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1. Introduction

Due to the structure simplicity and the capability 
to control almost all processes, the PID controllers 
are the most widely used in industrial applications 
despite the recent advances in information 
technology and computer science (Marlin, 1995; 
Brosilow and Joseph, 2002; Liu et al., 2005; Chia 
and Lefkowitz, 2010; Visioli and Zhong, 2011, 
Jin and Liu, 2014). For many complex processes 
(especially with time delay, with overshoot or of 
nonminimum phase), the PID controllers cannot 
achieve a very good control performance. In 
addition, there is not a simple and intuitive method 
of controller tuning (Ziegler and Nichols, 1942; 
Garcia and Morari, 1982; Duma et al., 2011; 
Nicolau, 2013; Singh et al., 2014). The proposed 
control algorithm is inspired from the internal 
model control (IMC) concept, which states that 
an accurate control can be achieved if the control 
system encapsulates a representation of the 
controlled process (Francis and Wonham, 1976; 
Bengtsson, 1977; Garcia and Morari, 1982; Rivera 
et al., 1986; Horn et al., 1996).

In any IMC structure, the process and its model 
are connected in parallel so that the difference 
between their outputs comes back to the internal 
controller. The overall controller of an IMC 
structure is parameterized as follows 

( )
( )

1 ( ) ( )C
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Q s
G s

Q s G s
=

− ,
                                   

(1)

where ( )M sG  is the transfer function of the 
process model and ( )sQ  is the transfer function 
of the internal controller. In the IMC strategy, 

( )sQ  is an approximate inverse of the model 
transfer function, which includes a suitable filter 
to guarantee the controller properness. The filter 
time constant is the main tuning parameter of the 
overall controller. 

Despite its advantages, the IMC strategy did not 
become a strong practical alternative to the PID 
strategy (Normey and Camacho, 2007; Saxena and 
Hote, 2012; Vanavil et al., 2014; Cirtoaje, 2017) 
because of the multitude of model variants that 
depend on the process type (linear or nonlinear, 
with or without overshoot, with or without 
oscillations, of minimum or nonminimum phase, 
of proportional or integral type, stable or unstable 
etc.). The proposed control algorithm removes this 
disadvantage by using a unique model structure 
which is associated either with the original process 
to be controlled (if it is stable and of proportional 
type) or with the compensated process (if the 
original process is of integral type or unstable). 

In the last years, many publications have 
presented various tuning techniques of IMC based 
PID controllers for different types of process 
(Brosilow, 2002; Nageswara and Padma, 2010;  
Jin and Liu, 2014; Singh et al., 2014; Vanavil et 
al., 2014; Santosh and Padma, 2016; Ghousiya et 
al., 2017). In our opinion, the control performance 
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derived by using IMC based PID algorithms is 
generally weaker that the one obtained by using 
control algorithms of genuine IMC type.

The general structure of a linear closed-loop control 
system is shown in Figure 1, where PG is the 
process transfer function, CG - controller transfer 
function, Y - controlled variable, U - control 
(manipulated) variable, R - reference  (setpoint), 
E - the control error and V - the load disturbance. 

Figure 1. Block diagram of a closed-loop control 
system

The transfer functions between the controlled 
variable Y  and the input variables R  and V  are 
given by
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(2)

From

( ) ( ) 1YR YVG s G s+ = ,		                       (3)

it follows that the response ( )y t  to a unit step 
reference and the response ( )vy t  to a unit 
step disturbance added to the process output  
are complementary: 

( ) ( ) 1vy t y t+ = .		                                       (4)

According to (4), it is not necessary to analyze the 
control performance of the closed-loop system to a 
step disturbance; it suffices to determine only the 
response ( )y t  to a step reference.

The design of the proposed algorithm starts from 
the idea to find a model-based control structure 
so that, for any process of P1-type (whose input 
step response is monotone and finite), the control 
response ( )u t  to a step reference has a step shape 
(or close to this form) and removes the steady-
state error. Then, this structure is connected in 
series with a proportional block with the gain K
, so that the controller response to a step reference 
has the initial value K  times its final value. In 
this found form (called primary or standard form), 
the designed algorithm can be applied to control 

any stable proportional process (with finite and 
nonzero steady-state gain). Using the compensated 
process concept (Cirtoaje, 2006; Yamada, 2006; 
Nguyen et al., 2013; Vazquez Guerra, 2016), the 
control algorithm is extended to control integral-
type processes and unstable processes. Thus, 
the extended form of the proposed algorithm is 
a quasi-universal P-IMC (proportional-internal 
model control) algorithm, which has the capability 
to control almost all process types. In addition, 
the model parameters can be online verified and 
adjusted to improve the model accuracy.

