
ISSN: 1220-1766  eISSN: 1841-429X	 387

ICI Bucharest © Copyright 2012-2017. All rights reserved

1. Introduction

The security of computer networks can be 
compromised in multiple ways: individual hosts 
can become infected with malware, networking 
equipment can be disabled, security policies 
can be bypassed, etc. The attack surface is often 
as large as the network, with possible threats 
coming from inside (disgruntled employee) or 
outside hacker. There is significant emphasis 
on identifying security incidents in a timely 
and reliable manner and limiting the amount of 
damage that can be inflicted on the network and 
its users. The proposed framework workflow 
discusses aspects such as network tracing, data 
acquisition, feature extraction, traffic modelling, 
parallelization and visualization.

1.1 Problem Statement 

Deployment of security solutions to safeguard 
a network against attackers is a complex task. 
Security analysts have to take into consideration 
the performance impact of the preventive measures 
and their reliability: known coverage of existing 
exploits, expected number of false positives, power 
consumption, scalability and load tolerance. More 
often than not, a compromise has to be reached 
between all the above factors. Applications can 
offer protection in real time or perform forensics 
operations on network traffic logs.

Depending on the position where they are 
deployed, antivirus-software (AV) and network 

Network Traffic Anomaly Detection Using Shallow Packet 
Inspection and Parallel K-means Data Clustering

Radu VELEA1, Casian CIOBANU2, Laurențiu MĂRGĂRIT3, Ion BICA4*
1, 2, 3, 4 Military Technical Academy,
81-83 George Coșbuc Avenue, Bucharest, 050141, Romania,
radu.velea@mta.ro 
ciobanu.casian94@gmail.com
laurentiu.margarit@mta.ro
ion.bica@mta.ro (*Corresponding author)

Abstract: IT infrastructures around the world are targeted by malicious entities that want to steal data or compromise 
services. Protection measures for complex computer networks are expensive to deploy and maintain, and often do not offer 
protection against zero-day exploits. In-depth analysis of incoming and outgoing traffic can be problematic from legal and 
technical perspectives. The current work explores the possibility of implementing reliable security measures using machine 
learning algorithms to perform traffic classification. The new framework is mapped on existing parallel hardware and aims 
to provide a versatile solution for the detection of anomalous behaviour in network traffic through k-means clustering and 
without performing deep packet inspection. Trace analysis metadata is obtained by exploiting the features available in the 
pcapng file format. K-means clustering is implemented using multiple parallel APIs and a comparative analysis is presented 
together with performance considerations.

Keywords: K-Means clustering, Shallow packet inspection, Parallelization, Tracing.

intrusion detection and prevention systems 
(NIDPS) have access to all the traffic and 
resources managed by the system. Analysing 
all this data raises some important problems: 
the data may be encrypted, the volume can 
overload the capabilities of existing hardware 
or the data may belong to a third party entity 
and be protected by law - as is the case for most 
cloud infrastructures. All these factors make 
deep packet inspection prohibitive.

Security researchers have experimented with 
novel machine learning algorithms to remove 
the need for in-depth packet analysis. The 
idea behind this approach is to use metadata 
extracted from intercepted traffic and use it to 
build classification models that help identify 
vulnerabilities inside the network. This way 
the compute-intensive tasks inherent in deep 
packet inspection are circumnavigated and user 
privacy is protected to some degree. Two other 
advantages are speed and the theoretical ability to 
detect zero-day exploits by outlining anomalous 
behaviour. Machine learning algorithms have the 
advantage of scaling up to parallel and distributed 
architectures [4]. The drawback of this method 
is the inherent loss in detection accuracy, as the 
analysing tool has no way of being 100% sure if 
the intercepted traffic is malign or benign. Human 
intervention may still be required to make sense 
of some scenarios.
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1.2 Motivation

To solve the problems stated above, we’ve 
designed a framework that processes network 
traffic and host information to allow network 
analysts to create an overview of the events on 
the network based on a series of features of their 
choosing. Visualizing the output has the effect 
of identifying anomalies inside the network. 
These anomalies could in turn be used to track 
down security vulnerabilities or adjust network 
security policies. Our goal is to provide a versatile 
structure that scales well with the size and type 
of information available. Our implementation 
targets conventional hardware and is designed to 
run in parallel environments. The use of multi-
core CPUs and GPUs is intended to provide 
significant speedups and power saving to make 
this solution viable in real-time scenarios. 
Information retrieval consists of the extraction 
of metadata from network traces and live traffic. 
Our framework pre-processes raw data into user-
defined features and attaches the information to 
the existing data structures, without changing 
their base format. This information is then fed 
into clustering algorithms that create a visual 
model of the network situation. The intention is 
that a security analyst or network administrator 
could use the end results of this computation to 
identify various problems inside the network 
(ex: performance problems, security issues, 
malfunctioning hardware, etc.).

