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1. Introduction

Is it feasible to classify nodes according to their 
age without performing measurements? Until a 
few years ago, an affirmative answer would be 
puzzling due to the predictability of network 
structure.  Nevertheless, recently the authors in 
[16] have shown how to trace the oldest node 
sources of an evolving graph, using only the 
eigenvalues and eigenvectors of the Laplacian 
matrix. This identification issue is to be regarded 
as a complex one, but the advantages to be gained 
in many fields of science are so relevant to justify 
the efforts of many researchers [6], [7], [1]. The 
interest of this inverse problem lies in a variety 
of applications such as in IT security, computer 
science, medicine, pharmacology, archaeology, 
finance, engineering, biology, but till a few years 
ago solutions were not foreseen. In this work, we 
show that it is possible to identify the oldest nodes 
both of heterogeneous real world technological 
networks and of an epidemic spreading graph, 
namely: the Paris’ underground (during the period 
1900-1949), the diffusion of a software worm in 
a computer LAN, a cholera outbreak. Moreover, 
we suggest a necessary condition to recognise the 
networks suitable for the age analysis and a rough 
estimator of the algorithm performance. 

In [12], Pinto has developed a procedure to 
estimate the location of the epidemic source 
from measurements collected by sparsely placed 
observers using a maximum probability estimator. 
Each monitor (about 20% of the nodes were 
followed) measures from which neighbour and 
at what time has received the contagion. The 

collected data are used to produce the estimate, 
whose complexity is O(N3), with N that represents 
the number of nodes. Results of the validation 
test on the Kwa Zulu cholera outbreak in South 
Africa in 2000 show the estimation error are 
below four hops. In this paper, we consider the 
“patient zero” as the oldest node of the cholera 
outbreak graph. Thus, we see no difference among 
the three different networks, and consequently, we 
can apply the same methodology.

The authors in [16] instead have developed a 
deterministic spectral strategy based only on the 
topology of the network. De facto, the authors 
solving an inverse problem and at the same 
computational cost O(N3), applying this method 
to the Santa Fe Institute (SFI) co-authorship social 
network [8] and the protein-protein interaction 
network. In this paper, we investigate the growth 
over time of graphs, identifying the source nodes 
that started the growth on a real topological basis. 
The primary goal of this work is to study some 
heterogeneous prototypical real-world networks 
to provide tools for practical applications. We 
emphasise that the age of nodes, except for 
the previously mentioned literature, was not 
investigated adequately. Above all, the analysis 
of real networks was neglected. Thus, our paper 
tries to fill the gap.

The graph (the mathematical counterpart network, 
but the two words are almost equivalent) to be 
analysed results from a growth intended as an 
evolution over time, generally depending on 
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stable, non-stochastic, “smooth“ transformations. 
When its topology is known, the authors in 
[16] claim that the eigenvalue spectrum of the 
connectivity matrix or preferably of the Laplacian 
matrix is related closely to the age of nodes. The 
correlation between eigenvalues and age is strictly 
required; moreover, if no evolutionary process 
was developed in the past, the method is not 
applicable. The correlation is evident in the case of 
the graphs that follow the preferential attachment 
rule (“rich get richer”) because the probability 
for a node to acquire new links is proportional to 
its degree. Therefore, a high correlation between 
the node degree and its lifetime is sure, but real 
world networks are much more complicated [15], 
[10]. For a given eigenvalue, the time frame of 
the associated eigenvector is the average age of 
all nodes contained in the vector, weighted by the 
respective components of the eigenvector. 

