
ISSN: 1220-1766 eISSN: 1841-429X	 387

ICI Bucharest © Copyright 2012-2017. All rights reserved

1. Introduction

The security of computer networks can be
compromised in multiple ways: individual hosts
can become infected with malware, networking
equipment can be disabled, security policies
can be bypassed, etc. The attack surface is often
as large as the network, with possible threats
coming from inside (disgruntled employee) or
outside hacker. There is significant emphasis
on identifying security incidents in a timely
and reliable manner and limiting the amount of
damage that can be inflicted on the network and
its users. The proposed framework workflow
discusses aspects such as network tracing, data
acquisition, feature extraction, traffic modelling,
parallelization and visualization.

1.1 Problem Statement

Deployment of security solutions to safeguard
a network against attackers is a complex task.
Security analysts have to take into consideration
the performance impact of the preventive measures
and their reliability: known coverage of existing
exploits, expected number of false positives, power
consumption, scalability and load tolerance. More
often than not, a compromise has to be reached
between all the above factors. Applications can
offer protection in real time or perform forensics
operations on network traffic logs.

Depending on the position where they are
deployed, antivirus-software (AV) and network

Network Traffic Anomaly Detection Using Shallow Packet
Inspection and Parallel K-means Data Clustering

Radu VELEA1, Casian CIOBANU2, Laurențiu MĂRGĂRIT3, Ion BICA4*
1, 2, 3, 4 Military Technical Academy,
81-83 George Coșbuc Avenue, Bucharest, 050141, Romania,
radu.velea@mta.ro
ciobanu.casian94@gmail.com
laurentiu.margarit@mta.ro
ion.bica@mta.ro (*Corresponding author)

Abstract: IT infrastructures around the world are targeted by malicious entities that want to steal data or compromise
services. Protection measures for complex computer networks are expensive to deploy and maintain, and often do not offer
protection against zero-day exploits. In-depth analysis of incoming and outgoing traffic can be problematic from legal and
technical perspectives. The current work explores the possibility of implementing reliable security measures using machine
learning algorithms to perform traffic classification. The new framework is mapped on existing parallel hardware and aims
to provide a versatile solution for the detection of anomalous behaviour in network traffic through k-means clustering and
without performing deep packet inspection. Trace analysis metadata is obtained by exploiting the features available in the
pcapng file format. K-means clustering is implemented using multiple parallel APIs and a comparative analysis is presented
together with performance considerations.

Keywords: K-Means clustering, Shallow packet inspection, Parallelization, Tracing.

intrusion detection and prevention systems
(NIDPS) have access to all the traffic and
resources managed by the system. Analysing
all this data raises some important problems:
the data may be encrypted, the volume can
overload the capabilities of existing hardware
or the data may belong to a third party entity
and be protected by law - as is the case for most
cloud infrastructures. All these factors make
deep packet inspection prohibitive.

Security researchers have experimented with
novel machine learning algorithms to remove
the need for in-depth packet analysis. The
idea behind this approach is to use metadata
extracted from intercepted traffic and use it to
build classification models that help identify
vulnerabilities inside the network. This way
the compute-intensive tasks inherent in deep
packet inspection are circumnavigated and user
privacy is protected to some degree. Two other
advantages are speed and the theoretical ability to
detect zero-day exploits by outlining anomalous
behaviour. Machine learning algorithms have the
advantage of scaling up to parallel and distributed
architectures [4]. The drawback of this method
is the inherent loss in detection accuracy, as the
analysing tool has no way of being 100% sure if
the intercepted traffic is malign or benign. Human
intervention may still be required to make sense
of some scenarios.

