
ISSN: 1220-1766 eISSN: 1841-429X 403

ICI Bucharest © Copyright 2012-2017. All rights reserved

1. Introduction

As society is rapidly leading to an innovative
concept, named the Internet of Things,
technology must quickly adapt to new business
and user requirements and needs. The IoT
comprises smart devices, sensors, networks,
cloud solutions, all of them being connected
through common standards [1, 6].

A commonly agreed architecture of the IoT
comprises three layers: application layer, network
layer and perception layer. Since the complexity
of such systems is constantly increasing, the
necessity of adapting existing protocols, for
choosing the appropriate ones and minimizing
vulnerabilities grows exponentially.

In this paper, our focus is on the application layer
protocols used in the Internet of Things. In [5],
we described three of the most used protocols,
MQTT, CoAP and XMPP, with emphasis on
their characteristics, their suitability for certain
applications and the security they provide.

The second section of this paper provides a
short overview of related work in researching
IoT protocols. The third section illustrates six
application layer protocols and aims to emphasize
their characteristics in an IoT environment. The
fourth section focuses on the experimental setup,
while the fifth shows the obtained results and
their interpretations. The last section concludes
the work in this paper and presents further
research possibilities.

2. Related work

The communication protocols for IoT have
been a popular research subject in the last years,
given the demand of innovation and advance

An Experimental Evaluation of Application Layer
Protocols for the Internet of Things

Lavinia NĂSTASE1, Ionuț Eugen SANDU2
, Nirvana POPESCU1*

1 University Politehnica of Bucharest, Computer Science Department, Bucharest, Romania
contact@lavinianastase.com; nirvana.popescu@cs.pub.ro (*Corresponding author)
2 National Institute for Research & Development in Informatics, Bucharest, Romania
ionut@rotld.ro

Abstract: The Internet of Things is envisaged to interconnect billions of devices, from sensors and actuators to smart
objects, computers and vehicles. The main obstacle that arises is that technology should allow physical objects, usually
constrained devices, to interact with applications. Therefore, already existing technologies and patterns should be adapted to
the new requirements, or novel ones must be created. In this context, the application layer protocols play an important part in
orchestrating an IoT network. This paper focuses on the comparison of different protocols by carrying out experiments and
prototyping a real-world interaction between IoT network actors.

Keywords: Internet of Things (IoT), Application layer protocols, CoAP, MQTT, XMPP, AMQP, HTTP, WebSockets.

in this field. Several surveys were conducted
in terms of application layer protocols, which
were also considered in [5], where we extended
the presentation by taking into account the
security MQTT, XMPP and CoAP can provide.
A comprehensive study on IoT protocols,
including lower layer protocols, is conducted
in [2]; in this survey, the authors document the
current status in this research area and summarize
security mechanisms for each layer. Other
surveys that discuss application layer protocols
by comparison are [3] and [7]. In these papers,
authors present MQTT, XMPP, CoAP, AMQP,
HTTP and WebSockets in the context of IoT.
In [4], authors conduct experiments to compare
MQTT, WebSocket and CoAP performances on
LAN, ISP and cellular network. In a scenario
similar to a real network, they compared average
RTT and they concluded that changing from
LAN to an IoT network does not trigger a fall of
a protocol’s efficiency.

3. Application layer protocols

In this section, we extend the protocols discussion
from [5] and, in addition, we introduce three more
protocols, widely used in IoT: AMQP, HTTP
RESTful services and WebSockets.

3.1 MQTT

MQTT is a lightweight publish-subscribe
messaging protocol, based on brokers. It uses
TCP/IP protocol and it is suitable in constrained
environments, for devices with low memory
resources or a limited processor. Furthermore, the
message payload is limited to a maximum of 256

Studies in Informatics and Control, 26(4) 403-412, December 2017

https://doi.org/10.24846/v26i4y201704

http://www.sic.ici.ro

404 Lavinia Năstase, Ionuț Eugen Sandu
, Nirvana Popescu

MB of information, which makes this protocol
suitable in expensive and unreliable networks.