2. Methodology

The first step of our methodological framework is 
based on the Laplacian matrix,

 L = D – A,                                                        (1)

where D is the degree diagonal matrix and A the 
adjacency matrix (aij = 1 if the link i-j exists and 0 
otherwise). The second step is represented by the 
standardisation of each eigenvector components: 
vi  = | vi  / max (vi)  |, with i = 1, 2,  ... N. The third 
step is represented by the seniority ranking. Nodes 
with standardised component values larger than a 
threshold are clustered in a particular age subset 
and related to the associated eigenvalues. Thus the 
largest eigenvalues are associated with the oldest 
node and so on. This method, tested on the Santa 
Fe Institute co-authorship of the scientific papers 
social network [8], can classify the age of nodes 
[16] altogether, see Figure 1. For example, the first 
three larger eigenvalues of the Laplacian, related 
to the nodes corresponding to the eigenvectors 
selected by the thresholding procedure, indicate 
the three oldest nodes of the network of figure 1 
and figure 2: λ76>λ75>λ74 ↔ 40, 7, 67 where 40 
is the oldest node, and the λN>λN-1 > … >λ1 is the 
descending eigenvalue spectrum. The procedure 
presented in [16] is due to the observation that 
the eigenvector size in networks, such as the 
protein-protein interactions, do not seem to 
increase, while the corresponding (according to 
the threshold procedure) eigenvalue does. No 
suggestions about the characteristics of evolving 
networks suitable to be age-analysed or how to 

choose the threshold’s value are given. Hence, we 
note that it has been discovered [9] in many social 
networks how a significant non-random graph 
is changing over time results in a continuous 
variation of the adjacency matrix eigenvalues, 
while the eigenvectors stay (relatively) constant. 
Therefore, the correlation between the node ages 
and the largest eigenvalues comes as a direct 
consequence. Although authors of [9] apparently 
were not aware of the relation eigenspectrum-
age, they sketch a demonstration for a necessary 
condition on the eigenvectors, which we consider 
a sound approach to explain the age – eigenvalue 
correlation, as follows. The procedure starts from 
the standard eigenvalue decomposition of a graph:

A(ti) = V(ti) Λ(ti) V(ti)’                                     (2)

with, i = 0, 1, 2, …, N. In (2), A is the adjacency 
matrix, V the eigenvectors matrix, V’ its 
transpose, Λ the eigenvalues matrix, at time ti . 
If the eigenvectors remain constant, it possible 
to write: 

A(ti+1) ≈ V(ti) Λ(ti+1) V(ti)’                               (3)

with                     

Λ(ti+1) = Δ’(A, V, Λ) + Λ(ti)                           (4)

Since V has orthogonal columns, we can compute 
the best fit of Δ in a least-squares sense, 

Δ’(A, V , Λ) ≈ V(ti)(A(ti+1) – A(ti)) V(ti)’         (5)     

Now the calculation requires Δ’ to be diagonal 
any deviation from this condition indicates a 
difference from the type of graph evolution over 
time required, deteriorating the age evaluation. 
The diagonality condition may be relaxed to a 
diagonal dominance. A note of caution: for random 
graphs, such as Erdos-Renyi graphs, eigenvectors 
increase faster than eigenvalues [7], hence in this 
case the age analysis is unfeasible. The next step 
consists of introducing our alternative procedure. 
We have noted that:  

A(ti+1) ≈ V(ti) Λ(ti+1) V(ti)’                               (6)

Hence, 

tr(e A(ti+1)) =  tr(V(ti)e Λ(ti+1)V(ti)’)  =

= Σj e
λj                                                              (7)

with λj=λj(ti+1). If eigenvectors stay almost 
constants, most of the variation of the trace from 
time ti to ti+1 depends on from the eigenvalues; 
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in particular, each node i contributes with the 
quantity SCi = Σj (v

i
j)

2eλj, where λj=λj(ti+1) and vi
j 

denote the i-th component of the eigenvector vj. 
The SCi parameter [8] called subgraph centrality, 
is closely related to the communicability index 
ECI defined [11] as: 

