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1. Introduction

Aortic stenosis (AS) is one of the most common 
valvular heart conditions (Lindman et al., 2016). 
It occurs when the aortic valve does not fully 
open during systole, reducing blood flow to the 
systemic circulation. The treatment decision 
depends on the functional severity of the stenosis, 
which is assessed based on the trans-valvular peak 
pressure drop: typically, 20mmHg is used as a 
decision criterion, i.e. valves causing a pressure 
drop ≥ 20mmHg are treated invasively.

Non-invasively, the pressure drop is routinely 
estimated in an analytical manner, using a 
simplified form of the Bernoulli equation, which 
may lead to suboptimal results since certain 
hemodynamic aspects are not fully captured such 
as pressure recovery and blood flow turbulence 
(Hoeijmakers et al., 2022). Invasive cardiac 
catheterization may also be used to evaluate 
the hemodynamic burden of AS by measuring 
the net pressure drop across the aortic valve. 
This however is limited by its invasive nature, 
associated costs, and inherent risks (Manda & 
Baradhi, 2022).

Computational Fluid Dynamics (CFD)-based 
methods are often used in studies to simulate 
blood flow in various compartments of the 
cardiovascular system. A study conducted by 

Srinivasan and Madathil (2016) detailed the 
effects of a stenosis on blood flow turbulence 
by using CFD simulations. Blood vessels 
with various stenosis degrees were modeled 
and simulated using the open-source software 
OpenFOAM (OpenCFD Ltd., 2022). The results 
showed a direct correlation between the stenosis 
intensity and the blood flow turbulence. Research 
by Zakaria et al. (2018) used patient-specific 
geometries to simulate the blood flow through the 
aorta. The results were validated by comparing 
against an already existing experimental result. 
It was observed that this method was able to 
capture complex characteristics of the blood 
flow, suggesting that detailed flow physics could 
be extracted.

A recent study conducted by Hoeijmakers et al. 
(2020) indicated that training a meta-model for 
pressure drop estimation can be seen as a viable 
alternative to current clinical methods. Patient- 
specific meshes were created by performing image 
segmentation on Computer Tomography (CT) 
scans. The obtained meshes were used for building 
a statistical shape model (SSM) which enabled 
the generation of a synthetic dataset of meshes. 
Steady-state CFD simulations were performed 
in order to build a meta-model that could relate 
statistical shape variance and flow rate to pressure 
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drop. The obtained results suggest that, if enough 
training data is provided, the meta-model can 
capture the relevant features for pressure drop 
estimation. Average errors between 8.8% and 
10.6% were observed for valve opening areas 
below 150 mm2, with errors increasing for larger 
valve opening areas. This suggests that further 
improvements may be possible.

In addition to the CFD-based methods, machine 
learning models, such as neural networks 
(NN), have also seen an increased usage in 
hemodynamics and cardiovascular disease 
research. In a study conducted by Farajtabar et 
al. (2023), the pressure and velocity within a 
coronary arterial network were predicted based 
on its anatomical features. The data required to 
train the neural network was obtained from the 
CFD analysis of several geometries of arteries 
with specific features.

A study by Gamilov et al. (2023) also employed 
neural networks to estimate the pulse wave 
velocity (AoPWV) in the aorta. Given the limited 
number of clinical cases, the network was trained 
using a synthetic AoPWV database of virtual 
subjects. An additional dataset of real patient 
data was employed to validate the algorithm. The 
research of Long et al. (2021) also exploited a 
CFD-based synthetic dataset: CFD simulations 
were converted into synthetic 4D flow MRI data, 
and then this data was used to train various neural 
networks for image upsampling. Validation was 
performed on two sets of in-vivo 4D flow MRI 
data. The study proved that flow-image denoising 
was successful.

Machine learning (ML) models are considered 
to be a promising solution for pressure drop 
estimation in the cardiovascular system, using 
patient-specific characteristics as input (Nita et 
al., 2022). However, training ML models requires 
large datasets of invasively measured pressure 
drops. The previous studies used datasets created 
from patient-specific data collected through 
various modalities. Collecting such data is time-
consuming and costly. This paper introduces an 
alternative method for generating purely synthetic 
datasets for developing a ML model capable of 
estimating pressure drop in aortic stenosis (AS). 
The approach proposed in this work uses a generic 
anatomical model of the aortic valve that can be 
customized, creating various valve shapes within 
normal physiological ranges, by adjusting three 

anatomical parameters (aorta diameter, blood 
velocity, and valve area reduction). Then, the 
ground truth pressure drop is computed by using 
high-fidelity CFD simulations. No actual patient 
data is employed during this process. Finally, the 
usefulness of this dataset is validated by using it 
for the development of a machine-learning model 
for pressure drop estimation.