MQTT, through its publish-subscribe architecture,
“decouples a client, who is sending a particular
message (called publisher) from another client
(or more clients), who is receiving the message
(called subscriber)”1. The broker publishes one
or more topics, to which clients subscribe to get
messages. Each topic can have multiple subtopics
used for filtering messages from connected clients.
For example, in case of a smart home, a topic
would be:
“home/firstfloor/bedroom/temperature”.
According to the MQTT protocol specification2,
there are three quality of service (QoS) modes
provided for message delivery:
•	 “Fire and forget” mode, also known as “at most

once”: in this case, a message arrives once or
not at all. It is suitable in environments where
an individual measurement is not vital, since
a next one would be published afterwards.

•	 “Acknowledged delivery” or “at least once”:
a message arrives at least once and therefore
duplicates can occur.

•	 “Assured delivery” or “exactly once”: this
mode is the highest QoS; all messages are
ensured to arrive exactly once. It is useful
in applications where missing or duplicate
messages may lead to unwanted results, for
example a payment service3.

The last two levels are the most reliable ones,
nonetheless they impose an overhead and
bandwidth requirements that are not feasible in
most of IoT environments. However, clients may
choose the desired level of QoS.

In order to further adapt MQTT to constrained
devices requirements, a new protocol emerged,
named MQTT-SN (where SN stands for “sensor
networks”). According to [10], published by
IBM in 2013, the differences between those two
protocols are the following:

1. The topic name in PUBLISH messages are
replaced by a two-byte long id, instead of
a string.

2. Short topic names are introduced and they do
not require registration.

3. Multiple gateways may exist in the networks
and they advertise their presence periodically
by broadcasting massages to connected
devices. Clients which do not have a pre-
configured server or gateway address use
a discovery procedure to find the network
address of a server or gateway.

4. Devices can go in a sleeping mode during
the time when their messages are buffered
at the gateway/server; they are woken
up when messages are delivered. This
improvement is particularly useful for
battery-operated devices.

To sum up, MQTT-SN’s purpose is to be used in a
local network. The specification states that it can
use a datagram protocol (such as UDP, instead of
TCP). Since MQTT usually connects directly to
the cloud, it would be inefficient to use UDP in
such an error prone scenario. However, for local
networks with a small number of clients and
constrained devices, it is more suitable to reduce
the number and the size of the packets.

As we stated in [5], the MQTT specification does
not impose any security mechanism, because
it is designed to be used in secure networks.
Therefore, it is not feasible to create a globally
MQTT network.

Since the IoT requires a standard for
authentication, MQTT relies on SSL/TLS
encryption. The drawback is that SSL/TLS is
quite an expensive protocol to use in memory
and power constrained devices. Nowadays, certain
brokers accept anonymous clients and therefore
the username and password are no longer required,
but it is not desirable in most of the cases. The
client validates the server certificate during the
handshake phase, when it verifies its identity to
authenticate it. Client certificates can also be used;
the broker can authenticate the client that requests
the connection4. In an extended network, a poor
MQTT application design may be easily prone to
harmful messages injection into the network.

For these reasons, security must be implemented
on top of MQTT, depending on the specificity
of the network. For example, in a secured and
isolated network, this is not the case.

3.2 XMPP

XMPP (Extensible Messaging and Presence
Protocol) is a client-server protocol mostly used
for chat, instant messaging, video and voice calls
and is standardized by the IETF5. In this protocol,
data is exchanged between two or more network
entities using “XML stanzas”, which are small
pieces of XML structured data. Although XML is
an appropriate choice in terms of interoperability,
it usually creates an overhead in terms of
processing. XML tag parsing increases power
consumption and computational power and might
be unnecessary.

 405

ICI Bucharest © Copyright 2012-2017. All rights reserved

An Experimental Evaluation of Application Layer Protocols for the Internet of Things

An XMPP client is required to connect to a
server to gain access to the network. Therefore,
it is the entity that establishes the XML stream,
after authenticating through a SASL negotiation.
A XMPP server manages open streams with the
connected clients.

The process of connection is usually the following:

1. Determine the IP address and the port to
which the client will connect.

2. Open a TCP connection and then an XML
stream over that connection.

3. Negotiate TLS channel encryption (not
mandatory, but preferable).

4. Authenticate via SASL.
5. Bind a resource to the stream.
6. Begin to exchange XML stanzas with other

entities in the network.

7. Close the XML stream and the TCP connection.

Server to server connection is also
allowed, after negotiating and allowing
inter-domain communication.