ECI = eA  ,                                                         (8)

where i = j determines the diagonal entries of 
ECI matrix that are the SCi values, while for i≠j 
the communicability between node i and node 
j is presented. Now, the larger the ECIii value, 
the older the corresponding node i. Sorting the 
diagonal entries of the ECI matrix is possible to 
recover at the same time the node number and 
its age-rank. Note as SCi may be regarded as a 
self-communicability index [3], so we expect 
similar capabilities for both parameters. A 
probabilistic interpretation may also be given: 
SCi is proportional to the probability of a random 
walker passing close to node i. The Estrada 
indexes communicability and sub-graph centrality 
take into account not only the immediate effects 
of the closest nodes but also the long-range 
effects transmitted through the participation of 
a node in all sub-graphs [5], [6], [3] travelling 
along all the paths available. For this reason, 
ECI and SC can retain the information about the 
oldest nodes through many sub-graphs, during 
the time evolution. Since many significant results 
have been established about the spectrum of the 
adjacency matrix [12], it would be useful to use 
the adjacency matrix instead of the Laplacian, 
without losing insights about the node ages. For 
example, the spectrum of the adjacency matrix 
eigenvalues has been utilised in the last years to 
reveal the most vulnerable nodes to the epidemic 
spreading of viruses and malware [13].

Figura 1. Santa Fe Institute co–authorship 
collaboration network. Nodes represent authors of 
scientific papers related to the Santa Fe Institute. 

Nodes 40, 7, 67 (blue, at the centre of the major hubs) 
are the first, second and third oldest node, respectively

Figura 2. ECI classifies the oldest nodes of the Santa 
Fe Institute co-authorship collaboration network. 

On the abscissa are the node numbers, on the 
ordinate the ECI values; node 7 and node 40 have 
both an ECI value about 120 that is the maximum 

value. Therefore they are the first two oldest nodes. 
ECI classifies correctly the first two (40, 7) out of 
three (40, 7, 67) oldest nodes, but fails to node 67, 

mistaken with node 24. Note in the red dotted circle a 
group of coetaneous nodes

3. Node seniority algorithms’ 
Application & Results

3.1 Application: Using benchmarks to 
validate ECI procedure

A unified procedure based on the eigenspectrum 
would be elegant, theoretically sound and could 
be set in the larger framework of the graph 
entropy, the quantum mechanics, the non-linear 
oscillators [4], [3]. Then what are the advantages 
and drawbacks of the ECI procedure compared to 
the Zhu at al. [16] algorithm? From an algorithmic 
point of view, the Estrada communicability 
is simpler: does not need thresholds and the 
information on the nodes are quickly recovered 
as the diagonal entries of the ECI matrix. On the 
other hand, the Zhu at al. algorithm is certainly 
more accurate and usually slow, unless particular 
parallelization techniques are used. Thus, when 
precision for all nodes is needed, we suggest 
resorting to the methods introduced by Zhu at al. 
Otherwise, the ECI may be considered, according 
to circumstances. To validate the ECI procedure 
against benchmarks before the actual use, we 
have selected the social network of the Santa Fe 
Institute scientific co-authorship collaborations 
[16], [8], some artificial Barabasi-Albert graphs 
[10] and the cholera Kwa Zulu outbreak [12]. The 
Santa Fe Institute collaboration example shows 
that our ECI procedure recovers exactly the first 
two nodes (40, 7) out of the three (40, 7, 67) 
oldest, as follows: 40 125.19 ECI, 7 123.78 ECI, 
24 55.75 ECI. The Zhu at al. algorithm [16] in this 
example can calculate exactly the seniority for all 
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nodes, taking full advantage from the Laplacian 
matrix and therefore is more accurate. However, 
we point out that our interest is limited to the first 
oldest nodes. Another benchmark is the Barabasi-
Albert graph (B-A) for 1000, 2500, 10000 nodes. 
Locating the sources of this kind of graph is easy 
because of the preferential attachment rule sets 
a high correlation with the degree [1]. The ECI 
procedure, in fact, finds the four sources (nodes 
1, 2, 3, 4) within the first six positions of the 
calculated ranking (2, 4, 1, 21, 17, 3), adding 
two false positive nodes, 21 and 17. While better 
results with a B-A graph for 2500 nodes is: the 
four sources (nodes 1, 2, 3, 4) are the first five 
positions of the ranking (4, 6, 3, 2, 1) adding as a 
false positive only node 6. Finally, for a B-A graph 
of 10000 nodes, we obtain all the sources (2, 3, 
1, 4) with no errors.  Then we can conclude that 
the ECI method is less accurate concerning the 
Zhu at al. algorithm, nevertheless provides good 
performance for the very oldest nodes.

