
117

ICI Bucharest © Copyright 2012-2018. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

The use of Patterns in Software Development is
well documented, as many Patterns repositories
currently exist and are being developed. Great
interest has been shown in the definition of
new, updated Patterns for modern programming
and developing paradigms. Cloud Computing,
for instance, has strongly benefited from the
introduction of Pattern based solutions, as
they can provide useful means to reduce many
challenges connected to Cloud development, such
as portability and interoperability issues [3,10,11].
The solutions provided by such Patterns are, in
many cases, linked to each other: it is possible,
for instance, to design one or more components
from a Pattern by exploiting the information
provided in another one. Pattern Languages are
based on the idea to provide useful connections
among Patterns, in order to understand how they
are related to each other and how they can be used
together to provide refined solutions and more
powerful functionalities. However, as formalisms
to describe Patterns are still under development
and struggle to provide a comprehensive
representation of all possible Pattern categories,
also the existing relations among them are still not
fully described by standards.

In the past years the IT market has been
revolutionized by the advent of Cloud
Computing, which has appealed to both small
and big enterprises, and to public Governments
[8] thanks to the benefits it brings: the “pay as
you go” paradigm, according to which customers
can rent hardware and software resources
instead of buying them, thus reducing upfront-
investments; the world-wide distribution of
the hardware resources, which makes Cloud

infrastructures more robust to natural disasters
and thus more reliable; the possibility to make
Cloud applications automatically scale, which
implies a better use of existing resources and less
management costs. Besides these and many more
advantages we haven’t mentioned here, Cloud
Computing also offers the opportunity to compose
services from different providers, in order to
obtain complex applications, which exploit
the best characteristics of different platforms.
However, there are often practical issues which
limit the interoperability of the existing Cloud
platforms: different data formats, parameters’
semantics, unclear descriptions of the exposed
APIs and so on. Furthermore, many vendors try
to bind their customers to their own platform,
making it difficult or expensive for them to port
their applications to another environment when
needed (“vendor lock-in”). The extreme variety
of services and resources currently available
represents a good opportunity for customers,
who can leverage offers from several providers
and choose the best ones; conversely, this can also
represent a source of confusion for users, whose
knowledge of the Cloud Computing panorama is
limited to a restricted set of services and platforms,
thus making Cloud Services integration an open
challenge [15]. In order to support interoperability
and to promote a better interaction between
services exposed from different providers, we
have exploited semantic-web technologies and
Cloud patterns to help customers in building
their Cloud applications. By means of a semantic-
based formalism, it is possible to discover Cloud
Services and compose them, being guided by
Patterns in the whole process. In particular,

Studies in Informatics and Control, 27(1) 117-126, March 2018

https://doi.org/10.24846/v27i1y201812

A Tool for Mapping and Editing of
Cloud Patterns: the Semantic Cloud Patterns Editor

Beniamino DI MARTINO*, Antonio ESPOSITO
Department of Engineering, Universitá degli Studi della Campania Luigi Vanvitelli, Aversa, 81031 Italy
e-mail: beniamino.dimartino@unina.it (*Corresponding author), antonio.esposito@unicampania.it

Abstract: Owing to the huge number of Cloud services which are currently available on the market and to the lack of a
commonly accepted standard for a machine-readable description of their interfaces, automatic discovery and composition
tools and techniques for interoperable Cloud services are still in an early stage of development. Moreover, the current
tools do not provide a very user-friendly interface to interact with. In this paper a service for the automatic discovery and
composition of Cloud services, guided by Cloud Patterns, is presented. By means of a user-friendly interface, the user can
both define a new services’ composition, with the creation of a new pattern, or modify an existing one. The proposed service
exploits a semantic based representation of Cloud services and patterns, complemented by a description of the input and
output parameters for the several described services and of the patterns’ workflow.

Keywords: Cloud Computing, Cloud Patterns, Services Orchestration, Services Discovery, Services Composition.

mailto:beniamino.dimartino@unina.it
mailto:antonio.esposito@unicampania.it

http://www.sic.ici.ro

118 Beniamino Di Martino, Antonio Esposito

this paper presents Semantic Cloud Patterns
Editor (SCoPE), a service supporting the user
in selecting and managing services from several
providers to build Cloud patterns. Such a service
(implemented as a tool) is based on semantic
descriptions of cloud providers’ resources and
services, modelled with ontologies. The tool uses
a graph model to present the available services
and the palette of already-defined patterns, and
provides a GUI that allows to build, modify and
manage such a model.