There are two possible paths, since XMPP based
solutions are usually deployed in decentralized
client-server architectures: client-to-server stream
and server-to-server stream. If both entities are
clients, they need an intermediate entity (a server)
with a certain level of trust; it is not possible for
them to open a communication channel directly
between them.

As fas as security is concerned, the XMPP
community did not propose so far an end-to-end
encryption technology suitable for widespread
deployment. The IETF recommends, according
to the RFC, support to authentication via SASL
and transport security with TLS. SASL provides
a number of authentication methods from which
the client can choose; the disadvantage is that
a weak mechanism can be chosen. SASL uses
Base64 encoding, that hides easily recognized
information; however, it doesn’t provide
computational confidentiality. As discussed in
[5], IETF recommends secure mechanisms for
peer authentication, such as SCRAM-SHA-1
or SCRAM-SHA-1-PLUS, to offer protection
against man-in-the-middle-attacks, spoofing and
unauthorized access.

An acceptable strategy for security would be to
employ a combination of TLS encryption and SASL
authentication, to provide both mutual authentication

and integrity. Channel encryption is usually based
on a PKIX certificate presented by the receiving
entity or both the receiving and the initiating entity,
for mutual authentication. The signature algorithm
should be SHA-256 at minimum.

The vulnerabilities to which unprotected XMPP
systems are exposed are various: sniffing and
breaking passwords, eavesdropping, replaying,
inserting, deleting, modifying stanzas, discovering
usernames through directory harvesting attacks,
spoofing, gaining unauthorized entry, man-in-
the-middle attacks and more. One of the issues in
XMPP emerges from the fact that an XML stanza
can transit multiple streams and some of them
might not be protected with TLS.

To sum up, although XMPP has built-in security
feature, it might not be practical for M2M
communication, because it does not provide QoS
modes [3]. By comparison with MQTT, it has the
advantage of being a mature and well-established
protocol and its pub/sub architecture leverages it
for the IoT.

3.3 CoAP

The third protocol we discussed in [5] is CoAP
(Constrained Application Protocol).

CoAP is designed to be interoperable with HTTP,
since it uses a subset of HTTP methods (GET,
PUT, POST, DELETE) [3]. It is specialized for
use with constrained nodes (in terms of memory
and processing power) and networks (lossy and
low power), by obeying a request/response model
between application endpoints, similar to the
client/server HTTP model.

However, unlike HTTP, uses a datagram-
oriented transport, such as UDP, most suitable in
constrained environments. Moreover, requests and
responses are not sent over a previously established
connection, but are exchanged asynchronously
over CoAP messages. CoAP supports four types
of messages: (i) Confirmable (CON), (ii) Non-
confirmable (NON), (iii) Acknowledgement
(ACK) and (iv) Reset (RST) [5].

As CoAP is bound to UDP, an unreliable transport
method, messages may arrive unordered,
be duplicated or missing. Therefore, CoAP
implements a reliability mechanism similar to
TCP, but more lightweight. Message reliability
is provided by marking it as CON, eventually
retransmitting it on a default timeout basis

http://www.sic.ici.ro

406 Lavinia Năstase, Ionuț Eugen Sandu
, Nirvana Popescu

until a corresponding ACK is received from the
corresponding endpoint. When a message does
not require reliable transmission, however, it can
be sent as NON. This could be the case of each
single measurement out of a stream of sensor data
(temperature, pressure etc).

The CoAP security mechanisms are largely
discussed in [2]. We also described DTLS in [5],
as the substitute of TLS for UDP transport layer.

Many architectures do not require to employ
any security at the transport layer level, due to
the physically limited access. Instead, there are
mechanisms to provide lower-layer security, such
as IPSec at network layer, when connecting to the
outside network. In this case, the packets are sent
over usual UDP over IP. The security is provided
by routing techniques and by keeping attackers
from gaining access to packets to or from the
CoAP nodes.

Three DTLS modes are available and by
implementing them, the new architecture is called
CoAPs (secured), similar to HTTP secured with
SSL/TLS which became HTTPS [8]. In this way,
the security association can be used to authenticate
and authorize the communication peer. CoAP
does not provide in the specification any imposed
mechanisms for authentication or authorization.