3.2. Results

An important question to consider is whether 
the node seniority algorithms are robust to errors 
occurring in the adjacency matrix, i.e. nodes/links 
missing or wrongly added. In fact, very often 
when investigating the real world phenomena, one 
is compelled to face incomplete information about 
the topology of the network and the reliability of 
the algorithm becomes a major issue. Therefore, 
it may be convenient to stop the analysis at the 
very first oldest nodes, let’s say 10% of the total 
amount. Having validated the ECI procedure 
it is possible to apply this method to networks: 
the underground of Paris, a computer network 
and the contact graph obtained from the cholera 
outbreak of Kwa Zulu [12]. We stress that from 
the theoretical approach described before there is 
no difference between the mentioned networks. 
The Paris underground during the period 1900-
1949 is shown in Figure 3. It can be seen a sort 
of ring surrounding the downtown city with the 
first 1900 − 1910 underground stations. The graph 
has been produced considering only the most 
important stations and the final destinations as 
actual nodes see Figure 4. The task, to identify 
the five oldest nodes (period 1900 − 1906) located 
inside the ring, is made harder by some young 
nodes and links added inside the ring during the 
period 1939 – 1949, see Figure 4. The five oldest 
nodes are captured by ECI method within the first 
eight (bold): 1, 64, 24, 3, 30, 31, 16, 27. After the 
1910 many new lines were connected to the 1900-
1910 nodes, disturbing the original topology; the 

newer structures were superimposed to the first 
ones causing noise to the algorithm. Hence, this 
test is rather challenging, as always when the 
network is a real one. Moreover, some important 
stations have been discarded producing an extra 
amount of noise. To verify further the effect of 
deleting nodes, we eliminate the last seven 63-70 
(four of them 64, 65, 69, 70 are inside the ring). 
ECI captures the five actual oldest nodes 1, 16, 
31, 27, 3 exactly. However, what happens if some 
of the oldest nodes disappear from the graph?  
Eliminating the first seven nodes 1-7 (remember 
1 and 3 are among the oldest five), ECI captures 
16, 31, 64 out of the remaining 16, 31, 27. Thus, 
only the node 64 is mistaken as false positive. 
This last result is particularly important because 
it demonstrates a negative growth (e.g. some of 
the oldest nodes disappearing at the end of the 
evolution of the graph) does not damage the age 
identification unduly.

 
Figura 3. The network of Paris’underground. The 

green line is the older, and inside the green ring, there 
are the very first stations dating back to the years 

1900-1906 (black circles)

Figura 4. Main underground stations are represented 
in the graph. The green nodes belong to the 1900-

1910 line. The oldest nodes (1, 3, 16, 27, 31) in the 
ring have been identified correctly (circle). Brown 
nodes are the 1939-1949 stations: most of them are 
the ends of lines, but 64 and 65 are inside the ring 
(black arrows). The total number of nodes is 70