The remainder of this paper is organized as
follows: Section 2 reports the current state of the
art regarding the standards for Pattern definition
and their capability to represent their relations and
connections among Patterns; Section 3 describes
our graph-based approach; Section 4 describes the
application of the approach to the discovery and
composition of Cloud Services, through examples;
Section 5 provides a description of the Graphical
Interface of the SCoPE tool, by examples; Section
6 concludes the paper with some considerations
on current results and future work.

2. State of the Art

2.1 Description of Workflows

The orchestration and composition of cloud
services has been the topic of several initiatives
and research efforts. Some of them receive the
support from industry and are adopted by important
companies in the field. The mOSAic Fp7 project
[9] explicitly addressed the issues related to Cloud
Services discovery and composition, by exploiting
ontologies and semantic-web technologies to
describe and annotate Cloud resources and then
compose them through adapters and connectors,
whilst mOSAic featured patterns, didn’t focus
on Cloud patterns and missed a tool for their
creation, composition and automatic deployment.
A similarly semantic-based approach to services
composition is proposed in [16], where Cloud
services’ interfaces are described in terms of their
inputs and outputs and a similarity function is
applied to identify corresponding parameters and
determine possible concatenations of services.
The work presented in [17] proposes an artificial
intelligence based technique in which a search tree
is created for each Cloud provider and then scanned
to obtain a composition of services according to
the customers’ requirements. Both [16] and [17]
assume that a complete knowledge of the target

Cloud computing environment is available, while
neglecting information regarding fees and SLAs
management. The work presented in [13] applies
an agent-based approach to retrieve also partial
information on the services to be composed and
actually perform their composition in response to
a customer’s request. This approach is similar to
the one proposed in [12], where intelligent agents
are used to implement tools which enable users
to discover, compose and monitor cloud services
and resources.

All the previous approaches, while being
scientifically relevant and providing useful results,
can be quite difficult to practically exploit, due to
the lack of user friendly GUIs to support customers
in the specification of their requirements. With
SCoPE, we want to exploit the capabilities of
semantic technologies and Cloud Patterns to
provide a user-friendly interface for the discovery
and composition of Cloud services, which can
suggest the most suitable application architectures
even when the target is not completely known.

Non-academicals research efforts have also
produced user oriented solutions, with immediate
applications to real-world situations. For an
instance, orchestration and composition (but not
discovery) of Cloud Services are also the focus
of the OpenStack Heat project [6], which has
developed an interesting template-based formalism
going under the name of HOT. Such a formalism
allows users to define services’ properties and
how such services should interact in order to
provide useful functionalities. The access to the
Heat service and management of HOT templates
are available via the Horizon dashboard, which
allows users to graphically interact with the entire
OpenStack platform. While being compliant with
the AWS CloudFormation [5] template format,
HOT is still limited as regards the supported
services and general expressivity.

Topology and Orchestration Specification for
Cloud Applications (TOSCA) [4], is an OASIS
standard language used to describe both a topology
of Cloud based web services, consisting in their
components, relationships, and the processes
that manage them, and the orchestration of such
services, that is their complex behaviour in relation
to other described services. The combination of
topology and orchestration, in what the standard
defines as Service Template, accurately describes
all the essential elements needed by each service

	 119

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Tool for Mapping and Editing of Cloud Patterns: the Semantic Cloud Patterns Editor

to provide its functionalities, in order to ease
deployments in different environments and to
enable interoperability. Also, management of
services throughout their complete life-cycle
(deploying, scaling, updating, monitoring...),
when applications using them are ported to
different Cloud platforms, is also supported.

In the current Cloud market, several vendors are
offering different and competitive services which
try to meet the requirements of their potential
customers. However, because of such a variety,
it can become difficult for users to decide how to
build and manage their applications in different
and specific contexts. Developers could benefit
from a guidance in identifying the best suited
architectural solutions for their applications: in
this situation, Cloud Patterns can represent the
perfect deal, since they have been created to
provide solutions to design and based on previous
experiences encountered by other programmers
and developers.

