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1. Introduction 

The requirements of light weight and lower 
energy consumption in space applications 
motivate the utilization of flexible link robot 
manipulators. However, the flexible nature of 
the manipulator causes difficulty in obtaining 
an accurate model and makes the controller 
design very difficult. 

Various modeling approaches have been 
proposed in the literature to derive the dynamic 
model of FLM, such as Lagrangian-Assumed 
modes method [16], finite element method 
[25], and Kane’s approach [14]. A detailed 
approach to modeling of flexible manipulators 
using recursive Lagrangian dynamics is 
presented by Book [6] and Li and Sankar [8]. 
The kinematics of manipulator using 
homogeneous transformation matrices is 
presented in [15]. In [18], the dynamic model 
of FLM is approximated by considering only 
two flexible modes. The way of expressing the 
tip deflection as a function of mode shapes is 
presented in [21] and [23], which is necessary 
in Euler Bernoulli beam theory. However, the 
models derived from Lagrangian-assumed 
modes method are useful in controller design 
perspective. Hence, dynamic model of FLM 
based on combined Lagrangian-Assumed 
modes method is used in this work. The model 
is truncated with the first two significant modes 
resulting in a sixth order nonlinear model. 

There are several control schemes applied   in 
the past for  trajectory  tracking  and   vibration  

 

 

 

suppression of FLM based on nonlinear 
models. These control schemes include 
feedback linearization based techniques [7], 
Lyapunov function based control [12], 
recursive back stepping [9] and nonlinear H∞ 
control [4]. SDRE based techniques provide a 
systematic method to design nonlinear 
controllers. The controller design for nonlinear 
systems via SDRE technique is presented in  
[2-3], which use a state-dependent coefficient 
(SDC) parameterization, to produce a constant 
state-space model. The general idea of the 
SDRE technique is presented in [10]. The 
issues in realization of SDRE scheme in real 
time are presented in [13]. Controllability test 
on SDC form carries significance in enabling 
the feasibility of the nonlinear optimal control. 
The connection between controllability of SDC 
parameterizations and exact system 
controllability is introduced in [17]. The 
efficiency of SDRE controller in terms of 
computational time is reported in [20]. For 
trajectory tracking of FLM, SDRE scheme is 
applied in real time with position variable as 
feedback in [1]. Simultaneous position as well 
as vibration control requires feedback of 
position and deflection variables. None of the 
existing SDRE based controllers has considered 
this aspect. Owing to the problems of noise and 
disturbance issues associated with the sensing 
of position and deflection variables, state 
estimator based on Kalman filters is an 
appropriate strategy to achieve tip position 
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control with vibration suppression. In this paper 
Kalman filter based SDRE controller is 
proposed for the control of FLM. 

Organisation of the article is as follows. 
Section 2 gives the modeling of flexible link 
manipulator by Lagrangian-AMM approach. 
Section 3 gives the design of SDRE controller 
and section 4 gives the Kalman filter design for 
flexural states estimation. Section 5 gives the 
formulation of SDC matrices. Section 6 gives 
the simulation results. Section 7 gives             
the conclusions.  

2. Modeling of Flexible-Link 
Manipulator 
The schematic diagram of FLM rotating in the 
horizontal plane and clamped at one end is 
shown in Figure 1. The flexible arm of length l , 
flexural rigidity EI  and mass density ρ is 
joined to the hub of inertia HI . Torque τ is 
applied at the hub. 

 

 

Figure 1. Representation of flexible-link 
manipulator 

 

The net deflection v(x,t) of the arm at a distance 
x at time t, is expressed using  combined Euler 
Lagrangian-AMM approaches  and is given by  
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where m is a number of modes, )(xi indicates 

mode function and )(ti  is model variable     

for an ith mode. In this work, the first             
two significant modes are considered          
while modeling.  