The four CoAP modes that can be employed in
addition to DTLS are described below:

The NoSec mode does not provide any security
and messages are sent without being encrypted.

The PreSharedKey mode is usually implemented
for devices that cannot support the public key
cryptography, due to memory limitations. It
is based on a list of pre-shared keys, each one
including a list of nodes it can be used to
communicate with, installed on a device at
manufacturing time [2]. There may be one or
more keys for each node. When negotiating a
connection to a new node, the system selects a
key based on the nodes it is trying to contact and
then begins a DTLS session using Pre-Shared Key
(PSK) mode of DTLS.

In RawPublicKey mode, the device has an
asymmetric key pair without a certificate (a
raw public key), an identity calculated from the
public key and a list of identities of the nodes
it can communicate with; most commonly, the
asymmetric key pair is generated and installed

during the manufacturing process. A device may
be set up with multiple raw public keys.
The RawPublicKey mode is “appropriate for
devices requiring authentication based on public
keys, but which are unable to participate in
public-key infrastructures” [2].

The Certificate mode is employed for applications
that support PKI and public-keys based
authentication. In this mode, the device has an
asymmetric key pair with an X.509 certificate
signed by a common trust root and bound to its
subject. It also has a list of root trust anchors that
can be used for validating a certificate.

ECC (elliptic curve cryptography) was adopted in
CoAP for RawPublicKey and Certificate modes.
The advantage of ECC over other algorithms
such as RSA is that the key length is smaller
and therefore the computational time is smaller,
while the security is the same. ECC uses ECDSA
(Elliptic Curve Digital Signature Algorithm)
and ECDHE (Elliptic Curve Diffie-Hellman
Algorithm with Ephemeral keys), supporting
device authentication [2].

3.4 AMQP

AMQP (Advanced Message Queuing Protocol)
is sometimes regarded as an IoT protocol, as
authors in [8] state, since it is about server inter-
communication using queues. Historically, AMQP
emerged from the financial services, where the
focus was on interoperability and on not losing
messages [7].

AMQP is a binary protocol built on top of TCP
and provides a pub/sub architecture. It ensures
reliability in the case of network disruptions
by storing the messages in queues (“store-and-
forward” feature) [3]. It also provides three QoS:

1. At most once: the message is sent once and it
can be delivered or not.

2. At least once: the message is ensured to be
delivered one time or more.

3. Exactly once: the message is delivered once
and only once.

Security is provided by SSL/TLS and/or
SASL protocols.

3.5 HTTP RESTful services

REST is more of an architectural style rather than
a protocol, but it is usually considered in terms

 407

ICI Bucharest © Copyright 2012-2017. All rights reserved

An Experimental Evaluation of Application Layer Protocols for the Internet of Things

of HTTP. It relies on exposing resources that
can be consumed by clients via request/response
commands. It supports both XML and JSON,
which is vital for interoperability. Even though
it is a mature and widely spread protocol, it was
not optimized for IoT use; however, it is adopted
by many cloud platforms due to useful features
such as content-type negotiation, authentication
mechanisms, caching [3].

Nonetheless, HTTP has a myriad of drawbacks
for the Internet of Things. Firstly, the overhead
of the request/response model, as well as the
possibly long polling are not suitable not only on
constrained devices, but also on smartphones that
rely on battery usage. Secondly, HTTP headers
are very large and contain a lot of information that
might not be useful in many IoT applications. It is
likely to have a bigger header than the body of the
request, which might overuse the network. Finally,
it is envisaged that the JSON will be replaced by
binary formats for the IoT environments. The
advantage of binary encodings is that the schemas
are automatically enforced and therefore they
provide less overhead at reading data.

As we discussed in section 3.3, CoAP is a REST-
like, lightweight alternative to HTTP. Even though
the optimizations brought by replacing TCP with
UDP are important, it still has the disadvantage of
the request/response architecture.

RESTful services use SSL/TLS for securing
communication. However, there are M2M
platforms that do not have support for HTTPS [3]
and in this case authentication keys are carried in
the header of every request, which diminishes the
overall system security.

3.6 WebSocket

WebSocket is a protocol developed by a
HTML5 initiative and it is built on top of TCP.
The specification states that it is a “full-duplex
communication channel that operates through a
single socket over the Web”6.