Recently a number of initiatives related to the
description of Cloud patterns emerged, both
from the academic field such as [14,2] and from
vendors of cloud services such as Amazon [1] and
Microsoft [7].

Patterns not related to a specific Cloud vendor
(referred to as Agnostic Patterns) are extremely
generic and can be easily applied to different
contexts. However, they require more effort in
the implementation phase. Conversely, vendor
specific Patterns offer better details and can
be immediately implemented on the reference
platform, but are less flexible and adaptable to
other situations. Agnostic versions of vendor
specific patterns (or Proprietary Patterns) can
be derived and used to define new architectural
solutions for different Cloud platforms.

Proprietary patterns provide directions on the
particular services or components which can be
used to implement the functionalities portrayed,
obviously referring to the platform they have
been designed for: this does not mean that they
can’t be used in a more general context, but they
result to be less flexible than Agnostic patterns.
On the other hand, Agnostic patterns never refer to
a particular implementation but describe general
concepts: so, they are flexible and can be applied

to different platforms, but their implementation is
not as immediate as for Proprietary patterns.

Since there is no machine-readable definition of
the Patterns provided in such catalogues, users
have to rely on the textual description provided
by publishers to understand how they work and
are interrelated. As for Design Patterns, such
descriptions lack the necessary level of detail to
fully understand the correspondences existing
among Patterns’ participants.

3. The graph-based Approach

Figure 1. The Conceptual Layers

The graph-based mapping among Patterns which
we are going to introduce is strongly related to
a semantic representation of such Patterns. Here
we briefly introduce such a representation, while
a more precise description of the notation can be
found in [10].

The overall model is a graph-based representation,
structured into five conceptual layers. The graph
represents concepts (graph nodes) and relationship
(graph edges) at different levels. In each level are
represented relationships among concepts of the
same level in addition to inter-level relationships.
The five conceptual levels are reported in Figure 1:

-- The Parameters Level represents the
description of the data exchanged among
services as input and output of the operations
they expose.

-- The Operations Level represents the
syntactic description of the operation
and functionalities exposed by the Cloud
Services; it provides a machine-readable
description of how the service can be called,
what parameters it expects, and what data
structures it returns.

http://www.sic.ici.ro

120 Beniamino Di Martino, Antonio Esposito

-- The Services Level represents the semantic
annotation of the vendor-dependent Cloud
Services (exposed through OWL-S) and the
supporting ontologies needed to identify the
cloud provider supported operation, input
and output parameters. This level presents
details of the cloud provider platform
architecture, the functionalities exposed
and the underlining details. This level
contains also the semantic description of the
agnostic Cloud Services exposed through
an ontology that reports, in vendor neutral
terms, cloud resources, operations and
exchanged parameters.

-- The Cloud Patterns Level represents the
semantic description of agnostic and vendor-
dependent Cloud Patterns realized through
an OWL representation based on ODOL. It
contains patterns at infrastructural level and
at platform level.

-- The Application Patterns Level represents
the description of patterns describing the
application to be ported. An Application
Pattern is a composition of application
components embodying application domain
functionalities, services at PaaS and SaaS
level, platform Cloud Patterns and resource
configuration patterns.

4. Discovery and composition of
cloud services

Listing 1. Comparison of default Resources
Configurations

Listing 2. SPARQL query to retrieve compatible
operations exposed by EC2 and Azure

VirtualMachines services

In order to correctly assess the equivalence among
parameters, a hierarchical agnostic ontology is
used to define generic parameters, while service-
specific ones are grouped according to the target
platform in self-contained ontologies. Such
vendor specific ontologies are connected via
object properties to the agnostic one, which acts
as an intermediary. A simple query which can be
run against the semantic representation has been
reported in Listing 1: the query retrieves all the
vendor specific parameters which are equivalent
to the agnostic InstanceID, and also shows the
services, operations and vendors they belong to.
Results of the query have been reported in Table
1. Knowing how parameters are interrelated is not
sufficient to enable the discovery of equivalent
Cloud Services. This is clearly visible in the query
shown in Listing 1, since another ontology is
used. Such an ontology represents an additional
layer of our representation, referred to as the The
service layer, with definitions of Cloud Services,
their operations with a list of input and output
parameters (which realize a direct connection
to the bottom layer) and their relationships. As
for the parameters layer, here we use an agnostic
ontology which describes generic cloud services
and arranges them hierarchically. Such agnostic
services are used as a common ground for
comparison among vendor specific services, in