2.1. Lagrange’s Equations of FLM 

The Kinetic energy owing to the motion of hub 
and link of the manipulator is given by  
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where r is a position vector in (OXY) 
coordinates and θ(t) represents hub angle 
position. Then, r (θ, x, t) can be expressed as: 
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The potential energy possessed in the arm due 
to the elastic deformation is expresses as  
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The Lagrange’s approach is used to obtain 
differential equations of motion of FLM. A 
system with n coordinates has n differential 
equations of the form: 
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where Fi is generalized force action on 
generalized coordinates if and the Lagrange’s 

operator is defined by                  
        VTL                                                (6) 
Using equation (5) and (6), the differential 
equation of the form (7) can be obtained.   
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 The generalized coordinate vector contains 
hub angle (θ(t)) and modal variables (δ1(t) … 
δm(t)) as its elements .Using the equations (2)-
(4) and (7), dynamics of FLM can be obtained 
in the form specified by  
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where 33 RM  represents the inertia matrix, 

 ThhhH 321 is a vector of centrifugal 

and Coriolis forces, τ is the control input torque,  
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and 33 RK is stiffness matrix. Since the 
deflections of the beam are small compared to 
link length, the output expresses in the 
normalized form: 
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                           (9) 

 After substituting the physical parameters as 
given in Table 1 into (8), the manipulator 
dynamics can be obtained in the form:  

UKxxCxM                                        (10) 

where M and K are inertia and stiffness 
matrices respectively, xC  represents Coriolis 
and centrifugal force terms, which are given by  
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The normalized output is given by  
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Table 1. Physical Parameters of FLM [22] 

 
Parameter 

 

 
        Value 

 

Beam length (l) m9.0  

Beam width (w) m0032.0  

Beam height (h) m019.0  

Young’s modulus (E) Pa91071  

Moment of inertia (I) 41110253.5 m  

Hub inertia (IH) 24108598.5 mkg  

Mass density (  ) 3/2710 mkg  

 
2.2. State-Space Formulation 

It is convenient to express dynamic model in 
state-space form for controller design. By 

choosing ],,,,,[ 2211  
 as state variables, 

the state equations of the model (10) can be 
written as follows: 
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The state equations written in general state-
space form are as follows:  

uxgxfx )()(                                         (11) 
where )(xf and )(xg are vectors of nonlinear 
elements and u is the control input applied to 
the manipulator ( )u . 

3. SDRE Regulator Problem 
Consider the general form of infinite-horizon 
nonlinear regulator problem that minimizes the 
performance measure [11]: 
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


0

))()(( dtuxRuxxQxJ TT                  (12) 

with respect to the system state x and        
control input u subject to the nonlinear 
differential constraint: 

uxgxfx )()(                                       (13) 

The objective is to find an approximate solution 
of problem (12)-(13) of the type

xxkxu )()(  , where k is a nonlinear 
function of x.  SDRE nonlinear control 
approach is similar to the LQR approach for 
linear systems [24], as a result the system 
equations are transformed to SDC form: 
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 where xxAxf )()(  and )()( xBxg  . The 
selection of A(x) is not exceptional and the 
parameterization is achievable only if f (0) = 0 
and f(x) is continuously differentiable. The 
parameterization of nonlinear system is 
performed by checking pointwise observability 
and controllability [5]. Once the SDC matrices 
are formed, then the state feedback control law 
is obtained in the form     
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where P(x) is the solution of state-dependent 
Riccati equation: 
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The stabilization and performance of the 
system depend on the choice of weighting 
matrices Q and R. These matrices are taken as 
diagonal. To impose some restriction on a state, 
the corresponding entry in Q should be 
weighted more. Also, as the value of R 
increases the feedback gain decreases, resulting 
in a sluggishness response. 

4. Kalman Filter Technique for 
State Estimation 
In this section Kalman filtering techniques for 
estimation of flexural states is presented. The 
Kalman filter based SDRE is formulated by 
constructing the twofold of SDRE control 
design and resulting in a steady-state linear 
  

Kalman filter structure. This brings the given 
nonlinear system into linear structure in       
SDC form.  