The remainder of this paper is structured 
as follows. Section 2 presents the synthetic 
data generation process and the ML-based 
methodology. Section 3 provides an overview and 
detailed statistics of the resulting dataset and the 
performance analysis of the ML models. Section 
4 discusses the advantages and the limitations of 
the proposed method, while also outlining the 
conclusion of this paper.

2. Methods

The following workflow is proposed for 
performing an automatic pressure drop assessment 
using ML:

1.	 Synthetic dataset generation: 

a	 Physiological ranges and constraints are 
defined for the input parameters (valve 
diameter, blood flow velocity, and valve 
opening area reduction percentage). 
The cases which make up the analyzed 
dataset were randomly sampled, as it is 
detailed in subsection 2.1; 

b	 A mesh representing the aortic valve is 
generated for each case, as it is described 
in subsection 2.2;

c	 A blood flow simulation is performed 
for each mesh, and the pressure drop 
is determined, as it is explained in 
subsection 2.3.

2.	 ML model development (subsection 2.4).

The parameter combination (step 1a) is used as 
the feature set (input to the ML model), while the 
pressure drop value (step 1c) is the ground truth 
value employed in training one of the models 
listed in subsection 2.4.

The focus was on synthetic data, since: (i) ML 
model training requires large amounts of data, and 
(ii) the limited amount of available clinical data 
is insufficient for such an approach. Moreover, 
another goal was to rely solely on open-source 
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software (for CFD, etc.) during the entire dataset 
generation pipeline.

2.1 Parameter Sampling

Valve diameter, blood flow velocity, and valve 
opening area reduction percentage are the main 
characteristics that influence pressure drop in 
AS. Before selecting the parameter combinations 
for generating the analyzed subset, the potential 
ranges of the input parameters were defined. For 
the valve diameter (D), a range between 2 cm and 
7 cm was chosen, with the blood flow velocity (U) 
ranging from 0.1 m/s to 0.6 m/s (Gabe et al., 1969). 
The valve opening area reduction percentage (Ar) 
represents the percentage difference between the 
inlet area and the valve opening area. Values 
between 60% and 85% were used to ensure a 
large number of samples are obtained around the 
point of interest (a 20mmHg pressure drop). The 
ranges were chosen such that they include the 
physiologically observed and clinically relevant 
ranges. However, even if each parameter value 
lies within the normal physiological range, 
their combination might still be physiologically 
impossible. To guarantee realistic parameter 
combinations, a constraint was added to the 
sampling process. The blood flow at the inlet 
must be at least 50 ml/s and it should not exceed 
650ml/s (Hoeijmakers et al., 2020).

To compile a possible distribution of the analyzed 
cases, a mean for approximating the pressure drop 
was required. To this end, the formula in (1) was 
employed (Bessems, 2007), which was previously 
derived by combining analytical and experimental 
aspects. Because the formula does not generalize 
well in AS due to the irregular shape of the valve 
opening, its accuracy greatly decreases as the 
severity of the stenosis increases. However, these 
inaccuracies are acceptable in this context, since 
the distribution is only used for gathering general 
information, before constructing the actual dataset.
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where ρ represents the blood density, while A0 
and As are the initial valve opening area and the 
minimum valve opening area, respectively. The 
blood flow rate is represented by the variable q, 
with Kt being the turbulence constant, set as equal 
to 1.5.

Despite only approximating the final dataset, 
this distribution provided valuable preliminary 
insights, such as the correlations between the 
parameters and their influence on the pressure 
drop, as it was detailed in subsection 3.2.

Finally, the set of synthetic cases was selected 
by randomly sampling the previously chosen 
intervals and discarding those that did not meet 
the flow rate constraint.

2.2 Aortic Valve Geometry

The aortic valve geometry was inspired by images 
depicting real valve anatomies. To facilitate both 
the mesh design process and the simulation step 
that follows, the open-source CFD software 
OpenFOAM was employed.  The aortic valve 
geometry is represented as a hexahedral mesh 
by using the blockMesh utility. Furthermore, 
the quality of the mesh is assessed by using the 
checkMesh utility.

To ensure the quality of the resulting mesh, its 
geometry is modeled as two separate components 
that are merged afterwards (Figure 1). The first 
component renders the exterior of the aortic valve, 
alongside the left ventricular outflow tract and the 
ascending aorta. The second component contains 
only the internal geometry of the aortic leaflets.