Table 1. Results from query in Listing 1

Equivalent Parameter Vendor Service Operation
InstanceID Google ComputeEngine DeleteInstance
InstanceID Google ComputeEngine DeleteInstance
ImageID Amazon EC2 StartVM

InstanceID OpenStack Nova NovaBoot
VMID Azure Virtual Machine StartRole

	 121

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Tool for Mapping and Editing of Cloud Patterns: the Semantic Cloud Patterns Editor

order to assess their equivalence. For an instance,
let’s suppose we want to retrieve all services
which are equivalent to Amazon EC2: the simple
query reported in Listing 2 is able to answer our
request, thanks to the aKindOf property which
allows to recognize the category a specific service
falls in.

Results of the query are reported in Table 2.

Table 2. Results of Query in Listing 2

Service Provider
OpenStack_Nova OpenStack
Oracle_Compute Oracle

Azure_VirtualMachines Azure
RedHat_CloudForms RedHat

Once we have retrieved one or more equivalent
(by functionality) services, we can run an
additional query to assess equivalences between
their operations. Query in Listing 3 reports
an example of such an interrogation, with the
comparison between the methods exposed by
the services EC2 and Virtual Machine provided
by Amazon and Azure respectively. Agnostic
concepts are used, as in previous examples, as a
common ground for comparison.

Listing 3. SPARQL query to retrieve services and/or
appliances compatible with EC2

While vendor-specific patterns’ participants are
directly connected to the implementing services
described in the corresponding platform-specific
ontology, agnostic ones refer to the agnostic
ontology. In this way, it is possible to retrieve,
for a vendor-specific pattern, a list of equivalent
solutions provided by another platform.
Furthermore, from an agnostic definition, it is
possible to build the vendor-specific one, just by
selecting the target platform.

Figure 2 reports a schematic representation of the
ontologies used by SCoPE and of their relations.
The three layers mentioned in this section are
arranged horizontally from left to right. The
lower part of the figure reports vendor specific
ontologies, while the upper side contains agnostic
ones. The ontologies for the description of both
agnostic and vendor specific services and patterns
are written using the OWL language. However,

the pattern ontologies are also complemented with
a set of OWL-S descriptions, for the orchestration
of the involved Cloud services. In this way, such
patterns describe both the structure of a Cloud
application and the different interactions that
occur among the involved services. Thanks
to the connections which have been defined
between the different ontologies through ad-hoc
data-type and object properties, it is possible to
retrieve information on the services via the simple
SPARQL queries we have shown.

Figure 2. The Pattern Catalog as shown by SCoPE

5. The SCoPE Interface

In this section we will dive through the different
functionalities offered by SCoPE, by showing
its graphical interface and the actions a user can
perform while interacting with it. The graphical
interface is composed of two menus, located on
the upper side of the interface’s window, and a
central panel which is used to draw Patterns and
compare or compose them. The uppermost menu
is used to load or save the Patterns configurations,
while the lower menu is composed of tabs which
display different panels, with specific commands
according to the task they serve to.

Comparing Patterns

The first functionality exposed to the user is
represented by the possibility to browse the Cloud
Pattern catalog, organized according to the vendor
for which the specific pattern has been designed.
In order to visualize the catalog, the user has to
load the ontology using the upper menu: Figure 3
shows exactly what the user is presented after the
Patterns’ definitions have been loaded.

http://www.sic.ici.ro

122 Beniamino Di Martino, Antonio Esposito

The offered view is a tree-like organized catalog,
in which Patterns are divided into Proprietary
and Agnostic patterns, and further categorized
according to their specific vendor. In Figure 3 it
is possible to see the list of Patterns defined for
Amazon, Azure and OpenStack.

The user can browse the catalog, and then he or
she can select one of the Patterns and drag the
corresponding name or green dot to the center of
the Patterns Workflow Tab. Proprietary Patterns
are automatically drawn on the right side, while

Agnostic Patterns are always shown on the left.
Figure 4 shows on the left side a representation of
the Agnostic Job Observer Pattern, while on the
right an Openstack specific version of the same
Pattern has been drawn.