2. State of the Art

2.1 Network Intrusion & Machine Learning

Deep packet inspection (DPI) is a way of 
supplementing the normal capabilities of firewalls 
and NIDPSs. The technique involves looking 
beyond the transport layer headers and even 
analysing the contents of a packet during routing 
or filtering. The extra information obtained 
through DPI is useful in accurately classifying 
network traffic. The spread of encrypted protocols 
like HTTPS and concerns regarding user privacy 
and net neutrality hinder the reliability of DPI. 
DPI is also highly compute-intensive - whole 
packet analysis involves lots of pattern-matching 
operations on strings. Performance improvements 
of DPI usually focus on developing efficient string 
matching algorithms that reduce the amount of 
data that has to be analysed more thoroughly [10] 
[12]. For example, favouring fast partial matches 

or hashing incoming bytes in order to skip large 
amounts of harmless content. Researchers have 
observed that relying on partial information and 
other metadata such as packet arrival times or 
protocol header fields is sufficient to perform 
traffic classification that matches DPI.

Shallow packet inspection works under the 
assumption that network attacks behave in a 
fundamental way differently than normal data 
flows. Given enough information, security 
applications can build elaborate profiles that 
can be used to identify specific network flows, 
connections or even individual processes on the 
network [15]. This procedure is often hard to 
use in a real life scenario, where even normal 
applications might behave unpredictably in some 
circumstances. Machine learning steps in and 
promises to solve these problems by reducing the 
margin of error proportionally to the amount of 
input data used. Research in this field revolves 
around concepts such as [23]:

-	 Classification learning: training a model 
based on a set of samples in order to be able 
to recognize and classify new inputs

-	 Cluster algorithms: grouping existing items 
according to a set of features

-	 Association learning: finding similarities and 
discrepancies between items

Classification of network traffic requires large 
amounts of training data to be accurate [17]. 
Training samples have to be diverse enough to 
achieve a good bias-variance trade-off. Failure 
to create an accurate model would result in new 
vulnerabilities being misclassified or legitimate 
traffic being flagged as malicious [24]. Although 
the algorithms promise to deliver high detection 
rations and good performance [2], they are 
seldom deployed on their own outside academic 
circles. The current work focuses instead on 
cluster algorithms: more specifically k-means 
clustering [14]. We believe that machine learning 
implementations have yet to reach the desired 
maturity to be able to deliver 100% accurate 
results in industry-competitive environments, but 
can act as a good tool to provide hints and insight 
that can help conventional security applications 
and network analysts reach a decision faster. 
K-means is ideal from this point of view because 
it converges relatively fast towards a local 
optimum. This type of analysis can highlight 
anomalies present in network traffic [9]. When 
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combined with other techniques, k-means has 
been known to detect novel intrusions [7] and 
reduce false alarms [25].	

2.2 Parallelism

Shallow packet inspection itself is faster than 
DPI. The algorithms involved in processing the 
metadata can be complex and require continuous 
iterations in order to keep up with new patterns 
and rules. An efficient solution to reduce the 
runtime is to make use of the single instruction 
multiple data (SIMD) paradigm and harvest the 
inherent parallelism available in most current 
hardware architectures. NIDPSs applications 
like Suricata already employ a multi-threaded 
design for their pattern-matching engine [8]. 
GPGPU computing can speed up mathematical 
computations and string matching operations. 
Researchers have experimented with offloading 
CPU-intensive tasks of regular NIDS to the GPU 
with promising results [19] [21].

Hardware vendors are investing in technologies 
like OpenCL and CUDA, which promise to make 
GPU programing more suitable for general-
purpose applications. There is also a drive to 
design hybrid systems that can leverage the 
computing power of the CPU and GPU for 
the purpose of accelerating network intrusion 
detection [1] [11]. Parallel implementations of 
clustering algorithms have been used before to 
detect malicious behaviour on the network and in 
antivirus software [13]. The framework presented 
in this paper is designed in a versatile manner 
and can benefit from the extra computing power 
available in a common GPU.