The structure and the form of the controller 
equations don’t depend on the process to be 
controlled. This is possible because the embedded 
model addresses the compensated process, which 
is always stable and of proportional type. 

A control gain with standard value 1 is used as 
tuning parameter, which is more agreeable for 
the process human operator than the filter time 
constant from the usual IMC algorithms. 

Six applications in MATLAB/SIMULINK 
environment are presented for the main types 
of processes to show the tuning procedure, the 
control performance and the robustness to the 
model uncertainty.

The paper is arranged as follows. Section 2 
presents the primary form of the proposed 
algorithm, which can be applied to control stable 
proportional processes with or without time 
delay, overshoot and oscillations, of minimum or 
nonminimum phase. Section 3 extends the control 
algorithm to integral processes and to some 
unstable processes. In addition, four applications 
are given in Section 2, and two applications in 
Section 3. Concluding observations and future 
research project are presented in Section 4.

2. Primary form of the control 
algorithm

The purpose of this section is to present the 
theoretical fundamentals and some practical 
results of the primary variant of the proposed 
control algorithm, and how this variant can be 
used to control stable proportional processes with 
or without time delay, overshoot and oscillations, 
of minimum or nonminimum phase. 
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2.1 Theoretical basis

The transfer function between the control variable 
U  and the reference input R  (see Figure 1) is 
given by

( )
( )

1 ( ) ( )
C

UR
C P

G s
G s

G s G s
=

+ .
                                

(5)

Consider first a stable proportional process with the 
steady-state gain PK , and assume that the closed-
loop system response ( )u t  to a unit step reference is 
a step function of magnitude 1/ PK . This condition 
(that involves zero steady-state error), equivalent to

1
( )UR

P
G s

K
=

              		                       
(6)

and

1
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(7)

leads to the following practical controller 
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M M

K
G s

K G s
=

− ,
		                       

(8)

where ( )MG s  is the transfer function of the  
process model, MK - model steady-state gain,  K
- tuning gain with  standard value 1 (that can be 
used by the process operator to make the control 
action stronger or weaker). Because (0)M MK G=
, the controller transfer function (8) has a pole at 
the origin, therefore the controller is of integral-
type. Consequently, if the closed-loop system is 
stable, then it has zero steady-state error to a step 
reference or disturbance. The form below of the 
controller transfer function (8) ,

1

( ) ( )
1

M
C

M

M

KG s K G s
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−

,

	         

(9)

 

leads to an algorithm structure of P-IMC type 
(see Figure 2), that is a series connection between 
a pure proportional element and a closed-loop 
IMC structure. If the ratio / MK K  is constant, 
then the process response ( )y t  to a step reference 
remains unchanged for any set value of the model 
gain MK . 

Figure 2. Primary structure of the control algorithm

A second-order model with double lag time 
constant plus time delay has the transfer function
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(10)

Such a model can describe with sufficient 
accuracy a P1-type process (with monotone and 
bounded step response). In our opinion, a first-
order model is too simple and cannot describe 
the process sluggishness, while a second-order 
model with two distinct lag time constants or a 
third order model are too complicated to be used 
for increasing the model accuracy. The model 
parameters MK , Mτ  and MT  can be easily 
determined from the process response to a step 
input u . Clearly, the experimental procedure 
requires the process to be in a steady-state 
behavior before changing the input u . The model 
time constant MT  depends on the model transient 
time trMT  as follows:

5.83 5.83
trM trP

M
T T

T = ≈ ,
	                               

(11)

where trPT  is the transient time of the process 
response ( )y t  to a step input u  (that does not 
include the time delay); more precisely,

1trP PT t τ= − ,		                                (12) 

where Pτ  is the process time delay, and 1t  is 
the process settling time (when the response y  
reaches 98 %  of  its final value). 

The discrete equivalent of the model (10) has the 
transfer function

0
12

/
1 2

(1 )
( ) , , (13)

(1 )
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M
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− −
−

−
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−

where T  is the sampling time and Ml - the integer 
value of the ratio between the model time delay 
and the sampling time:

M
Ml T

τ =  
.
		                               