Figure 1. Valve geometry: a) exterior walls (left 
ventricular outflow tract, aortic valve, aorta); b) leaflets

To merge the two meshes, the snappyHexMesh 
utility was employed. This utility generates a 
three-dimensional mesh, by morphing a base 
mesh so as to conform to a surface geometry in 
the stereolithography (STL) format. The external 
mesh was used as the base mesh, while the leaflets 
were converted to the STL format.
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Because the blockMesh utility uses dictionaries 
containing positional and relational information 
about the vertices comprising the mesh, this process 
can be parametrized, enabling the generation of 
different aortic valve geometries. Python scripts 
are employed to automate this process.

Using a parametrized mesh is advantageous 
since its geometry can be easily modified 
programmatically as needed, enabling the 
generation of different geometries for various 
simulation scenarios. The only parameters that 
changed across simulations were the valve 
diameter (D), the valve opening radius (r) and the 
blood flow velocity (U).

However, using the valve opening radius as one 
of the parameters posed a challenge. Clinically, 
it is not the valve opening radius that is being 
measured, but the valve opening area reduction 
percentage, relative to the area of the aorta. 
Therefore, the relationship between the valve 
opening area reduction percentage and the valve 
opening radius needs to be determined. This 
was achieved through the use of an interpolation 
algorithm. An auxiliary dataset containing a 
collection of three-dimensional points was 
generated. The coordinates of each point 
described the characteristics of a specific mesh: 
the valve diameter (D), the valve opening area 
reduction percentage (Ar) and the valve opening 
radius (r).

Before computing the area reduction percentage, 
the initial valve opening area (A0) and the 
minimum valve opening area (As) need to be 
extracted from the generated meshes using the 
open-source visualization software ParaView 
(Ayachit, 2015). Once the two areas are extracted, 
the following formula can be used to determine 
the area reduction percentage:

0

1 100sA
Ar

A
= − ×

                                         
(2)

An experimental approach was employed 
to determine which interpolation algorithm 
performs best in this scenario. Among the 
algorithms provided by the open-source Python 
library SciPy (Virtanen et al., 2020), the 
CloughTocher2DInterpolator offered the most 
accurate predictions. The errors observed ranged 
within ±5%.

2.3 Anatomical Model and Flow 
Simulation Parameters

To determine the flow parameters that best 
describe the blood flow through the aorta, studies 
on the blood flow in the human arterial system 
(such as that of Thomas & Sumam, 2016) and 
blood flow simulations using CFD (Zakaria et 
al., 2018) were analyzed. Blood can be regarded 
as an incompressible Newtonian fluid, with a 
kinematic viscosity of 4 × 10-6 m2/s and a density 
of 1500 kg/m3. The most used model for blood 
flow turbulence is the K-epsilon turbulence model 
(Argyropoulos & Markatos, 2015). The formulas 
below were used to determine the turbulent 
kinetic energy k and the turbulent dissipation rate 
ε (Srinivasan & Madathil, 2016):

23
( )
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where U represents the mean flow velocity and 
I the turbulent intensity. The turbulence length 
is represented by the variable l. Additionally, 
the outlet pressure was set at zero and a 
no-slip boundary condition was applied at 
the walls of the aorta.

Initially, blood flow simulations were carried 
out using a linear inlet velocity profile (LVP). A 
small dataset comprising six distinct scenarios 
was assembled and they were simulated with 
the pimpleFoam solver (Holzmann, 2016). 
The selected cases were decomposed using the 
decomposePar utility, enabling parallel runs on 
multiple CPU cores to speed up the simulations.  
The intermediate results were then concatenated 
using the reconstructPar utility.

To ensure convergence in a timely manner, the 
parameters of the control dictionary were fine-
tuned. The simulation time was set at 5 seconds, 
with data being extracted every 0.1 seconds. A 
variable time step was enabled, allowing the 
solver to adjust the number of steps as required.

The relevant data was extracted from simulations 
using ParaView utilities (Figure 2). The simulated 
pressure drop was then compared against the 
analytically computed pressure drop. The 
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analytically computed value was determined as 
in equation (1) (Bessems, 2007).

Figure 2. ParaView visualization: a) pressure;  
b) blood flow velocity; c) blood flow velocity (tracers)

To improve the accuracy of the simulation results, 
a parabolic velocity profile (PVP) was imposed at 
the inlet of the aortic valve, as it can be seen in 
Figure 3. 

