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1. Introduction

The technological advance in the field of power 
electronics has increased the use of DC–DC 
power converters in a wide range of applications. 
Thus, their major role is to bring the voltage to 
the proper level, providing a regulated output 
voltage based on a supply voltage that can vary. 
Nevertheless, the control problems that are related 
to such converters still pose theoretical challenges. 
Usually, the control design for these switched 
systems is based on a continuous or discrete state-
space averaged model [1]. For most of DC–DC 
power converters, the averaged model has to be 
locally linearized around a specific operating point 
because of the product between the state vector 
and the control input. A classic approach is to 
derive linear control laws based on an averaged 
linearized model: proportional–integral (PI) 
controllers [2], [3] state-feedback and Linear 
Quadratic Regulators (LQR) [4].

While PID controllers have wide application 
in many control problems, and often perform 
well without any modification or only with 
coarse tuning, they can operate badly in some 
applications, and do not in general perform 
optimally [5]. LQR is a relatively modern 
control technique that is effective but restricted 
to applications related with linear system models. 
In addition, the solution to the LQR problem, i.e., 
infinite prediction horizon, is available only in 
the unconstrained case, whereas MPC employs 
a finite prediction horizon to make the control 
problem tractable numerically.

Stabilization and Voltage Regulation of the Buck DC-DC 
Converter Using Model Predictive of Laguerre Functions

Chala Merga ABDISSA1, Kil To CHONG2*
1Jeonbuk National University,
Baekje-daero 567  Deokjin-gu, Jeonju, 561-756, South Korea.
chalmer.abdissa@gmail.com
2Jeonbuk National University, Baekje-daero 567  Deokjin-gu, Jeonju, 561-756, South Korea.
kitchong@jbnu.ac.kr, (*Corresponding author)

Abstract: This paper proposes a solution to stability and voltage regulation of switched mode buck DC-DC converter using 
a model predictive controller (MPC) of Laguerre functions. The MPC is used to compute the optimal control actions subject 
to constraints. To have a low computation burden and to avoid ill-conditioning, particularly for large prediction horizon, an 
exponentially weighted Laguerre based model predictive control (LMPC) is used. In order to validate the effectiveness of 
the proposed scheme, the performance of the proposed controller is compared with a linear quadratic regulator and classical 
linear state space MPC in MATLAB. Obtained results of simulation show that optimal voltage regulation has been achieved.

Keywords: Model predictive control, Optimal control, Ill-conditioning, Prediction horizon, Exponentially weighted, 
Laguerre, Linear quadratic regulator.

An established solution to constraint handling in 
process control and in control of other relatively 
slow systems is MPC [6]. Just as LQR, MPC 
employs the model of the system to make 
predictions on future behavior of the system 
and optimize the control action accordingly. 
The reason for the slow speed of MPC its 
huge computational burden.  To overcome this 
drawback, MPC with orthonormal basis function 
called Laguerre function [7] was proposed. The 
proposed MPC lowers computational burden 
significantly which makes it more suitable for real 
time implementation. In addition, an exponential 
data weighting is used to minimize numerical 
issue in MPC with large prediction horizon [8].

In this paper, the buck converter dynamics is 
reformulated to address the nonlinearity and is 
described in state space averaging (SSA) model. 
MPC employing [6], [7] is proposed to stabilize 
and regulate the output voltage of the buck DC-DC 
converter with systems constraints. The constraints 
are introduced from the converter circuitry. In 
particular, the control variable (duty cycle) is limited 
between   zero and one. Additional constraints are 
imposed for safety measure such as the limit on 
inductor current.   To prove the effectiveness of the 
suggested method, time-based simulations are carried 
out and compared with Optimal Discrete Linear 
Regulator (DLQR) and with the more common state 
space approach presented in [15]. The obtained results 
proved that the Laguerre based MPC (LMPC) is able 
to control successfully the buck converter in the 
transient and steady state.
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2. Modeling the buck converter

2.1 Continuous Time Model

The circuit topology of the converter is shown 
in Figure 1 where Ro is the output resistance    
which, Rc is the equivalent series resistance of 
the capacitor, RL is the internal resistance of the 
inductor, L and C represent the inductance and the 
capacitance of the low-pass filter of the converter, 
respectively, and Vs is the input voltage. The 
semiconductor switches S1 and S2, are operated 
by a pulse sequence with constants switching 
frequency fs (with period Ts). The duty cycle d is 
defined as d=ton/Ts where ton represents the interval 
within the switching period during which the S1 
switch is closed. 