Studies in Informatics and Control, 26(4) 387-396, December 2017

https://doi.org/10.24846/v26i4y201702

http://www.sic.ici.ro

388 Radu Velea, Casian Ciobanu, Laurențiu Mărgărit, Ion Bica

1.2 Motivation

To solve the problems stated above, we’ve
designed a framework that processes network
traffic and host information to allow network
analysts to create an overview of the events on
the network based on a series of features of their
choosing. Visualizing the output has the effect
of identifying anomalies inside the network.
These anomalies could in turn be used to track
down security vulnerabilities or adjust network
security policies. Our goal is to provide a versatile
structure that scales well with the size and type
of information available. Our implementation
targets conventional hardware and is designed to
run in parallel environments. The use of multi-
core CPUs and GPUs is intended to provide
significant speedups and power saving to make
this solution viable in real-time scenarios.
Information retrieval consists of the extraction
of metadata from network traces and live traffic.
Our framework pre-processes raw data into user-
defined features and attaches the information to
the existing data structures, without changing
their base format. This information is then fed
into clustering algorithms that create a visual
model of the network situation. The intention is
that a security analyst or network administrator
could use the end results of this computation to
identify various problems inside the network
(ex: performance problems, security issues,
malfunctioning hardware, etc.).

2. State of the Art

2.1 Network Intrusion & Machine Learning

Deep packet inspection (DPI) is a way of
supplementing the normal capabilities of firewalls
and NIDPSs. The technique involves looking
beyond the transport layer headers and even
analysing the contents of a packet during routing
or filtering. The extra information obtained
through DPI is useful in accurately classifying
network traffic. The spread of encrypted protocols
like HTTPS and concerns regarding user privacy
and net neutrality hinder the reliability of DPI.
DPI is also highly compute-intensive - whole
packet analysis involves lots of pattern-matching
operations on strings. Performance improvements
of DPI usually focus on developing efficient string
matching algorithms that reduce the amount of
data that has to be analysed more thoroughly [10]
[12]. For example, favouring fast partial matches

or hashing incoming bytes in order to skip large
amounts of harmless content. Researchers have
observed that relying on partial information and
other metadata such as packet arrival times or
protocol header fields is sufficient to perform
traffic classification that matches DPI.

Shallow packet inspection works under the
assumption that network attacks behave in a
fundamental way differently than normal data
flows. Given enough information, security
applications can build elaborate profiles that
can be used to identify specific network flows,
connections or even individual processes on the
network [15]. This procedure is often hard to
use in a real life scenario, where even normal
applications might behave unpredictably in some
circumstances. Machine learning steps in and
promises to solve these problems by reducing the
margin of error proportionally to the amount of
input data used. Research in this field revolves
around concepts such as [23]:

-	 Classification learning: training a model
based on a set of samples in order to be able
to recognize and classify new inputs

-	 Cluster algorithms: grouping existing items
according to a set of features

-	 Association learning: finding similarities and
discrepancies between items

Classification of network traffic requires large
amounts of training data to be accurate [17].
Training samples have to be diverse enough to
achieve a good bias-variance trade-off. Failure
to create an accurate model would result in new
vulnerabilities being misclassified or legitimate
traffic being flagged as malicious [24]. Although
the algorithms promise to deliver high detection
rations and good performance [2], they are
seldom deployed on their own outside academic
circles. The current work focuses instead on
cluster algorithms: more specifically k-means
clustering [14]. We believe that machine learning
implementations have yet to reach the desired
maturity to be able to deliver 100% accurate
results in industry-competitive environments, but
can act as a good tool to provide hints and insight
that can help conventional security applications
and network analysts reach a decision faster.
K-means is ideal from this point of view because
it converges relatively fast towards a local
optimum. This type of analysis can highlight
anomalies present in network traffic [9]. When

	 389

ICI Bucharest © Copyright 2012-2017. All rights reserved

Network Traffic Anomaly Detection Using Shallow Packet Inspection and Parallel K-means Data Clustering

combined with other techniques, k-means has
been known to detect novel intrusions [7] and
reduce false alarms [25].	