2.3 Related Work

Similar works have explored the high degree 
of parallelism of the k-means algorithm and 
proposed a series of optimizations on FPGA 
hardware [3]. Machine learning represents a 
current trend in network security and is applied 
to counter new types of threats. Security experts 
that develop applications performing some form 
of intrusion detection or malware scans are 
starting to look into new technologies to improve 
the performance and reliability of their software. 
Detection probability increases with the amount of 
data analysed. Solutions based on shallow packet 
inspection and machine learning models are 
expected to provide low overheads and reasonable 
amounts of accuracy. In practice this means that 

a second line of defence is needed to increase the 
security of a network or system. A consequence 
of this hybrid approach is that we can trade the 
accuracy of the first line of defence for speed and 
the workload of conventional security solutions 
performing DPI will be reduced. Thus the overall 
protection levels remain the same and the cost of 
DPI is amortized. Academic research in this field 
is looking for solutions to complement existing 
detection methods by classifying existing traffic 
patterns and flagging anomalous behaviour that 
deviates from accepted baselines [26]. Metadata 
is extracted from large traffic databases and live 
streams. Data acquisition techniques are often 
proprietary and customized to fit the needs of the 
environment they are deployed in. To differentiate 
from this practice, the current paper looks at 
the raw format exported by open source traffic 
interception tools and proposes a framework that 
does not require the adoption and any proprietary 
format or technology for extracting and storing 
packet information. Instead we rely on the 
particularities of the pcapng file format and try 
to encapsulate traffic metadata inside the pcapng 
traces in order to make them available to other 
network analysers and forensics tools.

3. Data Acquisition and Feature 
Extraction

3.1 Test Data Format 

The first part of the framework described in this 
paper addresses data acquisition and feature 
extraction. The framework uses as input data trace 
files outputted by traffic interception software such 
as Wireshark [22] or tcpdump [18]. These tools 
capture all the traffic contents, including physical 
level headers, and encapsulate it using a specific 
format. The oldest and most common format is 
pcap. Pcap files contain a header with capture 
information like timestamp accuracy, maximum 
length of a packet and data link information. This 
simple format has become de facto standard and 
is recognized by most networking applications. 
Network contents are immediately available upon 
parsing the header and can be used to simulate 
the speed of packet processing tools if live traffic 
is not available. The format is useful for storage 
and presentation of network data but lacks some 
of the advanced features that may be useful for 
security analysts. For instance, any pre-processing 
information extracted from a pcap file would need 
to be stored in either a separate format or in a 
separate location, otherwise the original trace file 
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might become unusable for other tools. To answer 
some of these needs a more flexible format was 
proposed: pcapng [6]. The great advantage of 
this format is that it allows applications to insert 
custom blocks of information into a trace file. 
Some custom blocks have been standardized to 
include information about network interfaces, 
statistics or name resolution. Applications are 
allowed to define new blocks and insert them into 
the trace file without breaking it for other tools 
(which will simply ignore any unrecognized 
block). Pcap files can be upgraded to pcapng 
format and pcapng traces can be downgraded to 
pcap, albeit with a loss of any non-standard data. 
The fact that it can be customized makes pcapng 
ideal for applications that want to extract and 
embedded metadata into network trace files.

NetFlow [5] is a commercial standard developed 
by Cisco for extracting metrics from network 
traffic. There is an entire industry built around 
the analysis of NetFlow output files; the metrics 
generated are used for a wide range of purposes 
including data mining, threat mitigation or 
marketing purposes. Real time acquisition 
requires dedicated hardware, but sample files 
are available for testing purposes online. The 
format consists of a series of templated blocks 
that can be manipulated by our framework in a 
similar manner to the pcapng custom blocks. Most 
information that can be extracted from pcapng 
files can be readily found in NetFlow files (the 
opposite is not true as NetFlow does not store 
packet payloads). An argument for selecting 
pcapng rather than NetFlow is that pcapng does 
not require any dedicated hardware or proprietary 
software in order to capture traces. The availability 
of packet contents allows the traces to be used by 
deep packet inspection tools if metadata analysis 
is deemed insufficient. 

