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1. Introduction

As society is rapidly leading to an innovative 
concept, named the Internet of Things, 
technology must quickly adapt to new business 
and user requirements and needs. The IoT 
comprises smart devices, sensors, networks, 
cloud solutions, all of them being connected 
through common standards [1, 6].

A commonly agreed architecture of the IoT 
comprises three layers: application layer, network 
layer and perception layer. Since the complexity 
of such systems is constantly increasing, the 
necessity of adapting existing protocols, for 
choosing the appropriate ones and minimizing 
vulnerabilities grows exponentially. 

In this paper, our focus is on the application layer 
protocols used in the Internet of Things. In [5], 
we described three of the most used protocols, 
MQTT, CoAP and XMPP, with emphasis on 
their characteristics, their suitability for certain 
applications and the security they provide. 

The second section of this paper provides a 
short overview of related work in researching 
IoT protocols. The third section illustrates six 
application layer protocols and aims to emphasize 
their characteristics in an IoT environment. The 
fourth section focuses on the experimental setup, 
while the fifth shows the obtained results and 
their interpretations. The last section concludes 
the work in this paper and presents further 
research possibilities.

2. Related work

The communication protocols for IoT have 
been a popular research subject in the last years, 
given the demand of innovation and advance 
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in this field. Several surveys were conducted 
in terms of application layer protocols, which 
were also considered in [5], where we extended 
the presentation by taking into account the 
security MQTT, XMPP and CoAP can provide. 
A comprehensive study on IoT protocols, 
including lower layer protocols, is conducted 
in [2]; in this survey, the authors document the 
current status in this research area and summarize 
security mechanisms for each layer. Other 
surveys that discuss application layer protocols 
by comparison are [3] and [7]. In these papers, 
authors present MQTT, XMPP, CoAP, AMQP, 
HTTP and WebSockets in the context of IoT. 
In [4], authors conduct experiments to compare 
MQTT, WebSocket and CoAP performances on 
LAN, ISP and cellular network. In a scenario 
similar to a real network, they compared average 
RTT and they concluded that changing from 
LAN to an IoT network does not trigger a fall of 
a protocol’s efficiency.

3. Application layer protocols

In this section, we extend the protocols discussion 
from [5] and, in addition, we introduce three more 
protocols, widely used in IoT: AMQP, HTTP 
RESTful services and WebSockets.

3.1 MQTT

MQTT is a lightweight publish-subscribe 
messaging protocol, based on brokers. It uses 
TCP/IP protocol and it is suitable in constrained 
environments, for devices with low memory 
resources or a limited processor. Furthermore, the 
message payload is limited to a maximum of 256 
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MB of information, which makes this protocol 
suitable in expensive and unreliable networks. 

MQTT, through its publish-subscribe architecture, 
“decouples a client, who is sending a particular 
message (called publisher) from another client 
(or more clients), who is receiving the message 
(called subscriber)”1. The broker publishes one 
or more topics, to which clients subscribe to get 
messages. Each topic can have multiple subtopics 
used for filtering messages from connected clients. 
For example, in case of a smart home, a topic 
would be: 
“home/firstfloor/bedroom/temperature”.
According to the MQTT protocol specification2, 
there are three quality of service (QoS) modes 
provided for message delivery:
•	 “Fire and forget” mode, also known as “at most 

once”: in this case, a message arrives once or 
not at all. It is suitable in environments where 
an individual measurement is not vital, since 
a next one would be published afterwards. 

•	 “Acknowledged delivery” or “at least once”: 
a message arrives at least once and therefore 
duplicates can occur.

•	 “Assured delivery” or “exactly once”: this 
mode is the highest QoS; all messages are 
ensured to arrive exactly once. It is useful 
in applications where missing or duplicate 
messages may lead to unwanted results, for 
example a payment service3.

The last two levels are the most reliable ones, 
nonetheless they impose an overhead and 
bandwidth requirements that are not feasible in 
most of IoT environments. However, clients may 
choose the desired level of QoS.

In order to further adapt MQTT to constrained 
devices requirements, a new protocol emerged, 
named MQTT-SN (where SN stands for “sensor 
networks”). According to [10], published by 
IBM in 2013, the differences between those two 
protocols are the following:

1. The topic name in PUBLISH messages are 
replaced by a two-byte long id, instead of 
a string.

2. Short topic names are introduced and they do 
not require registration. 

3. Multiple gateways may exist in the networks 
and they advertise their presence periodically 
by broadcasting massages to connected 
devices. Clients which do not have a pre-
configured server or gateway address use 
a discovery procedure to find the network 
address of a server or gateway.