2.2 Parallelism

Shallow packet inspection itself is faster than
DPI. The algorithms involved in processing the
metadata can be complex and require continuous
iterations in order to keep up with new patterns
and rules. An efficient solution to reduce the
runtime is to make use of the single instruction
multiple data (SIMD) paradigm and harvest the
inherent parallelism available in most current
hardware architectures. NIDPSs applications
like Suricata already employ a multi-threaded
design for their pattern-matching engine [8].
GPGPU computing can speed up mathematical
computations and string matching operations.
Researchers have experimented with offloading
CPU-intensive tasks of regular NIDS to the GPU
with promising results [19] [21].

Hardware vendors are investing in technologies
like OpenCL and CUDA, which promise to make
GPU programing more suitable for general-
purpose applications. There is also a drive to
design hybrid systems that can leverage the
computing power of the CPU and GPU for
the purpose of accelerating network intrusion
detection [1] [11]. Parallel implementations of
clustering algorithms have been used before to
detect malicious behaviour on the network and in
antivirus software [13]. The framework presented
in this paper is designed in a versatile manner
and can benefit from the extra computing power
available in a common GPU.

2.3 Related Work

Similar works have explored the high degree
of parallelism of the k-means algorithm and
proposed a series of optimizations on FPGA
hardware [3]. Machine learning represents a
current trend in network security and is applied
to counter new types of threats. Security experts
that develop applications performing some form
of intrusion detection or malware scans are
starting to look into new technologies to improve
the performance and reliability of their software.
Detection probability increases with the amount of
data analysed. Solutions based on shallow packet
inspection and machine learning models are
expected to provide low overheads and reasonable
amounts of accuracy. In practice this means that

a second line of defence is needed to increase the
security of a network or system. A consequence
of this hybrid approach is that we can trade the
accuracy of the first line of defence for speed and
the workload of conventional security solutions
performing DPI will be reduced. Thus the overall
protection levels remain the same and the cost of
DPI is amortized. Academic research in this field
is looking for solutions to complement existing
detection methods by classifying existing traffic
patterns and flagging anomalous behaviour that
deviates from accepted baselines [26]. Metadata
is extracted from large traffic databases and live
streams. Data acquisition techniques are often
proprietary and customized to fit the needs of the
environment they are deployed in. To differentiate
from this practice, the current paper looks at
the raw format exported by open source traffic
interception tools and proposes a framework that
does not require the adoption and any proprietary
format or technology for extracting and storing
packet information. Instead we rely on the
particularities of the pcapng file format and try
to encapsulate traffic metadata inside the pcapng
traces in order to make them available to other
network analysers and forensics tools.

3. Data Acquisition and Feature
Extraction

3.1 Test Data Format

The first part of the framework described in this
paper addresses data acquisition and feature
extraction. The framework uses as input data trace
files outputted by traffic interception software such
as Wireshark [22] or tcpdump [18]. These tools
capture all the traffic contents, including physical
level headers, and encapsulate it using a specific
format. The oldest and most common format is
pcap. Pcap files contain a header with capture
information like timestamp accuracy, maximum
length of a packet and data link information. This
simple format has become de facto standard and
is recognized by most networking applications.
Network contents are immediately available upon
parsing the header and can be used to simulate
the speed of packet processing tools if live traffic
is not available. The format is useful for storage
and presentation of network data but lacks some
of the advanced features that may be useful for
security analysts. For instance, any pre-processing
information extracted from a pcap file would need
to be stored in either a separate format or in a
separate location, otherwise the original trace file

http://www.sic.ici.ro

390 Radu Velea, Casian Ciobanu, Laurențiu Mărgărit, Ion Bica

might become unusable for other tools. To answer
some of these needs a more flexible format was
proposed: pcapng [6]. The great advantage of
this format is that it allows applications to insert
custom blocks of information into a trace file.
Some custom blocks have been standardized to
include information about network interfaces,
statistics or name resolution. Applications are
allowed to define new blocks and insert them into
the trace file without breaking it for other tools
(which will simply ignore any unrecognized
block). Pcap files can be upgraded to pcapng
format and pcapng traces can be downgraded to
pcap, albeit with a loss of any non-standard data.
The fact that it can be customized makes pcapng
ideal for applications that want to extract and
embedded metadata into network trace files.