3.2 Pre-processing and Feature Extraction

In order to manipulate pcap and pcapng files we’ve 
created software pack (consisting of a library and a 
set of tools) that can parse trace files and compute 
relevant information based on a set of user defined 
metrics (for example: average packet size, total 
connection time, etc.). The library APIs can be 
used to store the data for easy retrieval inside the 
original trace. The pre-processing module offers 
further support for:

-	 Packet filtering

-	 Flow reconstruction

-	 Host metrics (CPU load, amount of memory 
used, etc.)

Implementation details for the library and its 
helpers can be found here [20]. The most important 
task performed at this stage is the generation of 
key-value pairs that can be used as input features 
for the next stage (clusterization).

The keys are associated with user-defined metrics. 
Each of them has a corresponding compute kernel 
that processes an atom trace. We refer to an atom 
trace as a subset of packets that were filtered 
during the previous stage of our application and 
may only be relevant for a very specific scenario. 
An example of an atom trace would be all the 
packets captured within a 1 ms window, regardless 
of upper level protocol or interface. This kind of 
specialized analysis might be useful in identifying 
botnet behaviour by singling out command and 
control traffic [16]. The compute kernel will output 
a scalar or vector result. The current framework 
implements this pre-processing stage on the CPU. 
If multiple files are used the process becomes I/O 
intensive and is unsuitable for GPUs. In our study, 
the kernels used for gathering the metadata do not 
analyse a packet’s payload. The feature extraction 
stage can be performed in parallel on the CPU 
because there are no data dependencies between 
atom traces.

Once the features have been extracted, they are 
stored in memory or on the disk and a map is 
created connecting them to the original trace or 
flow. The end result is a matrix of floating point 
numbers that will serve as input for the machine 
learning algorithms.

4. Parallel Clustering

4.1 K-means

The floating point matrix is composed of values 
scaled to [0, 1] interval. Each of them represents a 
normalized feature computed during the previous 
stage. A parallel k-means algorithm is then 
applied to the dataset. The parallel frameworks 
used for the clusterization are CUDA, OpenCL 
and OpenMP. The results section will contain a 
performance summary for all 3 variants and a 
serial version. For the graphics APIs, the memory 
is transferred from the CPU to the GPU and the 
centroids are randomly initialized. Each GPU core 
iterates through all the centroids and attaches itself 
to the nearest, thus forming a new cluster. After 
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this operation, the data is copied back to the CPU 
and new centroids are computed. These actions 
are repeated until convergence is achieved. During 
the loop, centroid values and indices are updated 
between CPU and GPU. A global error value is 
computed for the final configuration. Based on 
the error value we decide whether to repeat the 
process using new random centroids or a different 
number of clusters. The implementation supports 
Euclidian distance as well as other metrics in 
order to be able to create outputs with different 
properties (for example an analyst may decide that 
the network source address outweighs the size of 
the packets in a trace). 

The CPU-parallel version follows the same 
logic; the difference is we don’t have to perform 
any memory transfers and the number of 
threads is much smaller (for an 8-core CPU, no 
performance improvements were recorded for 16 
threads or more).

4.2 Result Visualization

After the algorithm has converged for the current 
configuration (given by the features and cluster 
count), we offer the possibility of visually 
displaying the data via Octave or Matlab. Network 
analysts can create scripts to single out flows or 
rely on visual inspection to identify anomalous 
behaviour. Our framework allows users to alter or 
create new features from the metadata and restart 
the computation. Multiple iterations with different 
features are intended to cover a wider range of 
scenarios. If any suspect behaviour is identified the 
feature values can be used to create filtering rules 
for future traffic. The results of the analysis can be 
stored alongside the original trace so that they are 
easily accessible for future iterations or to other 
tools. For example as new traffic is being captured, 
the old configuration and features could be used 
for a faster and more accurate classification. If the 
results are not conclusive, the features used for 

the shallow analysis can be recycled to provide 
hints for a more in depth inspection. The whole 
workflow from data acquisition to visualization 
can be seen in Figure 1.

Once deployed, the model can be subject to 
improvement. A high number of false-positives 
could be an indication that the original dataset 
used to build the model is not relevant for the 
current environment. Our framework allows 
network analysts to perform a quick investigation 
and determine if the how the model could be 
improved based on the new information.