4. Devices can go in a sleeping mode during 
the time when their messages are buffered 
at the gateway/server; they are woken 
up when messages are delivered. This 
improvement is particularly useful for 
battery-operated devices.

To sum up, MQTT-SN’s purpose is to be used in a 
local network. The specification states that it can 
use a datagram protocol (such as UDP, instead of 
TCP). Since MQTT usually connects directly to 
the cloud, it would be inefficient to use UDP in 
such an error prone scenario. However, for local 
networks with a small number of clients and 
constrained devices, it is more suitable to reduce 
the number and the size of the packets.

As we stated in [5], the MQTT specification does 
not impose any security mechanism, because 
it is designed to be used in secure networks. 
Therefore, it is not feasible to create a globally 
MQTT network.

Since the IoT requires a standard for 
authentication, MQTT relies on SSL/TLS 
encryption. The drawback is that SSL/TLS is 
quite an expensive protocol to use in memory 
and power constrained devices. Nowadays, certain 
brokers accept anonymous clients and therefore 
the username and password are no longer required, 
but it is not desirable in most of the cases. The 
client validates the server certificate during the 
handshake phase, when it verifies its identity to 
authenticate it. Client certificates can also be used; 
the broker can authenticate the client that requests 
the connection4. In an extended network, a poor 
MQTT application design may be easily prone to 
harmful messages injection into the network.

For these reasons, security must be implemented 
on top of MQTT, depending on the specificity 
of the network. For example, in a secured and 
isolated network, this is not the case. 

3.2 XMPP

XMPP (Extensible Messaging and Presence 
Protocol) is a client-server protocol mostly used 
for chat, instant messaging, video and voice calls 
and is standardized by the IETF5. In this protocol, 
data is exchanged between two or more network 
entities using “XML stanzas”, which are small 
pieces of XML structured data. Although XML is 
an appropriate choice in terms of interoperability, 
it usually creates an overhead in terms of 
processing. XML tag parsing increases power 
consumption and computational power and might 
be unnecessary. 
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An XMPP client is required to connect to a 
server to gain access to the network. Therefore, 
it is the entity that establishes the XML stream, 
after authenticating through a SASL negotiation. 
A XMPP server manages open streams with the 
connected clients.

The process of connection is usually the following:

1. Determine the IP address and the port to 
which the client will connect.

2. Open a TCP connection and then an XML 
stream over that connection.

3. Negotiate TLS channel encryption (not 
mandatory, but preferable).

4. Authenticate via SASL.
5. Bind a resource to the stream.
6. Begin to exchange XML stanzas with other 

entities in the network.

7. Close the XML stream and the TCP connection.

Server to server connection is also 
allowed, after negotiating and allowing  
inter-domain communication.

There are two possible paths, since XMPP based 
solutions are usually deployed in decentralized 
client-server architectures: client-to-server stream 
and server-to-server stream. If both entities are 
clients, they need an intermediate entity (a server) 
with a certain level of trust; it is not possible for 
them to open a communication channel directly 
between them. 

As fas as security is concerned, the XMPP 
community did not propose so far an end-to-end 
encryption technology suitable for widespread 
deployment. The IETF recommends, according 
to the RFC, support to authentication via SASL 
and transport security with TLS. SASL provides 
a number of authentication methods from which 
the client can choose; the disadvantage is that 
a weak mechanism can be chosen. SASL uses 
Base64 encoding, that hides easily recognized 
information; however, it doesn’t provide 
computational confidentiality. As discussed in 
[5], IETF recommends secure mechanisms for 
peer authentication, such as SCRAM-SHA-1 
or SCRAM-SHA-1-PLUS, to offer protection 
against man-in-the-middle-attacks, spoofing and 
unauthorized access.

An acceptable strategy for security would be to 
employ a combination of TLS encryption and SASL 
authentication, to provide both mutual authentication 

and integrity. Channel encryption is usually based 
on a PKIX certificate presented by the receiving 
entity or both the receiving and the initiating entity, 
for mutual authentication. The signature algorithm 
should be SHA-256 at minimum.