NetFlow [5] is a commercial standard developed
by Cisco for extracting metrics from network
traffic. There is an entire industry built around
the analysis of NetFlow output files; the metrics
generated are used for a wide range of purposes
including data mining, threat mitigation or
marketing purposes. Real time acquisition
requires dedicated hardware, but sample files
are available for testing purposes online. The
format consists of a series of templated blocks
that can be manipulated by our framework in a
similar manner to the pcapng custom blocks. Most
information that can be extracted from pcapng
files can be readily found in NetFlow files (the
opposite is not true as NetFlow does not store
packet payloads). An argument for selecting
pcapng rather than NetFlow is that pcapng does
not require any dedicated hardware or proprietary
software in order to capture traces. The availability
of packet contents allows the traces to be used by
deep packet inspection tools if metadata analysis
is deemed insufficient.

3.2 Pre-processing and Feature Extraction

In order to manipulate pcap and pcapng files we’ve
created software pack (consisting of a library and a
set of tools) that can parse trace files and compute
relevant information based on a set of user defined
metrics (for example: average packet size, total
connection time, etc.). The library APIs can be
used to store the data for easy retrieval inside the
original trace. The pre-processing module offers
further support for:

-	 Packet filtering

-	 Flow reconstruction

-	 Host metrics (CPU load, amount of memory
used, etc.)

Implementation details for the library and its
helpers can be found here [20]. The most important
task performed at this stage is the generation of
key-value pairs that can be used as input features
for the next stage (clusterization).

The keys are associated with user-defined metrics.
Each of them has a corresponding compute kernel
that processes an atom trace. We refer to an atom
trace as a subset of packets that were filtered
during the previous stage of our application and
may only be relevant for a very specific scenario.
An example of an atom trace would be all the
packets captured within a 1 ms window, regardless
of upper level protocol or interface. This kind of
specialized analysis might be useful in identifying
botnet behaviour by singling out command and
control traffic [16]. The compute kernel will output
a scalar or vector result. The current framework
implements this pre-processing stage on the CPU.
If multiple files are used the process becomes I/O
intensive and is unsuitable for GPUs. In our study,
the kernels used for gathering the metadata do not
analyse a packet’s payload. The feature extraction
stage can be performed in parallel on the CPU
because there are no data dependencies between
atom traces.

Once the features have been extracted, they are
stored in memory or on the disk and a map is
created connecting them to the original trace or
flow. The end result is a matrix of floating point
numbers that will serve as input for the machine
learning algorithms.

4. Parallel Clustering

4.1 K-means

The floating point matrix is composed of values
scaled to [0, 1] interval. Each of them represents a
normalized feature computed during the previous
stage. A parallel k-means algorithm is then
applied to the dataset. The parallel frameworks
used for the clusterization are CUDA, OpenCL
and OpenMP. The results section will contain a
performance summary for all 3 variants and a
serial version. For the graphics APIs, the memory
is transferred from the CPU to the GPU and the
centroids are randomly initialized. Each GPU core
iterates through all the centroids and attaches itself
to the nearest, thus forming a new cluster. After

	 391

ICI Bucharest © Copyright 2012-2017. All rights reserved

Network Traffic Anomaly Detection Using Shallow Packet Inspection and Parallel K-means Data Clustering

this operation, the data is copied back to the CPU
and new centroids are computed. These actions
are repeated until convergence is achieved. During
the loop, centroid values and indices are updated
between CPU and GPU. A global error value is
computed for the final configuration. Based on
the error value we decide whether to repeat the
process using new random centroids or a different
number of clusters. The implementation supports
Euclidian distance as well as other metrics in
order to be able to create outputs with different
properties (for example an analyst may decide that
the network source address outweighs the size of
the packets in a trace).

The CPU-parallel version follows the same
logic; the difference is we don’t have to perform
any memory transfers and the number of
threads is much smaller (for an 8-core CPU, no
performance improvements were recorded for 16
threads or more).