In the case of the cholera outbreak [12], we 
consider the actual source, node 87, as the oldest 
because it developed the epidemic diffusion. The 
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event of the cholera outbreak of Pinto shows that 
his probabilistic algorithm is accurate within less 
than four hops. Considering only three hops, to 
have an exhaustive search fifteen nodes should 
be taken into account (82, 83, 84, 85, 86, 88, 
89, 90, 92, 99, 100, 101, 102, 103, 205). On the 
other hand, the ECI algorithm captures node 87 
as the 14th in the calculated seniority ranking (68, 
20, 140, 18, 121, 124, 67, 196, 28, 27, 133, 197, 
24, 87). Hence, the performances are similar. 
However, the probabilistic algorithm of Pinto must 
monitor about the 20% of the nodes. Instead, ECI 
needs only the topology, that is, of course, a pivot 
advantage. The ex-post (meaning the stop criterion 
is known) search for “patient zero” is reduced to 
about the 7% of the nodes. In this case, applying 
the ECI to the Laplacian matrix instead of the 
adjacency matrix would improve the performance 
considerably; in fact, node 87, the epidemic source, 
would be ranked as the 7th oldest. Moreover, we 
have deleted some less relevant nodes to test 
the robustness of the algorithm again. The last 
application that we consider in this paper regards 
the diffusion of a software worm on a computer 
local area network (LAN) with 759 nodes, see 
Figure 5. The graph suffers from the absence of 
some links, due to the inherent difficulty of the 
data collection. Considering the first three ECI 
nodes 359, 492, 214, we find as, within an error 
margin of 5 hops or less from nodes 359, 214, 
(excluding node 492 that is entirely mistaken) 
the actual sources 1, 2, 3 are all reachable. The 
sources are reachable from node 359 within five 
hops and within four hops from node 214. On the 
other hand, ECI captures two sources 3, 2 (out of 
1, 2, 3) respectively as the 25th and 27th (359, 
492, 214, ..., 3, 59, 2). The other option to find the 
sources is the exhaustive visit of the 27 nodes 359, 
492, 214, ..., 3, 59, 2, that is very short (3.6% of 
the total number of nodes).

Figura 5. The graph of the computer LAN infected 
by a software worm. Infection begins from nodes 1, 

2, 3, (red) inside to the dotted rectangle. The network 
is incomplete as many links are missing, but the 

algorithm proved to be robust

Of course, it would be useful to know the margin 
error to stop the visit as soon as possible. We 
do not calculate the error margin, but provide a 
rough estimate of the algorithm performance: we 
propose a well-known global index [8], [9]:

EIN = 1/N Σi e
λi                                                        (9)

averaged over the number of nodes. If the 
eigenvalues are the algebraic counterpart of the 
geodesic graph properties, they should be able to 
indicate the algorithm effectiveness, since EIN 
is known to be a measure of the global graph 
connectivity that influences the communicability. 
Therefore, a high EIN value could be correlated 
to a good performance of the algorithm (Table 1). 
Consequently, if the EIN parameter is significant 
on a BA network of the same size, it is probably 
possible to stop the visit to the first 10% of the 
total number of nodes. Of course, this is only 
a preliminary analysis of a limited data set 
preventing statistically significant claims. To 
validate an accurate statistical correlation between 
EIN and the real outcome would be necessary 
an extensive analysis on a large number of real-
world networks of different kinds, supported by 
the standard statistical tests.

Table 1. The networks are ranked according to EIN. 
Although discrepancies are present, nevertheless the 
EIN follows the ECI performance. The performance 

ranking in the last column (the best-evaluated 
performance is numbered 1) is somewhat arbitrary

Graph

Avr. Estrada

   Nodes       Index    Perform.
LAN 759 2.58 8
ER 200 2.59 9
Kwa Zulu 205 2.68 6
BA 110 110 2.78 7
Underground 70 5.55 5
Santa Fe 76 13.76 4
BA 1000 1000 7.87 3
BA 2500 2500 19.5t 2
BA 10000 10000 697 1

It was already known that the eigenspectrum 
describes the depth characteristics of graphs 
efficiently, but is amazing to unveil its capability 
to identify the age of nodes on a simple topological 
basis in real world networks.
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4. Conclusions 

In this paper, we consider the following problem:  
to identify the oldest nodes or the source of an 
epidemic spreading in real networks, without 
measurements. We have shown that using simple 
graph theory methodologies as well as the 
graph topology in the mathematical form of the 
adjacency matrix the oldest nodes are identified. 
The main tool used is the Estrada-Benzi total 
communicability applied to several real networks: 
an underground, the diffusion of a software 
worm in a LAN and a cholera outbreak. The 
identification of the oldest nodes is feasible within 
a small margin of error, usually due to missing 
nodes or edges. Moreover, this simple technique 
should allow researchers to analyse large size 
networks using currently available elaboration 
resources, avoiding cumbersome calculations, 
while the framework presented in this paper can 
be applied likewise to the complex networks field.
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