We consider the state vector

[ ]( ) ( ) ( ) T

m L ox t I t V t=                                           (1)

The set of continuous-time state space equations 
describing the converter’s behavior of the two 
configurations in CCM (Continuous Conduction 
Mode) are:
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Figure 1. Buck Converter Topology

The continuous-time averaged model is 
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In the following section, we derive a model to 
serve as prediction model for the optimal control 
problem formulation. For this, we reformulate the 
converter model.

2.2 Reformulated Continuous Time Model 

We will be motivated to remove Vs from the 
model equations by using it to scale the physical 
quantities (states and output voltage reference) 
used in the model.  Hence, we introduce the state 

x t x t
Vm
m

s

' ( ) ( )
=

 
to scale (4) and (5). This yields the

 
reformulated state space equations

' ( ) '( ) ( )m m mx t A x t B u t= +                              (6)
' '( ) ( )m m my t C x t=                                         (7)

where the matrices Am,Bm and Cm are as in (4) and 
(5). Hereafter, we use control the notation for input 
signal, u(t) and duty cycle, d(t) interchangeably as 
required.
Since in real time operation, the input voltage is 
either piecewise constant or varies only slowly 
compared to the fast switching frequency, the 
normalized converter can serve as a sufficiently 
accurate prediction model. Since normalizing 
makes the prediction model equations not 
influenced by (the time-varying) input voltage 
Vs, the matrices, Am, Bm and Cm in (4) and (5) are 
time-invariant. Thus, the only time-varying model 
parameters are the scaled output voltage reference 
vo,ref and normalized current limit (iL,max,iL,min).

2.3 Discretization of the continuous time 
model

This paper is based on discrete model based 
MPC and hence (7) is discretized at sampling 
period of Ts using a zero-order hold technique, 
yielding the discrete state-space model
x A x B uk k k
m md d
' '+ = +( ) ( ) ( )1              

(8)

y k C x km d m
' '( ) ( )=                                      (9)
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where m sA T
dA e= ,
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Let ' ' '( ) ( ) ( 1)m m mx k x k x k∆ = − −  and 
( ) ( ) ( 1)u k u k u k∆ = − −  denote the incremental 

state and input vectors, respectively, computed 
from the corresponding vectors in (8). 

The state dynamics in the incremental model 

' '( 1) ( ) ( )m md dx k A x k B u k∆ + = ∆ + ∆          (10)

In a similar manner the output incremental 
dynamics are given by
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By choosing a new state vector 
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T
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the augmented

 
state-space model is obtained by combining (9) 
with (10).
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and the 01, 02 and  I , respectively, are  the zero 
and identity matrices of compatible dimensions.

3. Model predictive control design

To get high control performance while respecting 
state and input constraints we have used a model 
predictive control (MPC) approach. MPC 
provides a systematic way of handling constraint 
optimal control problems. In this and following 
sections the performance of a DC-DC controller 
designed using Laguerre-based MPC (LMPC) 
is compared with that designed using the more 
common linear state-space method (SS-MPC) as 
suggested in [15].

3.1 Linear State-Space MPC (SS-MPC)

Linear MPC, as unlike the usual forms of MPC, 
is attractive because the plant is modelled using 
a linear state space and plant constraints are 
modelled using linear equalities and inequalities. 
Using the augmented state-space model (13), the 
future state variables are calculated sequentially 
leading to the following equations:
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where Np and Nc are termed the prediction and 
control horizons, respectively. 

The predicted output variables for the next Np 
samples can be expressed in the compact form as

( )Y Fx k U= +Φ∆                                    (15)
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Then cost function used for the MPC is 

( ) ( )T T
s sJ R Y Q R Y U R U= − − + ∆ ∆            (16)

w h e r e   [ ] ,   ,Q diag Q Q
−

= … a n d 

[ ]  ,  , R diag R R
−

= …  are block diagonal 
matrices that have identical component matrices 
Q and R respectively. Here, Q is positive semi-
definite matrix and R is a positive definite matrix. 
Rs is the reference signal vector.