In terms of architecture, it can be considered
neither a publish/subscribe nor a request/
response protocol. The connection process is the
following: the client initializes a conversation by
starting a handshake action with a server; after
the connection has been established, messages
can be exchanged. The process can be perceived
as similar to HTTP, but the difference is that
headers are removed and messages are delivered

asynchronously, in a full-duplex connection [3].
Therefore, WebSockets are improved in terms of
packet payload, but it is still not well suited for
constrained devices.

The RFC7 states that WebSocket is a standalone
protocol and its only relationship with HTTP is the
handshake, which is “interpreted by HTTP servers
as an Upgrade request”. It uses port 80 for regular
connections and 443 for secured communication
with TLS. Client authentication is not imposed,
however available mechanisms can be used, such
as HTTP or TLS authentication, cookies etc.

4. Experimental setup

The purpose of the experiment is to test the six
protocols we described in the previous chapter
and to evaluate them from different perspectives.
In relation to the IoT context, we are interested in
comparing them from the following points of view:

- Data bytes and total bytes for each protocol.

- Ratio between the useful bytes (i.e. actual
information sent over the network) and
the total number of bytes exchanged,
also called protocol efficiency in [4].

- Data packets and total packets.

- Ratio between the useful packets and the
total number of packets.

- Average of packet size in bytes.

- Round-trip time (RTT), defined as the
time required by a packet to travel
between the source and the destination.

To simulate realistically and efficiently an
IoT network, we used a PC as a server and
a Raspberry Pi 3 as a client, which has the
following technical specifications:

- Broadcom BCM2837, quad core ARM
Cortex-A53, 1.2GHz;

- 1GB RAM, LPDDR2 (900 MHz);
- 10/100 Ethernet, 2.4GHz 802.11n

wireless;
- Micro SD port – we used a 1GB card for

loading Raspbian OS and storing data.

In an IoT network, Raspberry Pi usually acts as
a gateway between the wireless sensors, which
measure and send data, and the cloud server,
whose purpose is to collect the data.

http://www.sic.ici.ro

408 Lavinia Năstase, Ionuț Eugen Sandu
, Nirvana Popescu

Figure 1 illustrates the setup of our network:

1. the sensors and the actuators are replaced
by a simulator which generates environment
data: temperature, motion, light, image.

2. the Raspberry Pi, having the characteristics
we defined above, acts as a gateway. It also
acts as a simulator and as a client, since it
interacts with the server.

3. the server, which simulates the cloud server
of a real IoT network, is a PC with Intel Xeon
Quad Core processor and 16GB of RAM
(3GHz), running Ubuntu 16.04.

4. the Raspberry Pi and the PC are connected to
a 100 Mbps LAN switch.

Figure 1. General network setup

In our setup, we simulate the measurements by
generating ten messages that contain a JSON with
five fields, populated with random data:

{
 “time”: “2017-07-08T10:00:00.000Z”,
 “temperature”: 25,
 “motion”: 1,
 “light”: 50,
 “image”: “AybdYAbfmfiwbs[...]”
}

The “time” field is the UTC timestamp when
the message is sent; the “temperature” is a float
between 20 and 50; the “motion” field is a boolean
which tells is the sensors perceives movements
around; the “light” is a percent; the “image” field
is a generated string of 100 characters.

Then, the data is sent to the cloud server via
various application layer protocols.

As far as software is concerned, we implemented
applications for each of the six protocols using
open-source libraries in Python. The servers are
hosted on the PC, acting as a cloud server and the
clients are on the Raspberry Pi. The experiment
consists in sending the same data from all the
clients to their corresponding servers, via various
application layer protocols. The traffic is then
captured and analyzed using Wireshark.

Implementation details for each protocol are
further explained in the next sections.

Figure 2. MQTT network

4.1 MQTT

To establish a MQTT network, there are three actors
needed: a broker, a publisher and a subscriber.

Figure 2 shows the network we implemented:
there is a publisher which sends messages on four
topics and four subscribers, each subscribing to
one topic.