4.2 Result Visualization

After the algorithm has converged for the current
configuration (given by the features and cluster
count), we offer the possibility of visually
displaying the data via Octave or Matlab. Network
analysts can create scripts to single out flows or
rely on visual inspection to identify anomalous
behaviour. Our framework allows users to alter or
create new features from the metadata and restart
the computation. Multiple iterations with different
features are intended to cover a wider range of
scenarios. If any suspect behaviour is identified the
feature values can be used to create filtering rules
for future traffic. The results of the analysis can be
stored alongside the original trace so that they are
easily accessible for future iterations or to other
tools. For example as new traffic is being captured,
the old configuration and features could be used
for a faster and more accurate classification. If the
results are not conclusive, the features used for

the shallow analysis can be recycled to provide
hints for a more in depth inspection. The whole
workflow from data acquisition to visualization
can be seen in Figure 1.

Once deployed, the model can be subject to
improvement. A high number of false-positives
could be an indication that the original dataset
used to build the model is not relevant for the
current environment. Our framework allows
network analysts to perform a quick investigation
and determine if the how the model could be
improved based on the new information.

If the detected anomaly is the manifestation of a
previously unknown benign behaviour the k-means
iterations can be restarted. The whole process
is designed to be streamlined as to necessitate a
minimum of effort from the human side.

5. Case Studies and Results

A constant challenge encountered during the
development and testing process was the availability
of network traces. In order to test our framework we
selected a set of pcap and pcapng files from publicly
available sources123. The objective was to analyse
these traces and identify anomalous behaviour. To
add more variation into our input data we created
a “virtual packet/flow” component which was
integrated at the “Trace/Log” stage mentioned in
the figure above. This component could perform the
following tasks on the extracted metadata:

-	 Multiply a flow (simulate similar behaviour
by either copying the exact features or adding
some minor variations)

-	 Create obvious anomalies (given the
minimum, average and maximum values for
a feature in a set of flows, it could generate
new entries that are out of the “normal” range)

Figure 1. Framework workflow from data acquisition to detection or visualization

http://www.sic.ici.ro

392 Radu Velea, Casian Ciobanu, Laurențiu Mărgărit, Ion Bica

These new entries would augment the original
dataset and allow us to tune the algorithm during
the training phase.

Attacks that can be singled out through flow
clustering are distributed denial of service (DDoS).
These attacks use remote terminals to send multiple
service requests to their target, overwhelming
its ability to respond to legitimate clients. The
results experienced by the victim could range
from increased response times to total shut down.
The features our implementation will look in the
attacker’s traffic are origin of incoming traffic,
increased packet frequency, unusual amount of
data transferred, malformed requests, application
characteristics (port numbers, protocol flags, etc.).
These features will be computed and stored inside
the trace files during the pre-processing stage.
Feature toggling is done via a configuration file that
is used by the clustering application. This allows
the user to experiment with different combinations
of features until the clustering provides adequate
results. The features, stored as type-length-value
(TLV) inside pcapng custom options are loaded by
the parallel cluster application. In the case of GPU
parallelism they are sent to the device together
with an empty vector which will contain the
desired output (cluster id for each element). The
k-means loops are repeated until a clear pattern
is identified and the clustering error reaches an
acceptable minimum.

The input set consisted of metadata extracted
from over 1400000 flows corresponding to
approximately 50 TB worth of traces. In order to
determine the best configuration for the current
data, the k-means algorithm was run iteratively
for clusters ranging from 1 to 32. The intentions
was to determine the “drop-off” point where
performance degradation no longer justifies an
increase in accuracy.