The Patterns are visualized similarly to a UML
sequence diagrams, with Cloud Services depicted
as actors and functionalities’ calls as ordered,
numbered actions, which describe the Patterns’
workflow. If there exists a correspondence between
elements of the compared Patterns, it is possible

Figure 3. Comparison between Agnostic and Proprietary Pattern

Figure 4. Requesting corresponding methods

Figure 5. Highlighting corresponding methods in Patterns

	 123

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Tool for Mapping and Editing of Cloud Patterns: the Semantic Cloud Patterns Editor

to highlight it. Figure 5 shows how, by right-
clicking on a specific method call, it is possible
to highlight all the corresponding methods in
the compared Pattern on the other side. In this
case, the NovaBoot method in the OpenStack Job
Observer Pattern has been defined as equivalent
to the StartVM method in the Agnostic Job
Observer Pattern, as shown in Figure 5.

The same highlighting can be done for
servicesUntil now, we have supposed that the
user has selected two equivalent Patterns on
his/her own, but since we are considering the
possibility that she is not a Pattern expert, we
have implemented the possibility to automatically

display equivalent Patterns, either Agnostic or
Proprietary, has been selected.

Let’s suppose that the user has selected the
Agnostic Job Observer Pattern and has dragged it
into the central Panel. Once the Pattern has been
drawn on the left side, it is possible to select any
proprietary equivalent Pattern by using a selection
menu which appears on the left side, as shown in
Figure 6.

Once the user has selected the desired Pattern, it
is automatically drawn on the left side, bringing
to the same state displayed in Figure 7, with the
possibility to highlight corresponding elements.

Figure 6. Equivalent Proprietary Patterns shown to the user

Figure 7. Browsing the Services ontology

http://www.sic.ici.ro

124 Beniamino Di Martino, Antonio Esposito

Browsing the Ontology to compare Services

The user can compare whole Patterns and highlight
their equivalent services and method calls, but she
can also browse the Services’ catalog and obtain
more information on the single components of
each Pattern. The user can access the Services’
catalog in two ways: by double-clicking on a
service already present in a displayed Pattern, or
by selecting a sliding window on the right side of
the Pattern Workflow tab. The difference is simply
that, in the first case, the double-clicked Service
is directly highlighted in the catalog, while in the
second case no Service is selected at all: in both
cases, the user can browse the catalog freely.

If a Service has been previously selected, the
browsing Panel focuses on it, as shown in Figure
8, where the OpenStack Nova Service has been
highlighted. By right-clicking on a Service, it is
possible to automatically discover all the ones that

are equivalent to it according to its functionalities,
via the GetEquivalentServices button. After
pressing such a button, all the Service equivalent
to the focused one are automatically highlighted,
as shown in Figure 8. In this case, the user can
read the number of equivalent services above the
search box, while on the right side of the Panel
specific information on the selected service
(provider, exposed methods, input and output
parameters) is displayed.

Create a Pattern’s Workflow

Apart from browsing the existing catalog, the
user can modify existing Patterns’ workflows
or create new ones from scratch. In both cases,
she is supported by the SCoPE tool in choosing
the Services and the Methods to use in the
composition of the Pattern. By selecting the
Patterns Workflow Creation tab, the user is

Figure 9. Adding Suggested methods and services to the Pattern

Figure 8. Browsing the Services ontology - Equivalent Services

	 125

ICI Bucharest © Copyright 2012-2018. All rights reserved

A Tool for Mapping and Editing of Cloud Patterns: the Semantic Cloud Patterns Editor

presented with a blank panel, with an initial Client
Service acting as an initiator actor for the new
Pattern’s workflow. In particular, above the blank
panel there is a button menu, composed of:

-- An Add Method button, which is used to
add a method call between two services

-- An Add Service button to add a new Service

-- A Save button to save the newly created
Pattern Workflow into the catalog

-- A Choose button which is used to add to the
canvas one of the suggested relationships,
methods or services from the rightmost panel.

Figure 9 reports an overview of the central panel
on which new Patterns are created, and of the right
Panels which provide suggestions regarding the
services or methods which could be added to the
canvas, according to what has already been placed
on it.