The vulnerabilities to which unprotected XMPP 
systems are exposed are various: sniffing and 
breaking passwords, eavesdropping, replaying, 
inserting, deleting, modifying stanzas, discovering 
usernames through directory harvesting attacks, 
spoofing, gaining unauthorized entry, man-in-
the-middle attacks and more. One of the issues in 
XMPP emerges from the fact that an XML stanza 
can transit multiple streams and some of them 
might not be protected with TLS. 

To sum up, although XMPP has built-in security 
feature, it might not be practical for M2M 
communication, because it does not provide QoS 
modes [3]. By comparison with MQTT, it has the 
advantage of being a mature and well-established 
protocol and its pub/sub architecture leverages it 
for the IoT.

3.3 CoAP

The third protocol we discussed in [5] is CoAP 
(Constrained Application Protocol). 

CoAP is designed to be interoperable with HTTP, 
since it uses a subset of HTTP methods (GET, 
PUT, POST, DELETE) [3]. It is specialized for 
use with constrained nodes (in terms of memory 
and processing power) and networks (lossy and 
low power), by obeying a request/response model 
between application endpoints, similar to the 
client/server HTTP model.

However, unlike HTTP, uses a datagram-
oriented transport, such as UDP, most suitable in 
constrained environments. Moreover, requests and 
responses are not sent over a previously established 
connection, but are exchanged asynchronously 
over CoAP messages. CoAP supports four types 
of messages: (i) Confirmable (CON), (ii) Non-
confirmable (NON), (iii) Acknowledgement 
(ACK) and (iv) Reset (RST) [5]. 

As CoAP is bound to UDP, an unreliable transport 
method, messages may arrive unordered, 
be duplicated or missing. Therefore, CoAP 
implements a reliability mechanism similar to 
TCP, but more lightweight. Message reliability 
is provided by marking it as CON, eventually 
retransmitting it on a default timeout basis 
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until a corresponding ACK is received from the 
corresponding endpoint. When a message does 
not require reliable transmission, however, it can 
be sent as NON. This could be the case of each 
single measurement out of a stream of sensor data 
(temperature, pressure etc).

The CoAP security mechanisms are largely 
discussed in [2]. We also described DTLS in [5], 
as the substitute of TLS for UDP transport layer. 

Many architectures do not require to employ 
any security at the transport layer level, due to 
the physically limited access. Instead, there are 
mechanisms to provide lower-layer security, such 
as IPSec at network layer, when connecting to the 
outside network. In this case, the packets are sent 
over usual UDP over IP. The security is provided 
by routing techniques and by keeping attackers 
from gaining access to packets to or from the 
CoAP nodes.

Three DTLS modes are available and by 
implementing them, the new architecture is called 
CoAPs (secured), similar to HTTP secured with 
SSL/TLS which became HTTPS [8]. In this way, 
the security association can be used to authenticate 
and authorize the communication peer. CoAP 
does not provide in the specification any imposed 
mechanisms for authentication or authorization.

The four CoAP modes that can be employed in 
addition to DTLS are described below:

The NoSec mode does not provide any security 
and messages are sent without being encrypted.

The PreSharedKey mode is usually implemented 
for devices that cannot support the public key 
cryptography, due to memory limitations. It 
is based on a list of pre-shared keys, each one 
including a list of nodes it can be used to 
communicate with, installed on a device at 
manufacturing time [2]. There may be one or 
more keys for each node. When negotiating a 
connection to a new node, the system selects a 
key based on the nodes it is trying to contact and 
then begins a DTLS session using Pre-Shared Key 
(PSK) mode of DTLS.

In RawPublicKey mode, the device has an 
asymmetric key pair without a certificate (a 
raw public key), an identity calculated from the 
public key and a list of identities of the nodes 
it can communicate with; most commonly, the 
asymmetric key pair is generated and installed 

during the manufacturing process. A device may 
be set up with multiple raw public keys. 
The RawPublicKey mode is “appropriate for 
devices requiring authentication based on public 
keys, but which are unable to participate in 
public-key infrastructures” [2].

The Certificate mode is employed for applications 
that support PKI and public-keys based 
authentication. In this mode, the device has an 
asymmetric key pair with an X.509 certificate 
signed by a common trust root and bound to its 
subject. It also has a list of root trust anchors that 
can be used for validating a certificate. 

