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1. Introduction

Diagnosis of rolling bearings based on vibration 
analysis is a key element in mechanical 
transmission systems. Further, early detection 
of failures on bearings is very important as it 
improves both reliability and safety of mechanical 
systems that are widely used in the industry. Thus, 
in order to accurately classify bearing failures, we 
need to identify those features that provide us high-
quality information regarding the bearing fault 
characteristic frequency (FCF). Unfortunately, 
extracting those features from non-stationary and 
non-linear vibration signals under time-varying 
speed conditions is not an easy task. Commonly 
used techniques for features extraction are not 
very effective and their diagnoses are not very 
accurate. During the last decade, several time-
frequency analysis methods have been applied 
to the features extraction problem described 
above. Among them we can find empirical mode 
decomposition (EMD) [27] and wavelet transform 
(WT) [9, 21]. Features found by these techniques 
are then used as the input for classification models 
which in turn aims to determine the status of the 
rolling bearings. 

The EMD method can decompose signal into a 
sum of intrinsic mode functions (IMF) according 
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to the oscillatory nature of the signal [3]. From 
IMFs, different features can be extracted. IMF 
energy features [29], IMF envelope spectrum 
[30] and IMF energy entropy [25] are among the 
features that can be extracted from IMFs. These 
features are passed on to some classification 
method such as neural networks [29] or support 
vector machines (SVM) [30]. In particular, authors 
in [25] use IMFs energy entropy to determine 
whether there exists a failure or not. In case of 
failure, a vector of singular values is passed on 
to a SVM in order to determine the type of the 
failure. The vector of singular values is obtained 
by means of singular value decomposition (SVD) 
of the IMF matrix.

 A wavelet neural network (WNN) model 
combined with ensemble EMD for bearing fault 
diagnosis is proposed in [28]. Here, the more 
effective IMFs are selected based on the kurtosis 
value of each IMF. A subset of ten features from 
both time-domain and frequency-domain is used 
as input of the WNN for failure classification. 
The authors in [26] propose a hybrid model 
for the bearing failure detection problem. This 
hybrid model uses permutation entropy (PE) to 
determine whether there is a failure or not. If a 
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failure exists, then the PE of a subset of selected 
IMFs is computed and used as the input of a SVM 
in order to classify the type of the failure as well 
as its severity. Moreover, WT can decompose a 
signal into several independent frequency sub-
bands and show features of hidden failures [1, 
15, 18, 24]. In [8] authors combine WT and EMD 
to create a new time-frequency analysis method 
namely empirical wavelet transform (EWT). A 
comparative study between EWT and EMD for 
bearing failure diagnosis using acoustic signals 
is presented in [10]. In that study, authors create 
an index based on the kurtosis value to select the 
more effective IMFs. Results in [10] demonstrate 
that EWT performs better than EMD in terms of 
the accuracy of the diagnosis. Further, it is shown 
that EWT is able to efficiently find the frequency 
and the harmonic components corresponding to 
the bearing failure feature frequency. 

SVM and feedforward neural network (FNN) are 
widely used to classify different kind of failures 
in rotatory machines. However, one drawback 
of these techniques is that they are quite time 
consuming. In [4, 6, 31] authors use a method 
called Extreme Learning Machine (ELM) that 
aims to improve tuning time in a FNN. Since 
then, ELM has been used in several studies mainly 
because its efficiency. For instance, in [23] is 
combined with LMD and SVD to the diagnosis 
of bearing failure. Here, singular values obtained 
from the product function matrix are used as input 
of ELM. It has also been shown that the models 
combining LMD-SVD-ELM performs better than 
EDM-SVD-ELM models [23]. 

In this article we present a hybrid features 
extraction method that combines stationary 
wavelet transform (SWT) and SVD. The 
identification of the failure type and severity is 
done during this features extraction process by 
finding those signatures from the vibration signal 
that represents each failure type. These extracted 
features are passed on to an extreme learning 
machine model (ELM). We call our method, 
SWT-SVD-ELM. We apply our method on the 
bearing failure diagnosis under variable speed 
operation problem. While SWT is able to provide 
local features in both time-domain and frequency-
domain as well as it is able to distinguish sudden 
changes in the vibration signal,  singular values 
are very stable which leads to a more robust and 
reliable method. Ten different bearing failures 
types are considered in our experiments. We 

apply our method on a set of well-known bearing 
vibration signals obtained from [12]. We compare 
the accuracy of the results obtained by our method 
to those obtained using two different diagnosis 
method: the well-known EMD-SVD-ELM model 
and a recently proposed method that combines 
Fourier coefficients amplitude (FCA) and auto-
encoder ELM (AE-ELM).