Figure 10. Adding Services to the Pattern

Figure 11. Adding Methods to the Pattern

If the user clicks on the Add Service button, a new
wizard window is displayed, as shown in Figure
10. From this window, the user can select the
Service category (Virtual Machines in the picture)
and a list of candidates is displayed in the Service
Category List box. When the user selects one of
these services, all its exposed methods, together
with its related input and output parameter, are
listed in specific boxes. In this way, the user
can indirectly browse the provided services by
category and choose the one she deems suitable.
If an existing service is double clicked, the Service
Category is bound and cannot be changed, and a
Substitute button is used instead of an Add one, to
remove the old service and replace it with the new
chosen one. If the user clicks on the Add Method
button, a different wizard window is displayed,
as shown in Figure 11. According to the Services
already present in the panel, different Methods
(or relations) can be added. The user can select
the Source and Target of the method at the bottom
of the new window, and available methods and
parameters change accordingly in the respective
boxes. The user can also select the exact number of
the operation, so that she can specify the execution
order of multiple method calls existing between
the same services. When one or more Services are
added onto the central panel, the Suggestion box
on the right is populated. The box contains a list of
triplets Service-Method-Service which are present
in other Patterns, and which could be used with
the services currently added to the creation panel.
This is shown in Figure 9, where a list of possible
triplets is shown according to the currently added
Services. If the user does not want to just add new
Services, she can use the All Methods box just
below to select only methods which are compatible
with the already chosen Services. Once a triplet
or a method has been selected, the user can add it
using the Choose button.

6. Conclusion and Future Works

In this paper a graph-based approach is presented
and applied to a pre-existing semantic-based
representation of Patterns, in order to express their
correspondences and compositions. In particular,
a Graphical tool named Semantic Cloud Patterns
Editor (SCope) has been developed, to support
users in:

-- Discovering Cloud Services by browsing a
semantic-based catalog

http://www.sic.ici.ro

126 Beniamino Di Martino, Antonio Esposito

-- Composing Cloud Services by following
preexisting or newly defined Patterns

-- Defining new Patterns either by following
existing ones or from scratch

-- Identifying correspondences among Services
and Patterns’ components.

In the future, we plan to extend the existing
knowledge base in order to include a complete
set of Cloud Services and Patterns, with
correspondences and equivalences.

Also, future developments will feature graph
matching capabilities to automatically map Patterns’
components and integration with deployment and
orchestration tools to automatize the deployment
and execution of composed Patterns.

REFERENCES

1.	 AWS Cloud Design Patterns (2015). <http://
en.clouddesignpattern.org>.

2.	 Cloud Patterns (2015). <http://cloudpatterns.
org>.

3.	 Cloud Standards Customer Council.
Interoperability and portability for
cloud computing: a guide. Accessed
in October 2017. <http://www.
cloudstandardscustomercouncil.org/CSCC-
Cloud-Interoperability-and-Portability.pdf>.

4.	 TOSCA Technical Committee et al. Topology
and orchestration specification for cloud
applications (tosca)–committee specification
01. <http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.html>.

5.	 Cloudformation templates. <http://
aws.amazon.com/cloudformation/aaw-
cloudformation-templates/>.

6.	 Openstack services (2015). Accessed in
October 2017. <http://www.openstack.org/
software>.

7.	 Windows Azure Application Patterns
(2015). <http://blogs.msdn.com/b/jmeier/
archive /2010/09/11/windows-azure-
application-patterns.aspx>.

8.	 Cojoacă, E. S. D., Popescu, M. A. & Ambăruş,
G. C. (2017). Cloud Computing Technology
to Assist Government in Decision Making
Process, Studies in Informatics and Control,
26(2), 249-258. ISSN 1220-176.

9.	 Di Martino, B. & Cretella, G. Semantic
technology for supporting Software
Portability and Interoperability in the Cloud-
Contributions from the mOSAIC Project,
Cloud Computing and Big Data, 23, 66. DOI
10.3233/978-1-61499-322-3-66.

10.	 Di Martino, B., Esposito, A. & Cretella, G.
Semantic Representation of Cloud Patterns
and Services with Automated Reasoning to
support Cloud Application Portability, IEEE
Transactions on Cloud Computing, PP(99),
1-1. doi: 10.1109/TCC.2015.2433259.

11.	 Di Martino, B., Cretella, G. & Esposito, A.
(2015). Methodologies for cloud portability
and interoperability, Cloud Portability and
Interoperability: Issues and current trends,
15-44. Springer. DOI: 10.1007/978-3-319-
13701-8.