ECC (elliptic curve cryptography) was adopted in 
CoAP for RawPublicKey and Certificate modes. 
The advantage of ECC over other algorithms 
such as RSA is that the key length is smaller 
and therefore the computational time is smaller, 
while the security is the same. ECC uses ECDSA 
(Elliptic Curve Digital Signature Algorithm) 
and ECDHE (Elliptic Curve Diffie-Hellman 
Algorithm with Ephemeral keys), supporting 
device authentication [2].

3.4 AMQP

AMQP (Advanced Message Queuing Protocol) 
is sometimes regarded as an IoT protocol, as 
authors in [8] state, since it is about server inter-
communication using queues. Historically, AMQP 
emerged from the financial services, where the 
focus was on interoperability and on not losing 
messages [7].

AMQP is a binary protocol built on top of TCP 
and provides a pub/sub architecture. It ensures 
reliability in the case of network disruptions 
by storing the messages in queues (“store-and-
forward” feature) [3]. It also provides three QoS:

1. At most once: the message is sent once and it 
can be delivered or not.

2. At least once: the message is ensured to be 
delivered one time or more.

3. Exactly once: the message is delivered once 
and only once.

Security is provided by SSL/TLS and/or 
SASL protocols.

3.5 HTTP RESTful services

REST is more of an architectural style rather than 
a protocol, but it is usually considered in terms 
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of HTTP. It relies on exposing resources that 
can be consumed by clients via request/response 
commands. It supports both XML and JSON, 
which is vital for interoperability. Even though 
it is a mature and widely spread protocol, it was 
not optimized for IoT use; however, it is adopted 
by many cloud platforms due to useful features 
such as content-type negotiation, authentication 
mechanisms, caching [3].

Nonetheless, HTTP has a myriad of drawbacks 
for the Internet of Things. Firstly, the overhead 
of the request/response model, as well as the 
possibly long polling are not suitable not only on 
constrained devices, but also on smartphones that 
rely on battery usage. Secondly, HTTP headers 
are very large and contain a lot of information that 
might not be useful in many IoT applications. It is 
likely to have a bigger header than the body of the 
request, which might overuse the network. Finally, 
it is envisaged that the JSON will be replaced by 
binary formats for the IoT environments. The 
advantage of binary encodings is that the schemas 
are automatically enforced and therefore they 
provide less overhead at reading data.

As we discussed in section 3.3, CoAP is a REST-
like, lightweight alternative to HTTP. Even though 
the optimizations brought by replacing TCP with 
UDP are important, it still has the disadvantage of 
the request/response architecture.

RESTful services use SSL/TLS for securing 
communication. However, there are M2M 
platforms that do not have support for HTTPS [3] 
and in this case authentication keys are carried in 
the header of every request, which diminishes the 
overall system security.

3.6 WebSocket

WebSocket is a protocol developed by a 
HTML5 initiative and it is built on top of TCP. 
The specification states that it is a “full-duplex 
communication channel that operates through a 
single socket over the Web”6. 

In terms of architecture, it can be considered 
neither a publish/subscribe nor a request/
response protocol. The connection process is the 
following: the client initializes a conversation by 
starting a handshake action with a server; after 
the connection has been established, messages 
can be exchanged. The process can be perceived 
as similar to HTTP, but the difference is that 
headers are removed and messages are delivered 

asynchronously, in a full-duplex connection [3]. 
Therefore, WebSockets are improved in terms of 
packet payload, but it is still not well suited for 
constrained devices.

The RFC7 states that WebSocket is a standalone 
protocol and its only relationship with HTTP is the 
handshake, which is “interpreted by HTTP servers 
as an Upgrade request”. It uses port 80 for regular 
connections and 443 for secured communication 
with TLS. Client authentication is not imposed, 
however available mechanisms can be used, such 
as HTTP or TLS authentication, cookies etc. 

4. Experimental setup

The purpose of the experiment is to test the six 
protocols we described in the previous chapter 
and to evaluate them from different perspectives. 
In relation to the IoT context, we are interested in 
comparing them from the following points of view:

- Data bytes and total bytes for each protocol.

- Ratio between the useful bytes (i.e. actual 
information sent over the network) and 
the total number of bytes exchanged, 
also called protocol efficiency in [4].

- Data packets and total packets.

- Ratio between the useful packets and the 
total number of packets.

- Average of packet size in bytes.