Minimizing the cost function (16) yields the 
optimal control vector 

( ) ( )1
( )T T

sU Q R Q R Fx k
−

∆ = Φ Φ + Φ −
  and 

applying receding horizon principle

[ ]( ) 0 0u k I U∆ = ∆                           (17)

3.2 Laguerre Based Model Predictive 
Control (LMPC)

MPC can be designed using orthonormal 
functions wherein the control signal Δ𝑈 is 
represented using Laguerre functions. Since the 
state and output signals can also be expressed in 
terms of Δ𝑈, and then they too can be expressed 
using Laguerre functions.
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In this paper, orthonormal basis Laguerre function 
[7] is used for modeling control signal of (17). The 
z-transform of jth Laguerre function is given by 

2 11 1 ja az
j z a z a

−− −
Γ =

− −
 
                           

(18)

where 0 ≤ a ≤ 1 is the pole of Laguerre polynomial. 

The control input variable can be expressed by the 
following Laguerre functions:

j
1
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(19)

where  lj is the inverse z-transform of Γj in the 
discrete domain. The coefficients cj are unknowns 
and must be acquired from systems data. The 
parameters a and N are used for tuning and can 
be adjusted by accordingly.  Generally, choosing 
larger value for N increases the accuracy of input 
sequence estimation [7] and the control horizon 
(𝑁𝑐) is related to the parameters 𝑎 and 𝑁 [14] by

/ cN Na e−≈                                                     (20)

Equation (19) can be rewritten as
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At an arbitrary future instant m, the state is 
described using Laguerre functions as 
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Similarly, the output is described as
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The objective is to come up with the coefficient 
vector η that minimizes the cost function 
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where Q ≥0  and RL
≥0  is the weighting 

matrices for tuning purpose.

Equation (24) can be rewritten as 
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By substituting (25) in (24) and minimizing J 
(𝜕𝐽/𝜕𝜂 = 0), the Laguerre coefficients vector
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The objective function (24) is subjected to the 
constraints on input and output variable that can 
be defined in the following form
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where ( ) ( )T
iu k m L m η∆ + = , minu  and maxu  are  

lower and upper limits on control variable, miny  

and maxy  are lower and upper limits on the output 

variables and minu∆ and maxu∆  lower and upper 
limits on incremental control variable respectively.

3.3 Stability

In practice, the choose of larger prediction horizon 
is limited by numerical problems, particularly 
in the process with high sampling rate. A well-
established method to solve this problem is to 
use exponential data weighting in the objective 
function [12] an idea originally proposed by 
Anderson and Moore [13].

More specifically, we will focus on the discrete 
exponential factor 𝑒𝜆Δ𝑡 for 0t >   and the discrete 
weights forming a sequence {𝛼𝑗, 𝑗 = 0, 1, 2, …} 

in which we set teλα Λ=  with t∆  being the 
sampling interval.

The proposed   objective function is equivalent 
the linear quadratic regulator (LQR) 
systems but with discrete weights included 

i i

2 T

1

2

0

ˆ ( | ) ( | )

( ) ( )

P

p

N
j

i i
j
N

j T
i i

j

J x k j k Qx k j k

u k j R u k j

α

α

−

=

−

=

= + +

+ ∆ + ∆ +

∑

∑
   

(28)

      

Chala Merga Abdissa, Kil To Chong



	 319

ICI Bucharest © Copyright 2012-2017. All rights reserved

In compact form, the exponentially weighted cost 
function is 

i i
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with state equation

ˆ ˆ ˆ( 1) ( ) ( )x k A x k B u kα α+ = + ∆                       (30)

and /A Aα α=  and /B Bα α=

with 𝑄 ≥ 0, 𝑅 > 0, and 𝑁𝑝→ ∞, minimizing the 

cost function Ĵ  is similar  to the DLQR problem 
which is solved using algebraic Riccati equation 
(31). Then the state feedback control gain for the 
stabilization K̂   ,
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which makes the closed loop system stable  with 
all its eigenvalues inside the unit circle and the 
closed loop system being described by

1 ˆˆ ˆ( 1| ) ( ) ( | )i i i ix k j k A BK x k j kα −+ + = − +          (32)        

From (32), the modified system has all its 
eigenvalues inside the unit circle by increasing 
N𝑝→ ∞. So

1
max

ˆ( ) 1A BKα λ− − <
                                 (33)

Thus, by choosing 𝛼 > 1 it is possible to make 
stable. Several simulations on indicates the choice 
of 𝛼 greater than unity stabilizes the system.

Table 1. Converter and controller parameters

Converter Parameters
In S.I. In p.u.