The broker has the role of a server; we use
Mosquitto, hosted on the server. The publisher
and the subscribers are clients, written in Python
using Paho Client library8. The usage flow for the
clients is the following:

- Creation of a client instance.
- Connection to the broker.
- Maintain traffic with the broker by using

a loop() function.
- Subscribe to a topic to receive messages

– subscribe() function.
- Publish messages to the broker via the

publish() function.
- Disconnect from the broker.

4.2 XMPP

Since XMPP’s architecture is client-server, we
can either create a client and make request to an
existing server or create our own server. In order
to implement XMPP, we used XMPPPy9 library.

Figure 3. XMPP network

 409

ICI Bucharest © Copyright 2012-2017. All rights reserved

An Experimental Evaluation of Application Layer Protocols for the Internet of Things

The server is Prosody and it is hosted on the PC,
while the two clients are run from the Raspberry
Pi. To simulate a chat-like conversation, we
implemented two clients connected to the Prosody
server; each client sends five messages to his peer
and the other receives them. Therefore, we have
a total of ten messages exchanged, as we have in
all the implementations.

4.3 CoAP

There is a myriad of CoAP open-source
implementations available, however we chose
CoAPthon [11], a Python library built on top of an
event-driven networking engine named Twisted.
The CoAP server defines a resource
(‘measurements’ in our case), and the client must
query that resource in order to get data. The
network setup is quite simple and it is depicted in
Figure 4. The client is hosted on the Raspberry Pi
and the server on the PC.

Figure 4. CoAP network

4.4 AMQP

To run AMQP, it is necessary to install RabbitMQ
on the server and declare a queue. After setting the
environment, clients and servers can send messages
in the queue and/or consume messages. As the
documentation states, “AMQP is a two-way RPC
protocol where the client can send requests to the
server and the server can send requests to a client”10.
The Python library used for AMQP is Pika.

Figure 5. AMQP network

The network setup, as displayed in Figure 5,
has the RabbitMQ server as a broker between
the two actors: the server simulates the sensor
measurement data and sends them to the queue,
while the client consumes the messages from

RabbitMQ. Therefore, the server is a publisher
and the client is a subscriber.

4.5 HTTP RESTful Service

Since HTTP RESTful services require a client-
server architecture, we build a server using Python
Eve Framework11. The client can be a browser, a
HTTP client such as Postman or SOAP UI or the
API can also be consumed with “curl” commands,
for CLI.
An example of such a command is:

$ curl -i http://test.com/example
HTTP/1.1 200 OK

The framework requires three features:
- a MongoDB database,
- a launch script and
- a configuration file, where the necessary

settings are defined, such as: database
host, port and name, schema, allowed
methods bound to certain resources
and others. For example, for certain
resources, the use of HTTP’s DELETE
command can be prohibited.

We define the resource named ‘measurements’,
which contains information about temperature,
motion, light and image. The only methods
allowed are GET – for retrieving data and POST
– for saving data in the MongoDB database.
Furthermore, as a custom setting, search can also
be done on an ‘id’ field.

After setting up the server environment,
installing MongoDB, installing eve library and
running the main script, the server can accept
requests. An example of a POST request, with
curl, is the following:

curl -d ‘[{“id”: 1, “temperature”: 23, “motion”:
0, “light”: 50, “image”: “[..]” }]’ -H ‘Content-
Type: application/json’ http://host_ip:5000/
measurements.
The HTTP Status 200 means that the data was
successfully saved and it can now be queried
using a GET:
curl -i http://host_ip:5000/measurements

Figure 6. HTTP network

http://www.sic.ici.ro

410 Lavinia Năstase, Ionuț Eugen Sandu
, Nirvana Popescu

The HTTP setup, as depicted in Figure 6, is
composed of a server application, run on the PC,
and two clients on Raspberry Pi. The first client
writes data and the second queries.

4.6 WebSocket

The WebSocket client-server architecture is more
like a consumer-producer pattern; therefore, there
are two actors which must be implemented:

- a client, which sends messages and
- a server, whose responsibility is to receive and
store messages from clients.
The Python implementation12 provides supports
for implementations of both client and server and
it is built according to the WebSocket protocol:

- An HTTP upgrade request as an
opening handshake,
- data transfer, ended with a closing handshake.
Furthermore, the API supports asynchronous
operations. Once the server has started, it loops
and waits for clients to connect. A ‘hello’ method
can also be configured to be sent to a newly
connected client. When a new client wants to
connect, the server accepts the connection,
starts the opening hadshake and delegates to the
WebSocket handler. The handler is executed and
the client sends messages; the closing handshake
and the end of the connection is also performed
by the server.