Figure 3. Valve inlet velocity: a) the linear profile;  
b) the parabolic profile

This assumption is based on the fact that there is 
no turbulence in the areas preceding the valve, 
meaning that the blood can be considered to have 
a laminar flow (Srinivasan & Madathil, 2016). 
Thus, the constant velocity was replaced with a 
location- (layer-) dependent velocity, which can 
be expressed by:
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In equation (5), the variable Umax represents the 
maximum velocity value, while r represents the 
radius of the valve inlet. The numerator of the 
fraction determines the position relative to the 
center of the inlet, with cx and cy representing the 
center coordinates.

2.4 Machine Learning-based Pressure 
Drop Estimation

After generating the dataset, the next step was 
to verify its viability in a machine learning 
(ML) application. The role of the ML model is 
to estimate the pressure drop value based on the 
other three parameters (diameter, velocity, and 
the valve opening area reduction percentage). 
Three approaches were considered: a polynomial 
regression model, a support vector regressor, 
and a neural network. Regardless of the chosen 
approach, the problem was formulated as 
a regression task, with the model’s output 
representing the pressure drop.

The first approach, namely the polynomial 
regression model, was implemented using scikit-
learn (Pedregosa et al., 2011). For the second 
approach, scikit-learn was used for implementing 
a Support Vector Machine (SVM) model. For 
implementing the neural network, the open-
source framework PyTorch (Paszke et al., 2019) 
was used. The neural network is composed of 
three fully connected (FC) layers: one input layer 
with three neurons, one hidden layer with 32 
neurons, and a single-neuron output layer. The 
first two layers use a Rectified Linear Unit (ReLU) 
activation function, while the output layer uses no 
activation function.

The specific parameters and hyperparameters 
were tuned using a grid search approach for each 
method. The optimal values are presented in 
subsection 3.4, along with the obtained results.

3. Results

3.1 Velocity Profile Comparison

The effect of modifying the velocity profile is 
highlighted in Table 1. In cases with mild stenosis 
(e.g., case A), the observed pressure drop was 
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much closer to the analytically computed value 
when using a parabolic velocity profile. As the 
severity of the stenosis increases (e.g., case F), 
the accuracy of the analytical formula decreases, 
which explains the large discrepancy relative to 
the observed values. Additionally, the increase 
in pressure drop for the cases simulated with a 
parabolic velocity profile is gradual (except for 
case D).

3.2 Convergence Analysis

Before proceeding with the dataset generation, 
a convergence analysis was performed with 
the aim of finding a tradeoff between mesh 
quality and simulation runtime. Two cases were 
chosen for the convergence analysis: one with a 
borderline pressure drop value (20 mmHg), and 
the other one with a high pressure drop value, of 
approximately 60 mmHg. Simulations were run 
for meshes with varying cell counts for each case. 
Figure 4 and Figure 5 indicate that a decrease in 
the relative cell count results in unpredictable 
oscillations in pressure drop values. Conversely, 
increasing the cell count maintains the pressure 
drop close to the expected range. These findings 
imply that the selected mesh resolution is 
adequate for this application.

Figure 4. Convergence analysis results for a case 
with a pressure drop of approximately 20 mmHg

Figure 5. Convergence analysis results for a case 
with a pressure drop of approximately 60 mmHg

3.3 The Synthetic Dataset

A synthetic dataset comprising 241 samples 
was generated. The mean absolute difference 
between the predicted pressure drop and the 
analytically-derived value was computed to put 
the results into context. The mean difference 
of 6.35 mmHg suggests that the blood flow 
characteristics were captured as expected during 
the simulations. The largest differences were 
obtained for cases with a higher valve opening 
area reduction percentage, where the assumptions 
related to a circular area in the analytical formula 
no longer hold.

The distribution of the generated samples is 
presented in Figure 6. 

Figure 6. 3D representation of pressure drop as a 
function of velocity and valve opening area reduction 
percentage, for each sample in the analyzed dataset

Table 1. Comparison between pressure drop values extracted from linear velocity profile (LVP) simulations, 
parabolic velocity profile (PVP) simulations and analytically computed values

Case D [cm] Average U
[m/s] Area reduction [%] Q [ml/s] Pressure drop 

LVP [mm Hg]
Pressure drop 
PVP [mm Hg]

Analytical pressure 
drop [mm Hg]

A 6 0.3 46.81 847.44 0.73 0.42 0.41
B 2 0.3 53.13 94.16 2.13 1.75 0.68
C 4 0.3 59.72 376.64 2.07 1.75 1.17
D 4 0.1 60.31 125.55 0.25 0.21 0.14
E 4 0.5 60.31 627.74 5.62 4.71 3.41
F 4 0.3 73.64 376.64 9.81 9.39 4.15
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The mean pressure drop value was 17.39 ± 16.18 
mmHg, with a minimum of 0.21 mmHg and a 
maximum of 68.84 mmHg.