(14)
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The initial value (0 )u +  and the final value ( )u ∞  
of the closed-loop system response ( )u t  to a unit 
step reference are

 
(0 )

M

K
u

K+ = ,
     

1
( )

P
u

K
∞ = .

                     
(15)

In addition, the response ( )u t  keeps its initial 
value / MK K  on the time interval [0, ]Mτ . By 
increasing/decreasing the tuning gain K , the 
process operator can make the control action 
stronger/weaker. 

For 1K = , the initial and final values of the 
control response ( )u t  to a unit step reference are 

(0 ) 1/ Mu K+ = , ( ) 1/ Pu K∞ = . If M PK K= , then the 
initial value  (0 )u +  and the final value ( )u ∞  are 
equal. Moreover, for 1K =  and a perfect model 
with ( ) ( )M PG s G s= , the response ( )u t  is a step 
function of magnitude 1 / PK , i.e.  

1
( ) 1( )

P
u t t

K
= ⋅ ,

	    
(16)

where 1( )t  is the unit step function. Since the 
process model is not perfect, the response ( )u t   
to a step reference change r∆  is not a perfect 
step function. Assume further that 1K = , 0PK >  
and 0r∆ > .

If the model steady-state gain MK  differs from 
the process steady-state gain PK , then the closed-
loop system response ( )u t  to a step reference has 
the initial value (0 )u +  different from its steady-
state value ( )u ∞ ; more precisely, (0 ) ( )u u+ > ∞  for 

M PK K< , and (0 ) ( )u u+ < ∞  for M PK K>  (see 
Figure 3). 

If the model time delay Mτ  differs from the 
process time delay Pτ , then ( )u t  has a deviation 
from the step form immediately after the time 

0t , where 0 ,min { }P Mt τ τ= . This deviation is 
positive for M Pτ τ<  and negative for M Pτ τ>  
(see Figure 4).  

For M PK K≈  and M Pτ τ≈ , if the model transient 
time trMT  differs from the process transient time 

PtrT , then ( )u t  has a deviation from the step 
form in a time zone with Mt τ> . The deviation 
is positive for trPtrM TT <  and negative for 

trPtrM TT >  (see Figure 5). 

In conclusion, if the closed-loop system response 
( )u t  to a step reference is larger/smaller than 

the ideal step form of magnitude 1/ PK , then the 
respective parameter of the model need to be 
suitably increased/decreased.

Even if MK , Mτ  and trMT  have the best 
values, the model (10) is not perfect, therefore 
the  response ( )u t  has not a perfect step form, 
but is both above and below the step graph so 
that the maximum deviation from the step graph 
is minimum. 

Figure 3. Closed-loop system responses ( )u t  to a 
step reference for various values of MK

Figure 4. Closed-loop system responses ( )u t  to a 
step reference for various values of Mτ

Figure 5. Closed-loop system responses ( )u t  to a 
step reference for various values of trMT

By studying carefully the response ( )u t  to a step 
reference for 1K = , the process operator can 
adjust online the model parameters to improve 
the process model. First, he adjusts the model 
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steady-state gain MK  so that the initial value 
and the final value of u  become close to each 
other, then the model time delay Mτ  and, finally, 
the model transient time trMT  - so that the 
deviation of u  from the step form in the transient 
zone of the response is minimum. In practical 
applications, to have a good control performance, 
it is not necessary to set the best values of the 
process model (10); it suffices to have only an 
approximate model.

For a suitable model, the closed-loop system 
responses ( )u t  to a reference step for different 
values of the controller gain K  are shown in Figure 
6. If K  is larger/smaller, then the system response 
u  is also larger/smaller on the first time interval, and 
the control action is stronger/weaker. In addition, 
the response u  holds its initial value / MK K  on 
the time interval [0, ]Mτ . For this reason, a large 
K  provides a strong control action for processes 
with large time delay. As a consequence, the system 
response u  to a reference step is never very sharp 
(as in the case of the IMC algorithms), and a low-
pass reference filter is not necessary.

Figure 6. Closed-loop system responses ( )u t  to a 
step reference for various values of K

Remark 2.1. The control algorithm can also be  
used to control stable proportional processes 
of nonminimum phase. For this, it suffices to 
consider that the process time delay Pτ  covers 
the time interval where the sign of the process 
response to a step input is contrary to the sign of 
its final value.