Figure 2. Evolution of clusterization error vs.
computing time as the number of clusters increases

The above chart shows there is a significant drop
in the error function after 6 or more clusters and
increasing the number of clusters above 16 causes
significant performance penalties for our specific
dataset. For our experimental measurements we
selected a configuration that uses 8 clusters and
8 features to map the captured traffic. The list of
features is as follows:

1.	 Total amount of data transferred
2.	 Duration of the flow
3.	 Average time interval between two consecu-

tive packets
4.	 Relation between source and destination

address (if they are in the same network or
not)

5.	 Type of protocol (TCP, UDP, IGMP, ICMP
or other)

6.	 Number of packets in a flow
7.	 Transport layer protocol (boolean feature)
8.	 Use of encryption (boolean feature)

The performance was measured on a desktop with
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
quad-core CPU with hyperthreading and an
GeForce GTX 970 graphics card. The operating
system used was Linux (Ubuntu 16.04). The
CUDA and OpenCL implementations were
provided by proprietary NVidia SDK and drivers.
The total computing time for the selected dataset
was less than 1 seconds for all configurations.

Figure 3. Performance of parallel k-means
implementations

The results show an overwhelming advantage
of GPGPU over parallel CPU implementation
of k-means clustering: increasing the training
speed by a factor of 5 and the compute-intensive
centroid assignment by a factor of 15.

After the training phase we deployed the model
and performed classification on 500000 new
flows. The algorithm mapped the new entries to
the previously computed centroids. The speedups
for deployment phase were consistent with the
previous training results.

	 393

ICI Bucharest © Copyright 2012-2017. All rights reserved

Network Traffic Anomaly Detection Using Shallow Packet Inspection and Parallel K-means Data Clustering

Figure 4. Mapping new traffic to existing model
performed better on the GPU

The parallel kernel used to compute the results in
Figure 4 can be seen in the following listing.

K-means nearest cluster GPU kernel
Input:
__global const double *data
const int nr_obj
const int nr_coord
__global const double *centroids
const int nr_centroids
Output:
__global int *membership
{
 int object_id = get_global_id(0);
 int index = 0;
 double min_dist = 1000000.0;
 double tmp;
 int i, j;
 __global double *current =
	
&data[object_id * nr_coord];

 for (i = 0; i < nr_centroids; ++i)
 {
 double dist = 0;
 __global double *cluster =
	
¢roids[i * nr_coord];
 for (j = 0; j < nr_coord; ++j)
 {
 tmp = current[j] - cluster[j];
 dist += tmp * tmp;
 }
 if (dist < min_dist)
 {
 min_dist = dist;
 index = i;
 }
 }
 membership[object_id] = index;
}

The visual representation of network flows can be
viewed in figure 4 (features 3, 4 and 5 have been
omitted for better visual representation).

Figure 5. Flow visualization after k-means
training stage. The dots in the chart represent the

characteristics of the items being part of that cluster

Cluster centroids can be used to determine if
future traffic matches an existing pattern. If the
framework is trained with legitimate traffic, large
clustering errors could be the sign of unusual
activity on the network. Upon further inspection,
a network analyst could determine if the unusual
activity is part of a normal change in behaviour
or a threat. The framework could be trained with
samples from known attacks to recognize them
amongst the data in the future.

Figure 6. We are able to detect new traffic patterns
by deploying the model computed in Figure 5

New elements can be appended to the training
dataset and the cycle can be repeated with ease.
To test this scenario, we added a set of DNS-based
attack samples (DNS flood attack) to our model
and increased the number of clusters. The new
flows stood out from the original traffic and were
easily identifiable from the output. Once singled-
out, the anomalous traffic can be analyzed using
dedicated tools to determine its true nature.

The parallel nature of the framework makes it
ideal for deployment in distributed environments.
Since the information processed is based on
extracted metadata, the impact of data transfers
in the network should be minimal. Besides faster

http://www.sic.ici.ro

394 Radu Velea, Casian Ciobanu, Laurențiu Mărgărit, Ion Bica

execution, GPU-offloading allows the CPU to enter
a low-power state earlier and reduce system load.