L 27 µH xl 0.6786
C 4.7  µF xc 11.8124
Rc 0.025  Ω rc 0.0025
RL 0.4  Ω rl 0.04
Ro 10 Ω ro 1
Vs 20  V vs 1
Vo,ref 10  V vo,ref 0.5
IL,max 3 A iL,max 1.5
Vo,max 15 V vo,max 0.75

Controller Parameters
Np 200
Ts 25 µs

4. Simulation parameters and results

Simulations using MATLAB have been done 
in order to prove the effectiveness of proposed 
method.   Table 1 shows the parameters of the 
DC-DC buck converter used in simulation. The 
constraints on the states input and incremental 
control inputs are chosen so as to assure the 
keep the signals at physically appropriate values 
as follows:
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d d t d

d d d

= ≤ ≤ =

∆ = − ≤ ∆ ≤ = ∆
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                       

(35)

4.1 Use of Laguerre parameters

Assuming we want to attain a control horizon of 
10. To grant stability for large   prediction horizon 
(Np=200), we used  =1.6α  and 1λ = . The 
parameter 𝑁 is an integer to specify the network 
order. We used (20) to find the corresponding 
scaling factor 𝑎 as shown in Table 2.

Table 2. Scaling factor a  for constant control 
horizon and varying N

Nc N a
10 2 0.8187
10 4 0.6703
10 6 0.5488
10 8 0.4493
10 10 0.3679

Two cases are considered in order to analyze the 
system’s response for square signal profile of the 
output voltage referenceVo,ref:10–5–10 V.
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Case 1. Set the Laguerre Order N to be large value 
(N = 8). See Table 3 and Figure 2.
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Figure 2. Simulation results for reference voltage 

variations Vo,ref: 10–5–10 V

(a) Inductor current iL and Output voltage vo obtained 
using LMPC for N=8   

(b) Duty Cycle and incremental duty cycle obtained 
using LMPC for N=8

Case 2. Set the parameter smaller value (N = 2).

Performance

Metrics
Control Strategy

LMPC DLQR
Feedback gain [-0.0464  -0.5118  0.1792  0.1792] [-0.0463  -0.5118  0.1792  0.1792]
Eigen Values -0.1011 ± j0.2268,1, 0.4135 -0.1012± j 0.2267,1, 0.2305

Performance

Metrics
Control Strategy

LMPC DLQR
Feedback gain [-0.0424  -0.2860 0.1384  0.1384] [-0.0463 -0.5118 0.1792  0.1792]
Eigen Values -0. 2954 ± j 0.4628,1,0.6973 -0.1012 ± j0.2267,1, 0.4135
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Figure 3. Simulation results for reference voltage 

variations vo,ref: 10 –5–10 V

(a)	 Inductor current iL and Output voltage vo obtained 
using LMPC for N=2

(b)	 Duty Cycle d(t) and incremental duty cycle ∆ d(t)  
obtained using LMPC for N=2

It can be seen from Table 3 that the closed loop 
predictive control system is very similar to the 
DLQR system.

Table 3.  Closed loop Eigen values and feedback gain vector when N=8

Table 4.  Closed loop Eigen values and feedback gain vector when N=2
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Performance

Metrics

Control Strategy

LMPC SS-MPC
Feedback gain [-0.1952  -0.0725  0.1534  0.3200] [-0.4012  -0.1782 0.3774  0.5624]
Eigen Values -0.3749 ± j0.4862, 0, 0.6888 -0.3815±  0.3798, 0, 0.4333
Overshoot 1.00 %  0.5008 %
Settling time ms 1.5919 1.7081

Performance

Metrics

Control Strategy

LMPC SS-MPC
Feedback gain [0.3966   -0.1715    0.3632   0.5584] [-0.4012  -0.1782 0.3774  0.5624]
Eigen Values -0.3754 ± j 0.3887, 0, 0.4346 -0.3815±  0.3798, 0, 0.4333
Overshoot 1.00 %  1.00  %
Settling time ms 1.5919 1.5919

For the same simulation, (different instance), 
one can observe in Figure 2(b) and (3b) 
the evolution of the duty cycle, paired with 
its incremental value to allow for a direct 
comparison.  In addition, because of the 
presence of exponentially decaying factor in 
the Laguerre functions, the increment on duty 
cycle is granted to converge to zero after the 
transient time.

Comparing the results in table 3 and 4, it can be 
seen that the closed-loop control performance is 
more sensitive to the parameter N when is small 
(N=2). This is very helpful in the situations 
when the optimal DLQR system does not gives 
us with satisfactory performance.