Remark 2.2. The control algorithm can be 
used to control stable proportional processes 
with overshoot 0σ > . The basic idea is to use a 
model steady-state gain larger than the process 
steady-state gain ( M PK K> ), so that the control 
response u  to a step reference has a smaller initial 

value to reduce or to vanish the overshoot of the 
closed-loop system. More precisely, assuming 
that the step process response ( )y t  reaches its 
maximum value (1 ) ( )yσ+ ∞  at the time 0t , 
the recommended values of the process model 
parameters are the following:

 

(1 )M PK Kσ= + ,                                            (17)

M Pτ τ= ,                                                        (18)

0trM t PT τ= − .                                               (19)

These formulae can be obtained by approximating 
the process with the one whose step input response 
remains constant for 0t t≥ . 

2.2 Simulation results 

In this subsection, four applications for different 
types of linear proportional processes are 
presented: a process with monotone response to a 
step input, a process of non-minimum phase, an 
oscillatory process and a non-oscillatory process 
with overshoot.

Application 2.1. Consider the proportional process

61.5(2 1)
( )

(6 1)(10 1)(15 1)

s

P
s e

G s
s s s

−+
=

+ + +

whose response to a unit step input is monotone 
and finite (see Figure 7). From the process 
response, it is easy to determine the following 
model parameters:

1.5MK = ,   
9Mτ = , 

1 89 9 80trM PT t τ= − − = .

Figure 7. Process response to a unit step input
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The closed-loop system responses y  and u  to a 
unit step reference are illustrated in Figures 8 and 
9 for 0.7; 1; 1.3; 2K = . The control performance 
is suitable for 1.3K = , too slow for 0.7K =  and 

1K = , and too strong for 2K = . The closed-loop 
system is stable for 5.35K < .

Since the control response ( )u t  for 1K =  is close 
to a step shape (see Figure 9), it follows that the 
model parameters have been suitably chosen, 
and the model (10) of second-order with double 
lag time constant plus time delay describes the 
process sluggishness with sufficient accuracy. 

  

Figure 8. Responses ( )y t  to a unit step reference for 
0.7K = ; 1 ; 1.3 ; 2

Figure 9. Responses ( )u t  to a unit step reference for 
0.7K = ; 1 ; 1.3 ; 2  

Figures 10, 11 and 12 illustrate the closed-loop 
system responses ( )y t  to a unit step reference 
for 1.3K =  and different values of the model 
parameters. The responses show a high robustness 
of the control algorithm with respect to each of the 
parameters MK , Mτ  and trMT . The closed-loop 
system is respectively stable for 0.364MK > , for 
all 0Mτ >  and for 8.4trMT > . 

  

Figure 10. Responses ( )y t  to a unit step reference 
for 9Mτ = , 80trMT =  and 2MK = ; 1.5 ; 1

  

Figure 11. Responses ( )y t  to a unit step reference 
for 1.5MK = , 80trMT =  and 15; 9; 0Mτ =

    

Figure 12. Responses ( )y t  to a unit step reference 
for 1.5MK = , 9Mτ =  and  99trMT = ; 80 ; 60

Figures 13 and 14 illustrate the closed-loop system 
responses ( )y t  for various values of the model 
parameters Mτ  and trMT , and for the best values 
of the tuning parameter K . We see that the control 
performance remains high even for wrong settings 
of Mτ  and trMT . For 1.8K =  and the wrong 

15Mτ =   (response A in Figure 13), the control 
performance is better than the one for 1K =  
and the wrong 5Mτ =   (response C), and even 
than the one for 1.3K =  and the correct 9Mτ =  
(response B). Also, for 1.67K =  and the wrong 

99trMT =   (response A in Figure 14), as well as for 
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0.82K =  and the wrong 65trMT =   (response C), 
the control performance is comparable to the one 
for 1.3K =  and the correct 80trMT =   (response 
B). As a general recommandation, it is better to 
choose M Pτ τ>  than M Pτ τ< , and trM trPT T>  
than trM trPT T< .