- Round-trip time (RTT), defined as the 
time required by a packet to travel 
between the source and the destination.

To simulate realistically and efficiently an 
IoT network, we used a PC as a server and 
a Raspberry Pi 3 as a client, which has the 
following technical specifications:

- Broadcom BCM2837, quad core ARM 
Cortex-A53, 1.2GHz;

- 1GB RAM, LPDDR2 (900 MHz);
- 10/100 Ethernet, 2.4GHz 802.11n 

wireless;
- Micro SD port – we used a 1GB card for 

loading Raspbian OS and storing data.

In an IoT network, Raspberry Pi usually acts as 
a gateway between the wireless sensors, which 
measure and send data, and the cloud server, 
whose purpose is to collect the data. 
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Figure 1 illustrates the setup of our network:

1. the sensors and the actuators are replaced 
by a simulator which generates environment 
data: temperature, motion, light, image.

2. the Raspberry Pi, having the characteristics 
we defined above, acts as a gateway. It also 
acts as a simulator and as a client, since it 
interacts with the server.

3. the server, which simulates the cloud server 
of a real IoT network, is a PC with Intel Xeon 
Quad Core processor and 16GB of RAM 
(3GHz), running Ubuntu 16.04.

4. the Raspberry Pi and the PC are connected to 
a 100 Mbps LAN switch.

Figure 1. General network setup 

In our setup, we simulate the measurements by 
generating ten messages that contain a JSON with 
five fields, populated with random data: 

{
  “time”: “2017-07-08T10:00:00.000Z”,
  “temperature”: 25,
  “motion”: 1,
  “light”: 50,
  “image”: “AybdYAbfmfiwbs[...]”
}

The “time” field is the UTC timestamp when 
the message is sent; the “temperature” is a float 
between 20 and 50; the “motion” field is a boolean 
which tells is the sensors perceives movements 
around; the “light” is a percent; the “image” field 
is a generated string of 100 characters.

Then, the data is sent to the cloud server via 
various application layer protocols.

As far as software is concerned, we implemented 
applications for each of the six protocols using 
open-source libraries in Python. The servers are 
hosted on the PC, acting as a cloud server and the 
clients are on the Raspberry Pi. The experiment 
consists in sending the same data from all the 
clients to their corresponding servers, via various 
application layer protocols. The traffic is then 
captured and analyzed using Wireshark.

Implementation details for each protocol are 
further explained in the next sections.

Figure 2. MQTT network

4.1 MQTT

To establish a MQTT network, there are three actors 
needed: a broker, a publisher and a subscriber. 

Figure 2 shows the network we implemented: 
there is a publisher which sends messages on four 
topics and four subscribers, each subscribing to 
one topic.

The broker has the role of a server; we use 
Mosquitto, hosted on the server. The publisher 
and the subscribers are clients, written in Python 
using Paho Client library8. The usage flow for the 
clients is the following:

- Creation of a client instance.
- Connection to the broker.
- Maintain traffic with the broker by using 

a loop() function.
- Subscribe to a topic to receive messages 

– subscribe() function.
- Publish messages to the broker via the 

publish() function.
- Disconnect from the broker.

4.2 XMPP

Since XMPP’s architecture is client-server, we 
can either create a client and make request to an 
existing server or create our own server. In order 
to implement XMPP, we used XMPPPy9 library.

Figure 3. XMPP network 
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The server is Prosody and it is hosted on the PC, 
while the two clients are run from the Raspberry 
Pi. To simulate a chat-like conversation, we 
implemented two clients connected to the Prosody 
server; each client sends five messages to his peer 
and the other receives them. Therefore, we have 
a total of ten messages exchanged, as we have in 
all the implementations. 

4.3 CoAP

There is a myriad of CoAP open-source 
implementations available, however we chose 
CoAPthon [11], a Python library built on top of an 
event-driven networking engine named Twisted.
The CoAP server defines a resource 
(‘measurements’ in our case), and the client must 
query that resource in order to get data. The 
network setup is quite simple and it is depicted in 
Figure 4. The client is hosted on the Raspberry Pi 
and the server on the PC.

Figure 4. CoAP network

4.4 AMQP

To run AMQP, it is necessary to install RabbitMQ 
on the server and declare a queue. After setting the 
environment, clients and servers can send messages 
in the queue and/or consume messages. As the 
documentation states, “AMQP is a two-way RPC 
protocol where the client can send requests to the 
server and the server can send requests to a client”10. 
The Python library used for AMQP is Pika.