12.	 Di Martino, B., Tasquier, L., Venticinque,
S. & Aversa, R. (2013). Agent Based
Application Tools for Cloud Provisioning
and Management. In Yousif, M. & Schubert,
L. (eds.) Cloud Computing. CloudComp
2012, Lecture Notes of the Institute for
Computer Sciences, Social Informatics
and Telecommunications Engineering,
112. Springer, Cham. DOI https://doi.
org/10.1007/978-3-319-03874-2_4.

13.	 Gutierrez-Garcia, J. O. & Sim, K. M. (2013).
Agent-based cloud service composition,
Applied intelligence, 38(3), 436-464.

14.	 Leymann, F., Fehling, C., Retter, R.,
Schupeck, W. & Arbitter, P. (2014). Cloud
computing patterns: fundamentals to design,
build, and manage cloud applications.
Springer Science & Business Media.

15.	 Popa, S.* & Vaida, M. F. (2016). A Practical
Strategy for ERP to Cloud Integration,
Studies in Informatics and Control, 25(3),
375-384. ISSN 1220-1766.

16.	 Zeng, C., Guo, X., Ou, W. & Han, D. (2009).
Cloud computing service composition and
search based on semantic, Cloud Computing,
290-300. Springer.

17.	 Zou, G., Chen, Y., Yang, Y., Huang, R. &
Xu, Y. (2010). Ai planning and combinatorial
optimization for web service composition
in cloud computing. In Proc international
conference on cloud computing and
virtualization (pp.1-8).

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_Hlk497614700
	_Hlk505778092
	GrindEQpgref59f4cc342
	GrindEQpgref59f4cc343
	_Hlk505298614
	GrindEQpgref59f4cc348
	GrindEQpgref59f4cc349
	GrindEQpgref59f4cc3410
	GrindEQpgref59f4cc3411
	GrindEQpgref59f4cc3412
	GrindEQpgref59f4cc3413
	GrindEQpgref59f4cc3414
	GrindEQpgref59f4cc3415
	GrindEQpgref59f4cc3416
	GrindEQpgref59f4cc3417
	GrindEQpgref59f4cc3418
	GrindEQpgref59f4cc3419
	GrindEQpgref59f4cc3420
	GrindEQpgref59f4cc3421
	_Hlk505779573
	_Hlk505779648
	_GoBack
	_GoBack
	OLE_LINK13
	OLE_LINK14
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	OLE_LINK23
	OLE_LINK24
	OLE_LINK15
	OLE_LINK16
	OLE_LINK4
	OLE_LINK5
	OLE_LINK19
	OLE_LINK20
	_ENREF_3
	_ENREF_4
	_ENREF_5
	_ENREF_6
	_ENREF_7
	_ENREF_8
	_ENREF_9
	_ENREF_10
	_ENREF_11
	_ENREF_12
	_ENREF_13
	_ENREF_14
	_GoBack
	_ENREF_15
	_ENREF_16
	_ENREF_17
	_ENREF_18
	_ENREF_19
	_ENREF_20
	_ENREF_21
	_ENREF_22
	_ENREF_23
	_ENREF_24
	_ENREF_25
	_GoBack
	_GoBack
	_GoBack
	_Ref507614518
	_Ref501653945
	_Ref501615680
	_Ref507614877
	_GoBack
	_Ref501736753
	_Ref501654657
	_Ref501654686
	_Ref501654121
	_Ref501960608
	_Ref501656240
	_Ref501617825
	_Ref501654748
	_Ref501618068
	_Ref501657773
	_Ref501618932
	_Ref501615645
	_Ref501617587
	_Ref501748318
	_Ref501652873
	_Ref501619465
	_Ref501657837
	_Ref507614749
	_Ref501657792
	_Ref507614685
	_Ref501657822
	_Ref501618445
	_Ref501618324
	_Ref501652960
	_Ref501615657
	_Ref501615690
	_Ref501960737
	_Ref501657810
	_Ref501618202
	_Ref501617691
	_Ref501619472
	_Ref501748054
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	baep-author-id9
	baep-author-id10
	baep-author-id11
	_GoBack
	_Hlk508353157
	_Hlk508353158
	_Hlk508353161
	_Hlk508353162
	_Hlk508353164
	_Hlk508353165
	_GoBack
	_Hlk509230735
	_GoBack