Let us consider the stochastic nonlinear system  
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where K is a weight matrix of process noise 
with appropriate dimensions, w is white process 
noise and v is white measurement noise. Now 
equation (17) is written in the SDC form: 
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where F(x) x=f(x), G(x)=g(x) and H(x) x=h(x). 

A state observer exists for a class of systems, 
which are observable. A test for observability 
of nonlinear systems of the form shown in 
equation (17) is given by Isidori in [19], it 
shows that the following is true in an 
observable nonlinear system: 
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where )(xLf  is the Lie derivative of h(x). Here 

observability of the system is assumed in 
nonlinear sense and the pointwise observability 
can be checked in the region of interest. The 
Kalman filter equations for states estimation in 
the SDRE design [11] is as follows  
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The matrices W and V are chosen as the 
covariance matrices [11] for the corrupting 
noise terms such that  
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5. SDC Formulation  
The SDRE method depends upon the ability of 
writing the constraint dynamics (11) in a 
pointwise linear structure, having SDC form: 
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6. Simulation Results 
In this section, simulations are carried out to 
demonstrate the control performance of Kalman 

 

 

filter based SDRE controller for flexible link 
manipulator. The system parameters are 
specified in Table 1and simulations were 
performed in MATLAB environment.  

6.1. SDRE Controller  

SDRE controller is used to achieve good 
tracking performance and suppression of 
vibrations at end point of FLM. A change in the 
step signal from 00 to 090 (1.57 rad) is 
taken as reference. The weighting matrices are 
taken as shown below. 
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Figure 2 show the control input, hub angle 
response shown in Figure 3 and first and 
second mode of vibrations are shown in Figure 
4 and Figure 5 respectively. The hub angle 
response shows that the manipulator reaches 
the steady state value in 4 seconds without 
overshoot. Oscillations are damped out in 1.25 
sec in first and second mode.  

 
Figure 2.Control input applied to manipulator 
 
 

 
Figure 3.Hub angle response using SDRE controller 
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Figure 4. 1st  mode of vibration using  

SDRE controller 

 

 
Figure 5. 2nd mode of vibration using  

SDRE controller 

 

6.2. Kalman Filter based SDRE 
controller  

The assessment of the ability of Kalman filter 
to give good estimation of states in the 
presence of process and measurement noise is 
discussed in this section. The intensity of 
process noise is taken as W = 0.5 and the 
intensity of measurement noise V is taken as   

 

V=

















5.100

03.00

001.0

 

 

Responses are obtained for two cases: (i). with 
estimation of hub angle (position) only and 
(ii). with estimation of hub angle as well as 
deflection variables. Figure 6-Figure 8 show 
the hub angle response, 1st and 2nd mode of 
vibration responses for this two cases. 

 

 
Figure 6.Hub angle response (Kalman filter  

based SDRE) 

 

 
Figure 7. 1st  mode of vibration (Kalman filter  

based  SDRE) 

 
Figure 8. 2nd  mode of vibration (Kalman filter 

based SDRE) 

These figures illustrate that even though faster 
hub angle response is obtained for case (i), the 
amplitude of vibrations are reduced 
considerably, for case (ii). With the 
improvements achieved by the Kalman filter 
based SDRE controller using the estimation of 
hub angle as well as deflection variables, it is 
assessed that the proposed controller qualifies 
to be adequate for simultaneous tracking and 
vibration suppression of FLM. 
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7. Conclusions 
The dynamic model of FLM has been derived 
by considering the first two significant modes 
using AMM approach. Good tracking 
performance as well as damping of 
deflections was achieved by the Kalman filter 
based SDRE controller. Furthermore, the 
advantage of estimating tip position as well 
as the first and second mode of vibrations 
instead of tip position alone was 
demonstrated through simulations. Due to the 
complexity of model dynamics only the 
manipulator with one link is considered                
in this work, and this technique may                        
be extended further to multi link 
manipulators also.  
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