If the detected anomaly is the manifestation of a 
previously unknown benign behaviour the k-means 
iterations can be restarted. The whole process 
is designed to be streamlined as to necessitate a 
minimum of effort from the human side.

5. Case Studies and Results

A constant challenge encountered during the 
development and testing process was the availability 
of network traces. In order to test our framework we 
selected a set of pcap and pcapng files from publicly 
available sources123. The objective was to analyse 
these traces and identify anomalous behaviour. To 
add more variation into our input data we created 
a “virtual packet/flow” component which was 
integrated at the “Trace/Log” stage mentioned in 
the figure above. This component could perform the 
following tasks on the extracted metadata:

-	 Multiply a flow (simulate similar behaviour 
by either copying the exact features or adding 
some minor variations)

-	 Create obvious anomalies (given the 
minimum, average and maximum values for 
a feature in a set of flows, it could generate 
new entries that are out of the “normal” range)

Figure 1. Framework workflow from data acquisition to detection or visualization
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These new entries would augment the original 
dataset and allow us to tune the algorithm during 
the training phase.

Attacks that can be singled out through flow 
clustering are distributed denial of service (DDoS). 
These attacks use remote terminals to send multiple 
service requests to their target, overwhelming 
its ability to respond to legitimate clients. The 
results experienced by the victim could range 
from increased response times to total shut down. 
The features our implementation will look in the 
attacker’s traffic are origin of incoming traffic, 
increased packet frequency, unusual amount of 
data transferred, malformed requests, application 
characteristics (port numbers, protocol flags, etc.). 
These features will be computed and stored inside 
the trace files during the pre-processing stage. 
Feature toggling is done via a configuration file that 
is used by the clustering application. This allows 
the user to experiment with different combinations 
of features until the clustering provides adequate 
results. The features, stored as type-length-value 
(TLV) inside pcapng custom options are loaded by 
the parallel cluster application. In the case of GPU 
parallelism they are sent to the device together 
with an empty vector which will contain the 
desired output (cluster id for each element). The 
k-means loops are repeated until a clear pattern 
is identified and the clustering error reaches an 
acceptable minimum.

The input set consisted of metadata extracted 
from over 1400000 flows corresponding to 
approximately 50 TB worth of traces. In order to 
determine the best configuration for the current 
data, the k-means algorithm was run iteratively 
for clusters ranging from 1 to 32. The intentions 
was to determine the “drop-off” point where 
performance degradation no longer justifies an 
increase in accuracy.

Figure 2. Evolution of clusterization error vs. 
computing time as the number of clusters increases

The above chart shows there is a significant drop 
in the error function after 6 or more clusters and 
increasing the number of clusters above 16 causes 
significant performance penalties for our specific 
dataset. For our experimental measurements we 
selected a configuration that uses 8 clusters and 
8 features to map the captured traffic. The list of 
features is as follows:

1.	 Total amount of data transferred
2.	 Duration of the flow
3.	 Average time interval between two consecu-

tive packets
4.	 Relation between source and destination 

address (if they are in the same network or 
not)

5.	 Type of protocol (TCP, UDP, IGMP, ICMP 
or other)

6.	 Number of packets in a flow
7.	 Transport layer protocol (boolean feature)
8.	 Use of encryption (boolean feature)

The performance was measured on a desktop with 
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz 
quad-core CPU with hyperthreading and an 
GeForce GTX 970 graphics card. The operating 
system used was Linux (Ubuntu 16.04). The 
CUDA and OpenCL implementations were 
provided by proprietary NVidia SDK and drivers. 
The total computing time for the selected dataset 
was less than 1 seconds for all configurations.

Figure 3. Performance of parallel k-means 
implementations

The results show an overwhelming advantage 
of GPGPU over parallel CPU implementation 
of k-means clustering: increasing the training 
speed by a factor of 5 and the compute-intensive 
centroid assignment by a factor of 15.

After the training phase we deployed the model 
and performed classification on 500000 new 
flows. The algorithm mapped the new entries to 
the previously computed centroids. The speedups 
for deployment phase were consistent with the 
previous training results.
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Figure 4. Mapping new traffic to existing model 
performed better on the GPU

The parallel kernel used to compute the results in 
Figure 4 can be seen in the following listing.