Figure 7. WebSocket network

The WebSocket architecture is simple, as depicted
in Figure 7. The client, hosted on the Raspberry
Pi, sends simulated data to the server and the
server responds with a message of confirmation.

5. Experimental results

The tests were conducted using the same set of
data, on six different protocols. A raw message

calculation, outside any protocol encapsulation,
reveals that one message has a length of 212 bytes.
The experiment consisted, as stated before, in
sending ten messages in a JSON format.

The first aspect we are interested in is the relation
between useful data bytes and total bytes. Figure
8 shows a big discrepancy between AMQP and
the other protocols. AMQP sends few packets, but
with a large amount of data. The most efficient
protocol from this point of view is WebSocket,
which sends only 3514 bytes of useful information
and 9800 bytes in total.

Figure 8. Data bytes and total bytes

Figure 9 shows the ratio between data bytes
and total bytes per protocol. Therefore, as far
as protocol efficiency is concerned, XMPP has
the smallest percent value, of 28,11%. While
the useful traffic for XMPP was of only 7864
bytes, the total was almost four times bigger.
The difference is explained by ACK, RST and
FIN packets.

Figure 9. Ratio between databytes and total traffic
bytes

After analyzing data bytes, it is also practical
to consider data packets. Figure 10 reveals a
histogram of data packets and total packets
and Figure 11 presents the ratio between useful
packets and total of packets.

While in the previous measurements AMQP was
emerging as the protocol with the highest traffic,
in this case CoAP and MQTT have the largest

 411

ICI Bucharest © Copyright 2012-2017. All rights reserved

An Experimental Evaluation of Application Layer Protocols for the Internet of Things

number of packets exchanged. However, this is
not necessarily relevant in the context of IoT, since
more packets with few bytes might be preferable
to few packets with a huge amount of data.

WebSocket and XMPP exchange the smallest
amount of packets, from two reasons:

- The data is not separated on topics.
- The information sent in a packet appart

from the useful payload is negligible.

Figure 10. Data packets and total packets

Figure 11. Ratio between data packets and total
packets

Since we discussed about packets and number
of exchanged bytes, another interesting topic
is the average number of bytes for packets.
Figure 12 shows the results for each protocol.
As described in the previous section, CoAP and
MQTT implemented four topics – temperature,
motion, light and image and the data queries were
made on each one of them. On the other hand, the
other protocols write all topics in one message
and also read also in one message. Therefore,
this protocol implementation explains the small
number of bytes per packet and the relatively big
amount of packets in comparison with the other
protocols. However, although WebSocket does not
implement topics, it still has a good performance
in terms of average number of bytes per packet
(approximately 175 bytes), but also on data bytes
and total bytes, where it has the lowest values
from all discussed protocols.

Figure 12. Average bytes per packet

Finally, the most relevant measurement, the
average round-trip time, is presented in Figure
13. MQTT and XMPP performed the best, with
0.448 ms and 0.373 ms, respectively. On contrary,
AMQP has an average of 90.75 ms, a value that
can by explained by the big amount of data that
travels in one packet. Therefore, as expected,
AMQP is a heavy-weight protocol, not suitable
for constrained devices; it is nonetheless a reliable
and secure protocol, suitable for handling sensitive
data, such as e-payments.

Figure 13. Average RTT

6. Conclusions and future research

This paper presented an experimental approach
towards six of the most used application layer
protocols in IoT: AMQP, CoAP, HTTP RESTful
services, MQTT, WebSocket, XMPP. The
experiment was conducted by simulating a simple
IoT network and by generating and exchanging
environment data.
The results show by comparison the performances
of the protocols in a common scenario of a wireless
network. We can conclude that AMQP is not
suitable for constrained devices, given the large
amount of traffic it triggers, while XMPP, MQTT
and WebSocket perform very well in terms of RTT,
number of relevant bytes exchanged and number
of packets. CoAP and HTTP also have satisfactory
results and they also have the advantage of

http://www.sic.ici.ro

412 Lavinia Năstase, Ionuț Eugen Sandu
, Nirvana Popescu

interoperability. Furthermore, the specific of the
actual IoT environment should also be taken
into consideration when comparing protocols.
For example, in a smart home context, where
measurements are sent frequently, XMPP may
be suitable because of its chat-like architecture
or MQTT with QoS=0, for a lightweight
communication. If payments are processed,
AMQP would be suitable. Finally, for an eHealth
system, CoAP or HTTP are suitable, due to their
interoperability and proxy-ing capabilities.
In conclusion, considering the benefits of
scalability and interoperability at the application
layer, further research must be conducted in the
area of cross-protocol proxies for the application
layer IoT solutions.

