A platform for internet
of things and analytics, Big Data and Internet
of Things: A Roadmap for Smart Environments,
169-186. Springer.

6.	 Bonomi, F., Milito, R., Zhu, J. & Addepalli,
S. (2012). Fog computing and its role in the
internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud
Computing, AMC (pp. 13-16).

7.	 Brenna, L., Demers, A., Gehrke, J., Hong,
M., Ossher, J., Panda, B. & White, W. (June
2007). Cayuga: a high-performance event
processing engine. In Proceedings of the 2007
ACM SIGMOD International Conference on
Management of Data (pp. 1100-1102). ACM.

8.	 Dastjerdi, A. V., Gupta, H., Calheiros, R.
N., Ghosh, S. K. & Buyya, R. (2016). Fog
computing: Principles, Architectures, and
Applications. In Buyya, R. & Dastjerdi, A.
(eds.), Internet of Things: Principles and
Paradigms, 61-75. Morgan Kaufmann,
Burlington, Massachusetts.

9.	 Datta, S. K., Bonnet, C., Da Costa, R. P. F.
& Jérôme Härri, J. (2016). DataTweet: An
Architecture Enabling Data-Centric IoT
Services. In Proceedings of the IEEE Region
10 Symposium (TENSYMP), 9-11 May 2016,
Sanur, Indonesia (pp. 343-348).

10.	 Dsouza, C., Ahn, G.-J. & Taguinod, M. (2014).
Policy-driven security management for fog

computing: Preliminary framework and a case
study. In Proceedings of the IEEE Conference
on Information Reuse and Integration (IRI)
(pp. 16-23).

11.	 Eugster, P. T., Felber, P., Guerraoui, R. &
Kermarrec, A.-M. (2003). The many faces of
publish/subscribe, ACM Computing Surveys,
35(2), 114-131.

12.	 Happ, D., Karowski, N., Menzel, T., Handziski,
V. & Wolisz, A. (2016). Meeting IoT Platform
Requirements with Open Pub/Sub Solutions,
Annals of Telecommunications, 72(1), 41-52.

13.	 Merezeanu, D., Vasilescu, G. & Dobrescu, R.
(2016). Context-aware Control Platform for
Sensor Network Integration in IoT and Cloud,
Studies in Informatics and Control, 25(4),
489-498.

14.	 Perera, C., Qin, Y., Estrella, J. C., Reiff-
Marganiec, S. & Vasilakos, A. V. (August
2017). Fog computing for sustainable smart
cities: a survey, ACM Computing Surveys,
50(3), article no. 32.

15.	 Raiciu, C., Rosenblum, D. S. & Handley, M.
(December 2006). Revisiting content-based
publish/subscribe. In Proceedings of the Int.
Conference on Distributed Computing Systems
Workshops (ICDCSW) (pp. 19-25). IEEE
Computer Society.

16.	 Tordera, E. M., Masip-Bruin, X., Garcia-
Alminana, J., Jukan, A., Ren, G.-J., Zhu, J. &
Farre, J. (2016). What is a Fog Node A Tutorial
on Current Concepts towards a Common
Definition, arXiv preprint, arXiv:1611.09193.

17.	 Virgillito, A. (2003). Publish/subscribe
communication systems: from models to
applications, Ph.D. Thesis in Computer
Engineering. Università degli Studi di Roma
“La Sapienza”, Dipartimento di Informatica e
Sistemistica, Roma.

18.	 Yi, S., Hao, Z., Qin, Z. & Li, Q. (2015). Fog
computing: Platform and Applications. In
Proceedings of the Third IEEE Workshop on
Hot Topics in Web Systems and Technologies
(HotWeb), 12-13 Nov. 2015, Washington (pp.
73-78).

19.	 Zamfir, M., Florian, V., Stanciu, A., Neagu,
G., Preda, S. & Militaru, G. (2016). Towards
a Platform for Prototyping IoT Health
Monitoring Services. In: Proceedings of the
IESS 2016 Conference, Book series: Lecture
Notes in Business Information Processing, 147
(pp. 522-533). Springer.

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_Hlk497614700
	_Hlk505778092
	GrindEQpgref59f4cc342
	GrindEQpgref59f4cc343
	_Hlk505298614
	GrindEQpgref59f4cc348
	GrindEQpgref59f4cc349
	GrindEQpgref59f4cc3410
	GrindEQpgref59f4cc3411
	GrindEQpgref59f4cc3412
	GrindEQpgref59f4cc3413
	GrindEQpgref59f4cc3414
	GrindEQpgref59f4cc3415
	GrindEQpgref59f4cc3416
	GrindEQpgref59f4cc3417
	GrindEQpgref59f4cc3418
	GrindEQpgref59f4cc3419
	GrindEQpgref59f4cc3420
	GrindEQpgref59f4cc3421
	_Hlk505779573
	_Hlk505779648
	_GoBack
	_GoBack
	OLE_LINK13
	OLE_LINK14
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK23
	OLE_LINK24
	OLE_LINK15
	OLE_LINK16
	OLE_LINK4
	OLE_LINK5
	OLE_LINK19
	OLE_LINK20
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_GoBack
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_GoBack
	_GoBack
	_GoBack
	_Ref507614518
	_Ref501653945
	_Ref501615680
	_Ref507614877
	_GoBack
	_Ref501736753
	_Ref501654657
	_Ref501654686
	_Ref501654121
	_Ref501960608
	_Ref501656240
	_Ref501617825
	_Ref501654748
	_Ref501618068
	_Ref501657773
	_Ref501618932
	_Ref501615645
	_Ref501617587
	_Ref501748318
	_Ref501652873
	_Ref501619465
	_Ref501657837
	_Ref507614749
	_Ref501657792
	_Ref507614685
	_Ref501657822
	_Ref501618445
	_Ref501618324
	_Ref501652960
	_Ref501615657
	_Ref501615690
	_Ref501960737
	_Ref501657810
	_Ref501618202
	_Ref501617691
	_Ref501619472
	_Ref501748054
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	baep-author-id9
	baep-author-id10
	baep-author-id11
	_GoBack
	_Hlk508353157
	_Hlk508353158
	_Hlk508353161
	_Hlk508353162
	_Hlk508353164
	_Hlk508353165
	_GoBack
	_Hlk509230735
	_GoBack