Figure 5. AMQP network 

The network setup, as displayed in Figure 5, 
has the RabbitMQ server as a broker between 
the two actors: the server simulates the sensor 
measurement data and sends them to the queue, 
while the client consumes the messages from 

RabbitMQ. Therefore, the server is a publisher 
and the client is a subscriber.

4.5 HTTP RESTful Service

Since HTTP RESTful services require a client-
server architecture, we build a server using Python 
Eve Framework11. The client can be a browser, a 
HTTP client such as Postman or SOAP UI or the 
API can also be consumed with “curl” commands, 
for CLI.
An example of such a command is: 

$ curl -i http://test.com/example
HTTP/1.1 200 OK

The framework requires three features: 
- a MongoDB database,
- a launch script and
- a configuration file, where the necessary 

settings are defined, such as: database 
host, port and name, schema, allowed 
methods bound to certain resources 
and others. For example, for certain 
resources, the use of HTTP’s DELETE 
command can be prohibited.

We define the resource named ‘measurements’, 
which contains information about temperature, 
motion, light and image. The only methods 
allowed are GET – for retrieving data and POST 
– for saving data in the MongoDB database. 
Furthermore, as a custom setting, search can also 
be done on an ‘id’ field.

After setting up the server environment, 
installing MongoDB, installing eve library and 
running the main script, the server can accept 
requests. An example of a POST request, with 
curl, is the following:

curl -d ‘[{“id”: 1, “temperature”: 23, “motion”: 
0, “light”: 50, “image”: “[..]” }]’ -H ‘Content-
Type: application/json’ http://host_ip:5000/
measurements. 
The HTTP Status 200 means that the data was 
successfully saved and it can now be queried 
using a GET:
curl -i http://host_ip:5000/measurements

Figure 6. HTTP network
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The HTTP setup, as depicted in Figure 6, is 
composed of a server application, run on the PC, 
and two clients on Raspberry Pi. The first client 
writes data and the second queries.

4.6 WebSocket

The WebSocket client-server architecture is more 
like a consumer-producer pattern; therefore, there 
are two actors which must be implemented:

-  a client, which sends messages and
-  a server, whose responsibility is to receive and 
store messages from clients.
The Python implementation12 provides supports 
for implementations of both client and server and 
it is built according to the WebSocket protocol:

- An HTTP upgrade request as an  
opening handshake,
-  data transfer, ended with a closing handshake.
Furthermore, the API supports asynchronous 
operations. Once the server has started, it loops 
and waits for clients to connect. A ‘hello’ method 
can also be configured to be sent to a newly 
connected client. When a new client wants to 
connect, the server accepts the connection, 
starts the opening hadshake and delegates to the 
WebSocket handler. The handler is executed and 
the client sends messages; the closing handshake 
and the end of the connection is also performed 
by the server.

Figure 7. WebSocket network 

The WebSocket architecture is simple, as depicted 
in Figure 7. The client, hosted on the Raspberry 
Pi, sends simulated data to the server and the 
server responds with a message of confirmation.

5. Experimental results

The tests were conducted using the same set of 
data, on six different protocols. A raw message 

calculation, outside any protocol encapsulation, 
reveals that one message has a length of 212 bytes. 
The experiment consisted, as stated before, in 
sending ten messages in a JSON format.

The first aspect we are interested in is the relation 
between useful data bytes and total bytes. Figure 
8 shows a big discrepancy between AMQP and 
the other protocols. AMQP sends few packets, but 
with a large amount of data. The most efficient 
protocol from this point of view is WebSocket, 
which sends only 3514 bytes of useful information 
and 9800 bytes in total.

Figure 8. Data bytes and total bytes

Figure 9 shows the ratio between data bytes 
and total bytes per protocol. Therefore, as far 
as protocol efficiency is concerned, XMPP has 
the smallest percent value, of 28,11%. While 
the useful traffic for XMPP was of only 7864 
bytes, the total was almost four times bigger. 
The difference is explained by ACK, RST and 
FIN packets.

Figure 9. Ratio between databytes and total traffic 
bytes

After analyzing data bytes, it is also practical 
to consider data packets. Figure 10 reveals a 
histogram of data packets and total packets 
and Figure 11 presents the ratio between useful 
packets and total of packets. 