K-means nearest cluster GPU kernel
Input: 
__global const double *data
const int nr_obj
const int nr_coord
__global const double *centroids
const int nr_centroids
Output:
__global int *membership
{
  int object_id = get_global_id(0);
  int index = 0;
  double min_dist = 1000000.0;
  double tmp;
  int i, j;
  __global double *current = 
	
&data[object_id * nr_coord];

  for (i = 0; i < nr_centroids; ++i) 
  {
    double dist = 0;
    __global double *cluster = 
	
&centroids[i * nr_coord];
    for (j = 0; j < nr_coord; ++j) 
    {
      tmp = current[j] - cluster[j];
      dist += tmp * tmp;
    }
    if (dist < min_dist) 
    {
      min_dist = dist;
      index = i;
    }
  }
  membership[object_id] = index;
}

The visual representation of network flows can be 
viewed in figure 4 (features 3, 4 and 5 have been 
omitted for better visual representation).

Figure 5. Flow visualization after k-means 
training stage. The dots in the chart represent the 

characteristics of the items being part of that cluster

Cluster centroids can be used to determine if 
future traffic matches an existing pattern. If the 
framework is trained with legitimate traffic, large 
clustering errors could be the sign of unusual 
activity on the network. Upon further inspection, 
a network analyst could determine if the unusual 
activity is part of a normal change in behaviour 
or a threat. The framework could be trained with 
samples from known attacks to recognize them 
amongst the data in the future.

Figure 6. We are able to detect new traffic patterns 
by deploying the model computed in Figure 5

New elements can be appended to the training 
dataset and the cycle can be repeated with ease. 
To test this scenario, we added a set of DNS-based 
attack samples (DNS flood attack) to our model 
and increased the number of clusters. The new 
flows stood out from the original traffic and were 
easily identifiable from the output. Once singled-
out, the anomalous traffic can be analyzed using 
dedicated tools to determine its true nature.

The parallel nature of the framework makes it 
ideal for deployment in distributed environments. 
Since the information processed is based on 
extracted metadata, the impact of data transfers 
in the network should be minimal. Besides faster 
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execution, GPU-offloading allows the CPU to enter 
a low-power state earlier and reduce system load.

6. Conclusion and Future Work

Using our framework, the amount of information 
extracted for the proof of concept accounted for 
0.002% of the original trace size: from a flow that 
averaged 3.2 MB in total bytes transferred we 
extracted 8 features as double precision floating 
point values. The accuracy of the model depends 
greatly on the amount of data used for training 
and feature selection. The framework described in 
this work allows users to add filters and customize 
feature selection and k-means arguments. We 
exploit the pcapng format to encapsulate the 
extracted information inside the original traces for 
future use and provide the means for rapid retrieval. 
The preprocessed data is organized in a way that 
makes it friendly for high performance applications 
to manipulate. Machine learning techniques such as 
clustering algorithms provide a fast way to classify 
the data and perform well in parallel environments. 
The experiments described in the current paper 
demonstrate the effectiveness of GPU-programming 
in accelerating the k-means algorithm.

The measurements favor CUDA over OpenCL on 
the test setup. The OpenCL implementation has a 
GPU runtime comparable with CUDA, but suffers 
a large overhead during the build-up stage. This 
penalty was attributed to the performance of the 
OpenCL system library.

Each of the components described here can be 
decoupled and act independently. This modularity 
makes it a useful tool in developing new network-
analysis applications. The technologies used are 
publically available and run on most conventional 
devices. A careful selection of features can 
result in deployments that can quickly sort out 
large amounts of data. This could be useful in 
eliminating uninteresting traffic early on. Future 
efforts will aim to implement a real-time filtering 
mechanism based on the current experience.

In conclusion we advocate that the new pcapng 
trace format can be used to extract and store 
metadata from network traffic, which in turn can 
be used to perform shallow packet inspection. 
The case study presented offers an example 
of detecting DDoS attacks with a parallel 
implementation of a classic clustering algorithm. 
The results suggest that offloading this type 

of computation to the GPU can increase the 
performance of a software application serving as 
a network intrusion detection system.

Endnotes

1http://www.unb.ca/cic/research/datasets/nsl.html 
2http://www.netresec.com/?page=PcapFiles 
3https://www.simpleweb.org/wiki/index.php/Traces
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