Figure 13. Responses ( )y t  to a unit step reference 
for  (A): 15Mτ = , 1.8K = ;  (B): 9Mτ = , 1.3K = ;   

(C): 5Mτ = , 1K =

Figure 14. Responses ( )y t  to a unit step reference 
for (A): 99trMT = , 1.67K = ; (B): 80trMT = ,

1.3K = ;  (C): 65trMT = , 0.82K =

The control performance is better than the one 
achieved with a PI controller 

1
( ) 1PI R

i
G s K

T s
 = + 
  .

This follows from Figure 15, which shows 
the responses ( )y t  to a unit step reference 
for 0.2, 0.3, 0.4RK =  and the best values 
of the integral time constant, namely  

10.5, 14, 20,iT =  respectively. 

Figure 15. Responses ( )y t  to a unit step reference 
for a PI controller with   (A): 0.2RK = , 10.5iT = ;  
(B): 0.3RK = , 14iT = ;   (C): 0.4RK = , 20iT =

Application 2.2. Consider the proportional process 
of nonminimum phase

3( 8 1)
( )

(5 1)(10 1)(15 1)

s

P
s e

G s
s s s

−− +
=

+ + + .

From the process response to a unit step input 
in Figure 16, we get the following values of the 
model parameters:

1MK = ,  18Mτ = ,  

1 85 18 67trM PT t τ−= ≈ − = . 

The closed-loop system responses to a unit step 
reference are shown in Figures 17 and 18. A good 
control performance is achieved for 1.1K = . 
The closed-loop system is stable for 3.19K < . 
Since the control response ( )u t  for 1K =  is close 
to a step shape, the model (10) describes with 
sufficient accuracy the process sluggishness. 

Figure 16. Process response to a unit step input
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Figure 17. Responses ( )y t  to a unit step reference 
for 0.8K = ; 1 ; 1.1; 2

Figure 18. Responses ( )u t  to a unit step reference 
for 0.8K = ; 1 ; 1.1; 2

Application 2.3. Consider the oscillatory process

6

2
1.5(2 1)

( )
(4 1)(5 1)(36 2.35 1)

s

P
s e

G s
s s s s

−+
=

+ + + + .

From the unit step process response in Figure 19, 
one gets 

1.5PK = ,  

9Pτ = ,  

33% 1/ 3σ = ≈ , 

0 32t = ,

therefore

(1 ) 2M PK Kσ= + = ,  

9Mτ = ,  

0 32 9 23PtrMT t τ= − = − = .

Figure 19. Process response to a unit step input

Figures 20 and 21 show the closed-loop system 
responses ( )y t  and ( )u t  to a unit step reference 
for 0.4K = , 0.63K =  and 1K = . The transient 
response ( )y t  for 0.63K =  is sufficiently good 
for the given process. The closed-loop system is 
stable for 1.22K < .

 

Figure 20. Responses ( )y t  to a unit step reference 
for 0.4K = ; 0.63 ; 1

Figure 21. Closed-loop system responses ( )u t  to a 
unit step reference for 0.4K = ; 0.63 ; 1

Application 2.4. For the non-oscillatory process 
with overshoot
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61.5(20 1)
( )

(4 1)(5 1)(6 1)

s

P
s e

G s
s s s

−+
=

+ + +  ,

from the unit step response in Figure 22, we get

1.5PK  ,   6Pτ  ,   

49% 0.49σ ≈ = ,   0 18t = ,

therefore

(1 ) 2.23M PK Kσ= + ≈ ,    6Mτ = ,     

0 18 6 12PtrMT t τ= − = − = .

Figure 22. Process response to a unit step input

Figures 23 and 24 illustrate the closed-loop system 
responses y  and u  to a unit step reference for 

1K = , 0.88K =  and 0.5K = . The response 
( )y t  for 0.88K =  is sufficiently fast for the 

given process. The closed-loop system is stable 
for 2.05K < .

  

 

Figure 23. Responses ( )y t  to a unit step reference 
for 0.5K = ; 0.88 ; 1

Figure 24. Closed-loop system responses ( )u t  to a 
unit step reference for 0.5K = ; 0.88 ; 1

3. Extended form of the control 
algorithm

The proposed algorithm can be extended to 
control integral-type processes and some 
unstable processes. 

3.1 Theoretical basis

The basic idea is to turn the original process 
into a stable proportional-type process (called 
compensated process), preferably without 
overshoot, by using a negative feedback path (see 
Figures 25 and 26). 