Remaining sections of this article are as follows: 
in Section II we describe the components of the 
SWT-SVD-ELM algorithm that is proposed in this 
paper. Section III describes the experimental setup 
and the features extraction phase. A discussion 
on the results obtained by the SWT-SVD-ELM, 
the EMD-SVD-ELM, and the FCA-AE-ELM 
methods is also carried on this section. Finally, 
in Section 4 some conclusions are presented and 
some ideas on the future work are outlined.

2. Methodology

2.1 Stationary Wavelet Transform

Stationary Wavelet Transform (SWT) [14, 16, 17] 
is a wavelet analysis method. It can be seen as an 
alternative to discrete wavelet transform (DWT) 
[7, 13]. SWT and DWT share some similarities. 
The most important one is that both filters, high-
pass and low-pass, are applied at each level on 
the input signal. At the first level of SWT, an 

input signal x x n w n n N= = ={ }( ) ( ), , ,,0 0 1  

is convolved with a low-pass filter 1h  defined by 

a sequence )(1 nh  of length r  and a high-pass 

filter 1g  defined by a sequence )(1 ng  of length 

r . Both )(1,1 nw  and )(2,1 nw , the approximation 
coefficient and the detail coefficient respectively, 
are calculated as follows:
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Since no sub-sampling is performed, the obtained 

sub-bands )(1,1 nw  and )(2,1 nw  have the same 
number of elements as the input signal )(nx . The 
general process of the SWT recursively continues 
for Jj ,,2 =  and is given as follows:
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Filters jh  and jg  are computed by using an 
operator called dyadic up-sampling. Using this 
operator a zero value is inserted between each pair 
of elements that are adjacent in the filter. Thus, the 
SWT strategy is then completely defined by the 
pair of filters (both low-pass and high-pass filters) 
that is chosen and the number of decomposition 
steps j . For this paper, a pair of Db2 wavelet 
filters has been chosen mainly due to its low 
complexity [7], whereas the decomposition at j-th 
level is given as follows:

j fs
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




log /

2
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(3)

where sf  represents the frequency sampling of 
the vibration signal and FCF denotes the bearing 
fault characteristic frequency [20].

2.2 Extreme Learning Machine

The output of the ELM is obtained as follows: 
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where L  represents the number of hidden nodes, 

)(nxi  denotes the input vector containing 

J-features values, },{ , jij ba  are the weights of 

the hidden layer, jk ,β  are output weights of the 
output layer and )(⋅φ  represents the hidden nodes 
activation functions, which is given as follows: 

ϕ( )x
e x=

+ −

1
1                                                   

(5)

The Moore-Penrose generalized-inverse method 
(M-P) [22] is used to estimate the output weights 

jk ,β , whereas the weights },{ , jij ba  of the hidden 
layer are randomly assign. The optimal values 
of the linear weights of the output layer, for any 
given representation of the hidden weights, are 

obtained using (M-P) method as follows:
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where T  represents the expected output pattern 

matrix. The expression 1)( −⋅ is the Moore-Penrose 
generalized inverse of the output matrix of the 
hidden layer, whereas the regulation parameter 

is set to C =108  for all experiments in this 
paper. We can summarise the ELM method as the 
following sequence of steps:

-	 Determine the number L  of nodes 
in the hidden layer and activation  
function )(⋅φ ;

-	 Randomly assign the hidden weights 

{ }jij ba ,, ;

-	 Using Equation (5), calculate hidden 
layer’s output matrix;

-	 Using Equation (6), compute the output 

weights matrix, ,, jkβ  of the output layer.

2.3 Bearing Fault Diagnosis Method Based 
on SWT-SVD-ELM

The fault diagnosis algorithm proposed in this 
study can be summarised as follows:

Firstly, set the size of the sub-signal and divide 
the raw vibration signal into sub-signals of N data 
points. Then, calculates the envelope signal using 
Hilbert transform, which can be computed as

x n x n H x n( ) ( ) ( )= + [ ]2 2 ,                         (7)

with ][⋅H  denotes the Hilbert’s transform. 
Once the Hilbert transform has been computed, 
decompose the envelope signal into J levels by 
using SWT. After that, decompose the W  wavelet 
coefficients matrix using the SVD method. The 
SVD method decomposes the W  wavelet matrix 
into a series of mutually orthogonal, unit-rank, 
and elementary matrices, whose representation is 
given as follows [11]:

W s u v USVi i i
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(8)
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where )1()1( +×+ℜ∈ JJU , NNV ×ℜ∈ ,
S  is the NJ ×+ )1(  diagonal matrix and 

{ }121 ,,...,, +JJ ssss  represent the set of singular 
values of matrix W . After decomposing matrix 
W , we need to create (J+3)-dimensional vector 
of features as follows:

z s s s s En EnJ J= +[ , , , , , ],1 2 1 1 2 ,                      (9)

where En  represents the Shannon entropy value 
and is computed as
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Finally, once we have computed features vector 
z , we can perform  the bearing fault diagnostic 
strategy using ELM-classifier with singular value 
features vector as input.

3. Computational Experiments and 
Discussion

3.1 Experimental Setup
Experimental raw data used in this paper 
correspond to vibration signals of deep groove 
ball bearings of 6205-2RS JEM SKF. It can be 
obtained from [12]. A 2-horsepower (hp) motor, 
a torque transducer/encoder and a dynamometer 
are considered in the experimental setup. During 
the experiments the bearing holds the motor 
shaft. An accelerometer mounted on the motor 
housing (as shown in Figure 1), is used to collect 
vibration signals. 

Figure 1. Experimental setup for rolling bearing and  
its sketch 

Single point failures with different failure di-
ameters of 0.007, 0.014, and 0.021 inches are 
introduced to the driving-end bearing using 
electro-discharge machining method, with the 
motor speed varying at 1730, 1750, 1772, and 
1797 rpm under four different loads of 0, 1, 2, and 
3 horse-power. Digital data is produced at 12,000 
samples per second for normal (N) samples and 
failure samples: inner race fault (IRF), outer race 
fault (ORF), and ball fault (BF). Further details 
on the experimental setup can be found in [12].

3.2 Extracting Features for Bearing 
Failure Diagnosis

The dataset contains 10 bearing health conditions 
(10 class labels) under rotatory shaft speeds of 1797, 
1772, 1750 and 1720 rmp corresponding to loads of 
0, 1, 2 and 3 hp, respectively, which are presented 
in Table 1. The length of the raw vibration signal is 
set to 120,000 data points (obtained in 10 seconds) 
and the size of segmentation of sub-signal is set to 
1000 data points (83.3 ms), which corresponds to 
2.5 times the rotation period. Its period fluctuates 
between 400 and 418 data points. Therefore, each 
raw signal is separated into 120 samples and 
each sample contains 1000 data points. Then, 
there are 480 samples for each health condition 
corresponding to variable shaft speed. Afterward, 
each signal of 1000 data points is decomposed into 
J levels by using SWT. The J-th value is calculated 
using the equation (3) and set equal to 3=J  
since the fault characteristic frequency oscillates 
approximately between 100 and 200 Hz.

Table 1. Dataset description

# Samples
Fault

type

Fault

Diameter

Class

label
480 N 0 1
480 IRF 0.007 2
480 IRF 0.014 3
480 IRF 0.021 4
480 ORF 0.007 5
480 ORF 0.014 6
480 ORF 0.021 7
480 BF 0.007 8
480 BF 0.014 9
480 BF 0.021 10
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3.3 Training and testing process
We split the dataset into two parts: a training 
dataset of 2400 (50%) samples and a test data set 
of 2400 samples (50%). We first use the train-
ing data to find the best possible parameters for 
the ELM method. Testing dataset is then used to 
measure the accuracy of the proposed method. 
The diagnostic accuracy (Acc) is obtained as

Acc = Total number of hits
Total number of samples                  

(12)

The ELM is calibrated with 6 input nodes and 
10 output nodes. The optimal number of hidden 
nodes is usually very difficult to find. Although 
it is out of the scope of this paper, in the next 
paragraph we briefly explain the way we choose 
the number of nodes in the hidden layer, which 
is based on a trial and error process. 