4.2 Stability Analysis

Looking at the location the eigenvalue’s of 
LMPC and checking whether they are within 
unit circle we can decide the stability of the 
system.  We also make a comparison with 
those of the optimal Discrete Linear Quadratic 
Regulator (DLQR) system. To grant stability 
as explained previous section we use 𝛼 = 1.6, 
Np=200 and N=8.

In Figure 4, we can see that all the eigenvalues 
appear inside the unit circle as required. In 
addition, it is noted that the eigenvalues of 
the LMPC coincides with that of the optimal 
DLQR. This not only shows the system is stable 

but also shows that the controller performs 
optimally. The exponentially weighted cost 
function removes the problem of stability (ill 
numerical condition) because the model used 
in the prediction is changed to be stable using 
the scaling factor α. As a result, the prediction 
horizon Np can be selected to be sufficiently 
large without creating ill-conditioning 
(here Np=200). Hence, closed-loop stability  
is guaranteed.
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Figure 4. Eigenvalues for DLQR and LMPC

4.3 Performance of LMPC as compared to 
SS-MPC

In this section, we examine at the performance 
of LMPC when used to regulate the output 
voltage to reference signal. Also, LMPC is 
compared to SS-MPC.  

Table 5.  Performances comparison of comparison LMPC and SS-MPC obtained in 
simulation for reference voltage Vo,ref: 10–5–10 V

Table 6.  Performances comparison of comparison LMPC and SS-MPC obtained in 
simulation for reference voltage Vo,ref: 10–5–10 V
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Here also we considered two cases: 
(a)	 Performances comparison of Laguerre based 

Model predictive control(LMPC) and state 
space model predictive  control(SS-MPC) 
simulated  for Nc=10; N=2 , Qy=1 and R=1. 
Using these  parameters , the closed-loop 
poles of the DLQR system are -0.3815 ± 
j0.3798, 0.4333 and 0 with feedback gain:
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Figure 5. Simulation results for reference voltage 

variations vo,ref: 10–5–10 V obtained using LMPC and 
SS-MPC for N=2

(a) Output voltage vo; (b) Duty Cycle d(t); 
(c) Incremental duty cycle ∆d(t).

(b)	 Performances comparison Laguerre based 
Model predictive control(LMPC)  and state 
space model predictive  control(SSMPC) 
simulated  for Nc=10; N=5 , Qy=1 and R=1. 
Using these  parameters , the closed loop 
poles of the DLQR system are -0.3815 ± 
j0.3798, 0.4333 and 0 with feedback gain:
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Figure 6. Simulation results for reference voltage 
variations vo,ref: 10–5–10 V obtained using LMPC and 

SS-MPC for N=5

(a) Output voltage vo; (b) Duty Cycle d(t); 
(c) Incremental duty cycle ∆d(t).
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As it can be seen from figure 5, SS-MPC performs 
better than LMPC. This is because the LMPC 
controller used lower Laguerre order (N=2).  

In Figure 6, both LMPC and SS-MPC regulate 
the output voltage to the reference very well. 
However, LMPC performs better than SS-MPC 
in that it requires only five parameters (𝑁=5) to for 
the regulation compared to SS-MPC’s minimum 
of 10(𝑁𝑐 = 10) parameters. Thus, we can choose 
a Laguerre network with lower number of terms 
𝑁 (that gives lower computation burden). The 
computational cost is lower if a smaller number 
of parameters are used.

5. Conclusion

Optimal control of the DC-DC buck converter 
was considered. We have presented state space 
averaging model and control approach for switch-
mode buck DC–DC converters by formulating 
a constrained optimal predictive control 
problem. The proposed predictive controller 
uses orthonormal Laguerre functions to capture 
control signal which reduces computation largely 
in real time. Also, exponential data weighing 
is used to reduce numerical issue, particularly 
with large prediction horizon. A quadratic 
objective function equivalent the one used in 
discrete linear quadratic regulator (DLQR) has 
been used. In stability analysis LMPC has been 
compared to the optimal DLQR system. The 
LMPC gives extra advantage as compared to the 
more commonly used MPC(SS-MPC) that it can 
handle the buck DC-DC converter control where 
rapid sampling and more complicated process 
dynamics are required. Simulation results have 
been given to show that the proposed controller 
guided to a closed-loop system. Finally, it has 
been shown that the output voltage has been 
tracked to the reference.  
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