As a rule, for an integral-type process, the step 
response of the compensated process is monotone 
and bounded for small values of the feedback 
gain fK , becoming faster or even oscillatory 
by increasing the gain fK . It is recommended 
to choose a large fK , but not too large to cause a 
step response with overshoot of the compensated 
process. For a chosen fK , the model parameters 

MK , Mτ  and trMT  will be determined from the 
compensated process response ( )y t  to a step 
change of the input c . For 1K = , if the the model 
parameters MK , Mτ  and trMT  have appropriate 
values, then the closed-loop system response ( )c t  
to a step reference is close to a step form. This 
feature offers the process operator the possibility 
to verify and correct online the model parameters 
of the compensated process.

The overall controller C in Figure 26 is a 
two degrees-of-freedom controller with three 
operating modes: AUTOMATIC, MANUAL 
and COMPENSATORY. In MANUAL and 
COMPENSATORY modes, the process operator 
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can directly set any desired values for the input u  
of the process and the input c  of the compensated 
process, respectively. If 0fK = , then the 
MANUAL and COMPENSA-TORY modes 
coincide. Before switching to COMPENSATORY 
mode, the variable c  needs to be automatically 
set to the value of u .

Figure 25. Block diagram of the compensated process 

Figure 26. Closed-loop control system with 
compensated process

According to the controller structure in Figure 26 
and the model transfer function (13), the discrete 
control algorithm has the following equations:

2 2
1 2 1 ,

0

2 (1 ) (20)
( ) /

( )

M

k k k

k k k M k l

k k k M

k k f k

w

e r y
pw p w K p c

c Ke w K
u c K y y

− − − −

= −
 = − + −


= +
 = − −

where 0y  is the value of y  before switching to 
AUTOMATIC mode, [ ]/M Ml Tτ=  and

2 3
1

, 5.83 / . (21)
1 / 2 / 6

a
trMp e a T T

a a a
−= ≈ =

+ + +

For 0fK = , the extended control algorithm (20) 
reduces to the primary control algorithm. Let 0u  
and 0e  be the values of u  and e  before switching 
to AUTOMATIC mode. To have a bumpless 
transfer only for error 0 0e = , the following 
settings need to be made before switching to 
AUTOMATIC mode:

1 2 1 0Mk k k lc c c u− − − −= = = = ,                        (22)

1 2 0k k Mw w K u− −= = .                                     (23)

To have a bumpless transfer for any 0 0e ≠ , it is 
needed to replace the third equation in (20) by

0( )k k
k

M

K e e w
c

K
− +

= .
                                     

(24)

Remark 3.1. Consider a stable integral-type 
process with the transfer function

1
1 1

( )
( ) , (0) 0.P P

G s
G s G K

s
= = ≠

              
(25)

The compensated process in Figure 25 has the 
transfer functions

1

1

( ) ( )
( )

1 ( ) ( )
P

YC
f P f

G s G s
G s

K G s s K G s
= =

+ + ,
           

(26)

1

1
( )

1 ( ) ( )YV
f P f

s
G s

K G s s K G s
= =

+ + ,
           

(27)

For the ramp disturbance 2( ) 1 /V s s=  and the 
input ( ) 0C s = , the compensated process response 
is given by

1

1
( ) ( ) ( )

[ ( )]YV
f

Y s G s V s
s s K G s

= =
+ .

              
(28)

According to the final value theorem of the 
Laplace Transform, the response ( )y t  has the 
final value

0 1

1
( ) lim ( )

s f P
y sY s

K K→
∞ = = .

                           
(29)

Since the response ( )y t  is finite, the steady-
state error of the closed-loop system to a ramp 
disturbance (added to the process output) is zero. 

3.2 Simulation results 

In this subsection, we present two applications 
for two types of linear processes: a process of 
integral-type and an unstable process.

Application 3.1. Consider the integral-type process

63(2 1)
( )

40s(3 1)(4 1)

s

P
s e

G s
s s

−+
=

+ +
.

Using a negative feedback path with 0.45fK < , 
the integral-type process turns into a compensated 
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process whose response to a  step input is 
monotone and bounded (see Figure 27). For 

0.4fK = , the following model parameters can be 
deduced from the compensated process response:

2.5MK = ,    7Mτ = , 1 84 7 77trM PT t τ= − = − = .