During the training process, overall hidden 
weights and bias are randomly initialized. 
The output weights of the output layer are 
obtained as explained in Equation (4). Once 
the training process is done, each ELM 
model is evaluated with a testing dataset. 
Figure 2 shows the results obtained for each 
evaluated model during the testing phase. 
As we can see, models with 60 and 80 hidden 

nodes are not as accurate as the ones that 
consider 100 hidden nodes.  Our results show 
that the accuracy obtained by those models with 
100 hidden nodes varies between 99.968% and 
100%. Thus, we decide to build a network that 
considers 6 input nodes, 100 hidden nodes, and 
10 output nodes. 
To evaluate the efficiency of the method we 
propose in this paper, we implement two 
diagnosis method: a well-known method 
that combines EMD and SVD [25, 26] and a 
recently proposed method that combines Fourier 
coefficient amplitude (FCA) and auto-encoder-
ELM [14]. On the one hand, for the EMD-
SVD-ELM method, each signal is decomposed 
using the EMD method [3] and the number 
of extracted IMFs using this strategy ranges 
between 9 and 13. In spite of that, the EMD-
SVD-ELM model only considers 4 IMF for the 
input, and 100 hidden nodes (just as in the SWT-
SVD-ELM model). On the other hand, for the 
FCA-AE-ELM method, the Fourier coefficient 
amplitude of raw vibration signal is computed 
considering 1024 sub-channels. Since the Fourier 
transform is symmetric, we only consider the 
first 512 coefficients, which correspond to the 
size of the features vector that is passed on to the  
AE-ELM-classifier. 

Figure 2. Classification accuracy with SWT-SVD-ELM model

Extreme Learning Machine Based on Stationary Wavelet Singular Values for Bearing Failure Diagnosis



http://www.sic.ici.ro

292

Results obtained by the all three diagnosis 
methods implemented in this paper are shown in 
Figure 3. 

As we can see, the accuracy obtained by the 
EMD-SVD-ELM model ranges between 
99.667% and 99.97% with an average accuracy 
of 99.83%. We point out that this method did 
not reach the 100% accuracy level for any of 
the 50 random trials. Unlike the EMD-SVD-
ELM, the FCA-AE-ELM does reach the 100% 
accuracy level in 40 out of 50 random trials. 
Its minimum accuracy level is 99.957% and its 
average accuracy is 99.993%. Although better 
than the EMD-SVD-ELM, the FCA-AE-ELM 
is still below the SWT-SVD-ELM method we 
propose in this paper.  The SWT-SVD-ELM 
method reaches the 100% accuracy level in 48 
out of 50 random trials. Further, our method 
obtains an average accuracy of 99.998% and 
a notable standard deviation of 0.008, which 
corresponds to a 50% of the standard deviation 
obtained by the FCA-AE-ELM method (standard 
deviation of 0.017). This is important as methods 
with smaller standard deviation values are  
more stable.

We need to highlight the fact that the average 
accuracy we obtained using the FCA-AE-
ELM model proposed is 99.989%, while the 

one reported by the authors in their original 
paper is only of 98.53% [14]. This is because 
we modified the topology of the AE-ELM, 
changing the number of auto-encoders from 
3 to 2, where the encoder 1 considers 256 
nodes and the encoder 2 considers 126 
nodes. The original topology used in [14] 
considers 650 nodes for the first encoder, 150 
nodes for the encoder 2, and 30 nodes for the 
last encoder.

4. Conclusions

In this paper a method that combines singular 
values decomposition, stationary wavelet 
transform, and extreme learning machine for the 
bearing failure diagnostic problem is presented. 
The method, we call SWT-SVD-ELM, uses SWT 
to decompose a vibration signal. Decomposed 
vibration signal leads to a set of wavelet 
component signals. SVD is then used to obtain 
the set of singular values from the corresponding 
wavelet coefficients matrix. Since singular values 
remain somehow stable when a change in the 
rotation velocity occurs, ELM method is able to 
achieve high levels of accuracy for the failure 
diagnosis under time-varying speed operation 
conditions. Based on the experiments performed 
in this study we found that the best configuration 

Figure 3. Comparison between the accuracy levels obtained by the SWT-SVD-ELM, EMD-SVD-ELM, and 
FCA-AE-ELM methods
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for the ELM consists of 6 input nodes, 100 hidden 
nodes and 10 output nodes. 

Contributions of this paper are two-fold. First, we 
have proposed a new diagnosis method that is able 
to obtain a 100% accuracy level in the 96% of 
the random trials tested in this paper. This is an 
important improvement w.r.t. recently proposed 
methods such as FCA-AE-ELM that only obtains 
a 100% accuracy in the 80% of the random trials 
tested here. A second contribution is that we have 
improved the topology of the AE-ELM proposed 
in [14] which leads to better accuracy levels: while 
the topology proposed in [14] obtains an average 
accuracy of 98.53%, whereas our topology obtains 
an average accuracy of 99.99%. 

As future work we expect to apply our model to 
run-to-failure lifetime testing. Other topologies for 
our model can also be investigated in the future. 
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