6. Conclusion and Future Work

Using our framework, the amount of information
extracted for the proof of concept accounted for
0.002% of the original trace size: from a flow that
averaged 3.2 MB in total bytes transferred we
extracted 8 features as double precision floating
point values. The accuracy of the model depends
greatly on the amount of data used for training
and feature selection. The framework described in
this work allows users to add filters and customize
feature selection and k-means arguments. We
exploit the pcapng format to encapsulate the
extracted information inside the original traces for
future use and provide the means for rapid retrieval.
The preprocessed data is organized in a way that
makes it friendly for high performance applications
to manipulate. Machine learning techniques such as
clustering algorithms provide a fast way to classify
the data and perform well in parallel environments.
The experiments described in the current paper
demonstrate the effectiveness of GPU-programming
in accelerating the k-means algorithm.

The measurements favor CUDA over OpenCL on
the test setup. The OpenCL implementation has a
GPU runtime comparable with CUDA, but suffers
a large overhead during the build-up stage. This
penalty was attributed to the performance of the
OpenCL system library.

Each of the components described here can be
decoupled and act independently. This modularity
makes it a useful tool in developing new network-
analysis applications. The technologies used are
publically available and run on most conventional
devices. A careful selection of features can
result in deployments that can quickly sort out
large amounts of data. This could be useful in
eliminating uninteresting traffic early on. Future
efforts will aim to implement a real-time filtering
mechanism based on the current experience.

In conclusion we advocate that the new pcapng
trace format can be used to extract and store
metadata from network traffic, which in turn can
be used to perform shallow packet inspection.
The case study presented offers an example
of detecting DDoS attacks with a parallel
implementation of a classic clustering algorithm.
The results suggest that offloading this type

of computation to the GPU can increase the
performance of a software application serving as
a network intrusion detection system.

Endnotes

1http://www.unb.ca/cic/research/datasets/nsl.html
2http://www.netresec.com/?page=PcapFiles
3https://www.simpleweb.org/wiki/index.php/Traces

REFERENCES

1.	 Aaron, S. S. & Balasubramanian, R. (2015).
A Comprehensive Survey of Technologies
for Building a Hybrid High Performance
Intrusion Detection System, International
Journal of Computer Applications, 113(15).

2.	 Al-Jarrah, O. & Arafat, A. (2014, April).
Network Intrusion Detection System using
attack behavior classification. In 2014 5th
International Conference on Information
and Communication Systems (ICICS) (pp.
1-6). IEEE.

3.	 Amaricai, A. (2017). Design Trade-offs
in Configurable FPGA Architectures for
K-Means Clustering, Studies in Informatics
and Control, 26(1), 43-48.

4.	 Bekkerman, R., Bilenko, M. & Langford, J.
(Eds.). (2011). Scaling up machine learning:
Parallel and distributed approaches.
Cambridge University Press.

5.	 Claise, B. (2004). Cisco systems netflow
services export version 9.

6.	 ”Development/PcapNg” (n.d.). Retrieved
June 17, 2017, from <https://wiki.wireshark.
org/Development/PcapNg>.

7.	 Elbasiony, R. M., Sallam, E. A., Eltobely, T.
E. & Fahmy, M. M. (2013). A hybrid network
intrusion detection framework based on
random forests and weighted k-means, Ain
Shams Engineering Journal, 4(4), 753-762.

8.	 Jiang, H., Zhang, G., Xie, G., Salamatian, K.
& Mathy, L. (2013, October). Scalable high-
performance parallel design for network
intrusion detection systems on many-core
processors. In Proceedings of the ninth
ACM/IEEE symposium on Architectures for
networking and communications systems (pp.
137-146). IEEE Press.

	 395

ICI Bucharest © Copyright 2012-2017. All rights reserved

Network Traffic Anomaly Detection Using Shallow Packet Inspection and Parallel K-means Data Clustering

9.	 Jianliang, M., Haikun, S. & Ling, B. (2009,
May). The application on intrusion detection
based on k-means cluster algorithm.
In International Forum on Information
Technology and Applications, 2009
(IFITA’09) (Vol. 1, pp. 150-152). IEEE.