Figure 27. Responses ( )y t  of the compensated 
process for 1( )c t=  and 0.3; 0.4; 0.6fK =

The closed-loop system responses ( )y t , ( )c t  and 
( )u t  to a unit step reference are shown in Figures 

28, 29 and 30 for 0.8K = ; 1; 1.3 ; 2.2 . For 
1.3K = , the transient response ( )y t  is very fast 

for the given integral process. The control system 
is stable for 6.35K < .

  

Figure 28. Responses ( )y t  to a unit step reference 
for 0.8; 1; 1.3; 2.2K =

Figure 29. Closed-loop system responses ( )c t  to a 
unit step reference for 0.8K = ; 1 ; 1.3 ; 2.2

Figure 30. Closed-loop system responses ( )u t  to a 
unit step reference for 0.8K = ; 1 ; 1.3 ; 2.2

For the suitable 1.3K = , Figure 31 shows the 
closed-loop system responses ( )y t  to a step and 
ramp disturbance. The steady-state error is zero 
for any step or ramp disturbance added to the 
process output.
    

Figure 31. Closed-loop system responses ( )y t  to a  
step and ramp disturbance

Application 3.2. Consider the unstable process

23
( )

2(4 1)(10 1)

s

P
e

G s
s s

−
=

+ − .

Using a negative feedback path with 
0.667 0.75fK< < , the process turns into a stable 
compensated process whose response to a unit 
step input is monotone and bounded (see Figure 
32). For 0.74fK = , the model parameters are:

13.8MK = ,  

4Mτ = ,  

 1 99 4 95trM PT t τ= − = − = .  
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The closed-loop system responses ( )y t , ( )c t  and 
( )u t  to a unit step reference are shown in Figures 

33, 34  and 35 for 0.8K = ; 1; 1.2 . The closed-
loop system is stable for 20.8K < .

Figure 32. Compensated process responses ( )y t  to 
the unit step input c

Figure 33. Responses ( )y t  to a unit step reference 
for 0.8K = ; 1 ; 1.2

Figure 34. Closed-loop system responses ( )c t  to a 
unit step reference for 0.8K = ; 1 ; 1.2

  

Figure 35. Closed-loop system responses ( )u t  to a 
unit step reference for 0.8K = ; 1 ; 1.2

4. Conclusions and future research

Due to its capability to be used for almost all 
industrial processes, the proposed P-IMC control 
algorithm is an alternative to the PID and IMC 
algorithms. Actually, it is better than the PID 
algorithm with respect to both the control dynamic 
performance (especially for the processes with 
time delay) and the simplicity of the experimental 
tuning procedure. Also, it is more practical than 
IMC algorithms because it uses a single type of 
model  for all categories of processes, and has a 
proportional gain K  as tuning parameter instead 
of a filter time constant.

In the primary (standard) variant, the algorithm 
can be used to control stable proportional 
processes (with or without time delay, overshoot 
and oscillations, of minimum or nonminimum 
phase). In this variant, the algorithm has four 
parameters: a tuning parameter K  that carries out 
the same function as the overall gain of the PID 
algorithm (used by the process human operator to 
increase or diminish the control action), and three 
model parameters that can be easily determined 
by experimental way - the model steady-state 
gain MK , the model time delay Mτ  and the 
model transient time trMT . In addition, there is 
a simple procedure to verify and correct online 
the model parameters, based on the fact that for 
an accurate model, the controller output to a step 
reference is close to a step form for 1K = . This 
feature ensures and guaranties the stability of the 
closed-loop system on an upper bounded interval 
of K . Analyzing the deviation of the controller 
response to a step reference from the ideal step 
form, the process operator can adjust online the 
model parameters to improve the model accuracy.
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In its extended variant, the control algorithm 
has one more parameter, a process feedback 
gain fK , which is used to control integral-
type processes and some unstable processes, by 
turning them into stable proportional processes 
(compensated processes).

The proposed algorithm has been implemented 
in real time, in laboratory and some industrial 
applications, with excellent results. 

In our opinion, this control algorithm can still 
be improved in order to reduce the weight of the 

tuning gain K  on the control action, especially 
for the processes with large time delay, where 
the control response ( )c t  to a unit step reference 
keeps its great initial value / MK K  on the whole 
time interval [0, ]Mτ . This improvement can be 
achieved by adjusting the IMC component of 
the proposed P-IMC algorithm according to the 
procedure in [6], which allows to get a strictly 
monotone response ( )c t  on [0, ]Mτ .
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