Endnotes
1MQTT essentials, <http://www.hivemq.com/blog/mqtt-essen-
tials-part2-publish-subscribe>.
2MQTT V3.1 Protocol Specification, <http://public.dhe.ibm.com/
software/dw/webservices/ws-mqtt/mqtt-v3r1.html>.
3<http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.
html>.
4TechTarget, IoT Agenda – “MQTT (MQ Telemetry Trans-
port)”, <http://internetofthingsagenda.techtarget.com/definition/
MQTT-MQ-Telemetry-Transport>.
5XMPP RFC, <https://tools.ietf.org/html/rfc6120>.
6HTML5 Websocket, <https://www.websocket.org/aboutwebsocket.
html>.
7The WebSocket Protocol, <https://tools.ietf.org/html/rfc6455>.
8Eclipse Paho, Python Client, <http://www.eclipse.org/paho/clients/
python/docs/>.
9XMPPPy, <http://xmpppy.sourceforge.net/>.
10Pika, <http://pika.readthedocs.io/en/0.10.0/intro.html>.
11Python Eve, <http://python-eve.org>.
12Python WebSockets, <http://websockets.readthedocs.io>.

REFERENCES

1. Dumitrache, I., Sacala, I. S., Moisescu, M.
A. & Caramihai, S. I. (2017). A conceptual
framework for modeling and design of Cyber-
Physical Systems, Studies in Informatics and
Control, 26(3), 325–334.

2. Granjal, J., Monteiro, E. & Sa Silva, J. (2015).
Security for the Internet of Things: A Survey of
Existing Protocols and Open Research Issues,
IEEE Commun. Surv. Tutorials, 17, 1294–1312.

3. Karagiannis, V., Chatzimisios, P., Vazquez-
Gallego, F. & Alonso-Zarate, J. (2015). A Survey
on Application Layer Protocols for the Internet of
Things, Trans. IoT Cloud Comput., 3, 11–17.

4. Mijovic, S., Shehu, E. & Buratti, C. (2016).
Comparing application layer protocols for the
Internet of Things via experimentation. In 2016
IEEE 2nd Int. Forum Res. Technol. Soc. Ind.
Leveraging a Better Tomorrow. RTSI.

5. Nastase, L. (2017). Security in the Internet of
Things: A Survey on Application Layer Protocols.
In IEEE International Conference on Control
Systems and Computer Science.

6. Park, J., Joe, I., & Kim, W. T. (2014). An
efficient discovery protocol of large-scale CPS
middleware for real-time control system, Studies
in Informatics and Control, 23(1), 23–30.

7. Rajandekar, A. & Sikdar, B. (2016). A Survey of
MAC Layer Issues and Protocols for Machine-to-
Machine Communications, 1–12.

8. Raza, S., Shafagh, H., Hewage, K., Hummen,
R. & Voigt, T. (2013). Lithe: Lightweight secure
CoAP for the internet of things, IEEE Sens. J., 13,
3711–3720.

9. Schneider, S. et al. (2013). Understanding
The Protocols Behind The Internet Of Things,
Electron. Des., 1–9.

10. Stanford-Clark, A. & Truong, H. L. (2013).
”MQTT for Sensor Networks (MQTT-SN)
Protocol Specification”, Mqtt.Org [Online].
Available <http://mqtt.org/new/wp-content/
uploads/2009/06/MQTT-SN_spec_v1.2.pdf>.

11. Tanganelli, G., Vallati C. & Mingozzi, E. (2015).
CoAPthon: Easy Development of CoAP-based
IoT Applications with Python. In IEEE World
Forum on Internet of Things (WF-IoT).