10.	 Kumar, S., Dharmapurikar, S., Yu, F., Crowley,
P. & Turner, J. (2006, September). Algorithms
to accelerate multiple regular expressions
matching for deep packet inspection, ACM
SIGCOMM Computer Communication
Review, 36(4), 339-350. ACM.

11.	 Lee, C. L., Lin, Y. S. & Chen, Y. C. (2015).
A Hybrid CPU/GPU Pattern-Matching
Algorithm for Deep Packet Inspection, PloS
one, 10(10): e0139301.

12.	 Lin, P. C., Lin, Y. D., Lai, Y. C. & Lee, T.
H. (2008). Using string matching for deep
packet inspection, Computer, 41(4).

13.	 Lin, W. C., Ke, S. W., & Tsai, C. F. (2015).
CANN: An intrusion detection system based
on combining cluster centers and nearest
neighbors, Knowledge-based systems, 78,
13-21.

14.	 MacQueen, J. (1967, June). Some methods
for classification and analysis of multivariate
observations. In Proceedings of the fifth
Berkeley Symposium on Mathematical
Statistics and Probability (Vol. 1, No. 14, pp.
281-297).

15.	 McGregor, A., Hall, M., Lorier, P. &
Brunskill, J. (2004, April). Flow clustering
using machine learning techniques.
In International Workshop on Passive and
Active Network Measurement (pp. 205-214).
Springer Berlin Heidelberg.

16.	 Strayer, W. T., Walsh, R., Livadas, C. & Lapsley,
D. (2006, November). Detecting botnets with
tight command and control. In Proceedings
2006 31st IEEE Conference on Local Computer
Networks (pp. 195-202). IEEE.

17.	 Suthaharan, S. (2014). Big data classification:
Problems and challenges in network intrusion
prediction with machine learning, ACM
SIGMETRICS Performance Evaluation
Review, 41(4), 70-73.

18.	 T. (2010, September 20). Tcpdump/Libpcap
public repository. Retrieved June 17, 2017,
from <http://www.tcpdump.org/>.

19.	 Vasiliadis, G., Antonatos, S., Polychronakis,
M., Markatos, E. P. & Ioannidis, S. (2008,
September). Gnort: High performance
network intrusion detection using graphics
processors. In International Workshop on
Recent Advances in Intrusion Detection (pp.
116-134). Springer Berlin Heidelberg.

20.	 Velea, R., Apostol, I. & Patriciu, V. V. (2016,
August). LightPcapNg: Implementing a
library for general-purpose tracing based on
PcapNg. In 2016 14th IEEE International
Symposium on Intelligent Systems and
Informatics (SISY) (pp. 211-214). IEEE.

21.	 Vokorokos, L., Ennert, M., Čajkovský,
M. & Radušovský, J. (2014). A Survey of
parallel intrusion detection on graphical
processors, Open Computer Science, 4(4),
222-230.

22.	 Wireshark (n.d.). Retrieved June 17, 2017,
from <https://www.wireshark.org/>.

23.	 Witten, I. H., Frank, E., Hall, M. A. &
Pal, C. J. (2016). Data Mining: Practical
machine learning tools and techniques.
Morgan Kaufmann.

24.	 Xiao, L., Chen, Y., & Chang, C. K. (2014, July).
Bayesian model averaging of bayesian network
classifiers for intrusion detection. In 2014
38th IEEE International Computer Software
and Applications Conference Workshops
(COMPSACW) (pp. 128-133). IEEE.

25.	 Yassin, W., Udzir, N. I., Muda, Z. &
Sulaiman, M. N. (2013, August). Anomaly-
based intrusion detection through k-means
clustering and naives bayes classification.
In Proc. 4th Int. Conf. Comput. Informatics
(No. 49, pp. 298-303). ICOCI .

26.	 Zhang, J., Jones, K., Song, T., Kang, H. & Brown,
D. E. (2017, April). Comparing unsupervised
learning approaches to detect network intrusion
using NetFlow data. In Systems and Information
Engineering Design Symposium (SIEDS) (pp.
122-127). IEEE.

http://www.sic.ici.ro

396