While in the previous measurements AMQP was 
emerging as the protocol with the highest traffic, 
in this case CoAP and MQTT have the largest 
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number of packets exchanged. However, this is 
not necessarily relevant in the context of IoT, since 
more packets with few bytes might be preferable 
to few packets with a huge amount of data. 

WebSocket and XMPP exchange the smallest 
amount of packets, from two reasons:

- The data is not separated on topics.
- The information sent in a packet appart 

from the useful payload is negligible.

Figure 10. Data packets and total packets

Figure 11. Ratio between data packets and total 
packets

Since we discussed about packets and number 
of exchanged bytes, another interesting topic 
is the average number of bytes for packets. 
Figure 12 shows the results for each protocol. 
As described in the previous section, CoAP and 
MQTT implemented four topics – temperature, 
motion, light and image and the data queries were 
made on each one of them. On the other hand, the 
other protocols write all topics in one message 
and also read also in one message. Therefore, 
this protocol implementation explains the small 
number of bytes per packet and the relatively big 
amount of packets in comparison with the other 
protocols. However, although WebSocket does not 
implement topics, it still has a good performance 
in terms of average number of bytes per packet 
(approximately 175 bytes), but also on data bytes 
and total bytes, where it has the lowest values 
from all discussed protocols.

Figure 12. Average bytes per packet

Finally, the most relevant measurement, the 
average round-trip time, is presented in Figure 
13. MQTT and XMPP performed the best, with 
0.448 ms and 0.373 ms, respectively. On contrary, 
AMQP has an average of 90.75 ms, a value that 
can by explained by the big amount of data that 
travels in one packet. Therefore, as expected, 
AMQP is a heavy-weight protocol, not suitable 
for constrained devices; it is nonetheless a reliable 
and secure protocol, suitable for handling sensitive 
data, such as e-payments.

Figure 13. Average RTT

6. Conclusions and future research

This paper presented an experimental approach 
towards six of the most used application layer 
protocols in IoT: AMQP, CoAP, HTTP RESTful 
services, MQTT, WebSocket, XMPP. The 
experiment was conducted by simulating a simple 
IoT network and by generating and exchanging 
environment data. 
The results show by comparison the performances 
of the protocols in a common scenario of a wireless 
network. We can conclude that AMQP is not 
suitable for constrained devices, given the large 
amount of traffic it triggers, while XMPP, MQTT 
and WebSocket perform very well in terms of RTT, 
number of relevant bytes exchanged and number 
of packets. CoAP and HTTP also have satisfactory 
results and they also have the advantage of 
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interoperability. Furthermore, the specific of the 
actual IoT environment should also be taken 
into consideration when comparing protocols. 
For example, in a smart home context, where 
measurements are sent frequently, XMPP may 
be suitable because of its chat-like architecture 
or MQTT with QoS=0, for a lightweight 
communication. If payments are processed, 
AMQP would be suitable. Finally, for an eHealth 
system, CoAP or HTTP are suitable, due to their 
interoperability and proxy-ing capabilities.
In conclusion, considering the benefits of 
scalability and interoperability at the application 
layer, further research must be conducted in the 
area of cross-protocol proxies for the application 
layer IoT solutions.

Endnotes
1MQTT essentials, <http://www.hivemq.com/blog/mqtt-essen-
tials-part2-publish-subscribe>.
2MQTT V3.1 Protocol Specification, <http://public.dhe.ibm.com/
software/dw/webservices/ws-mqtt/mqtt-v3r1.html>.
3<http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.
html>.
4TechTarget, IoT Agenda – “MQTT (MQ Telemetry Trans-
port)”, <http://internetofthingsagenda.techtarget.com/definition/
MQTT-MQ-Telemetry-Transport>.
5XMPP RFC, <https://tools.ietf.org/html/rfc6120>.
6HTML5 Websocket, <https://www.websocket.org/aboutwebsocket.
html>.
7The WebSocket Protocol, <https://tools.ietf.org/html/rfc6455>.
8Eclipse Paho, Python Client, <http://www.eclipse.org/paho/clients/
python/docs/>.
9XMPPPy, <http://xmpppy.sourceforge.net/>.
10Pika, <http://pika.readthedocs.io/en/0.10.0/intro.html>.
11Python Eve, <http://python-eve.org>.
12Python WebSockets, <http://websockets.readthedocs.io>.
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