The correlation matrix depicted in Figure 7 
indicates that as the blood flow velocity and the 
area reduction percentage increase, so does the 
pressure drop. While both parameters influence 
the severity of the pressure drop, an increase 
in velocity only leads to a marked increase in 
pressure drop for cases where the area reduction 
percentage is also high.

Figure 7. Correlation matrix for the generated dataset

3.4 Pressure Drop Estimation

To evaluate the performance of the employed 
models, a 5-fold cross-validation strategy was 
applied. The cross-validation performance metrics 
were computed for each ML approach, as it can 
be seen in Table 2.

The polynomial regression model performed best 
when implemented using a 3rd degree polynomial 
function. The SVM-based model offered the 
best results when using a 4th degree polynomial 
function as the kernel.

As it was mentioned previously, the models were 
trained using a regression formulation. However, 
the outputs can be post-processed by applying 
the clinical decision threshold, which would 
transform the regression task into a classification 
problem. In a clinical setting, a pressure drop 
value of 20 mmHg is applied as the lower limit 
when classifying severe stenosis (Baumgartner et 
al., 2017). By setting the threshold at 20 mmHg, 
the results can be split into two classes: healthy 
subjects/mild stenosis (under 20 mmHg), and 
severe stenosis (over 20 mmHg).

The neural network performed the best among 
the three employed approaches, achieving the 
highest R2 score, that is 0.9841. The obtained 
errors were also lower in comparison with those 
obtained by the other employed models and the 
classification performance was only slightly 
lower than that attained by the polynomial 
regression model. 

Besides the usual regression-specific metrics, 
the correlation between the ground truth values 
and the predicted values was also assessed. The 

Table 2. Optimal parameters for each approach, followed by the mean absolute error, minimum and maximum 
errors, absolute error standard deviation and mean error [mmHg], R2 Score and Pearson’s correlation 

coefficient, Accuracy, Sensitivity, Specificity and area under the curve (AUC)

Cross Validation 5-Fold (241 samples)
Algorithm Polynomial Regression Support Vector Regressor (SVR) Fully Connected (FC) Neural Network

Kernel N/A Polynomial N/A
Degree 3 4 N/A
MAE 1.7144 1.6220 1.2415

Min. Abs. Error 0.0046 0.0045 0.0016
Max. Abs. Error 11.1623 13.0340 9.5392

Abs. Error Std. Dev. 1.7178 1.8639 1.6244
Mean Error 0.0054 -0.2677 -0.0141

R2 Score 0.9762 0.9753 0.9841
Pearson’s r 0.9887 0.9885 0.9920

Accuracy [%] 95.44 94.61 95.02
Sensitivity [%] 91.7 90.5 91.7
Specificity [%] 97.5 96.8 96.8

AUC 0.9951 0.9945 0.9947
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Pearson correlation coefficient reflects a strong 
linear correlation, as it is illustrated in Figure 8. 
The Bland-Altman plot in Figure 9 shows that, 
at the worst, 95% of the prediction errors for the 
neural network should range between ±4 mmHg. 
A mean difference of only 0.01 indicates that the 
predictions were not biased.

The confusion matrix and ROC curve for each 
model are presented in Figure 10 and Figure 11, 
respectively. Additional classification metrics are 
displayed in Table 2. 

Figure 8. Pearson correlation: a) Polynomial regression; b) SVM Regression; c) Neural Network

Figure 9. Bland-Altman plot: a) Polynomial regression; b) SVM Regression; c) Neural Network

Figure 10. Confusion matrix: a) Polynomial Regression; b) SVM Regression; c) Neural Network

Figure 11. ROC curve: a) Polynomial Regression; b) SVM Regression; c) Neural Network
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4. Discussion and Conclusion

With the trans-valvular peak pressure drop being 
one of the most important measurements in 
diagnosing AS, alternative estimation methods 
have become a popular research topic. Previous 
works have shown that meta-modeling can 
be used for capturing the relevant blood flow 
characteristics and estimating the pressure drop 
with reasonable accuracy. However, analytical 
approaches have their limitations, as they feature 
a decreased accuracy for larger valve areas.

By contrast, the approach proposed in this 
paper focuses on estimating the pressure drop 
by using machine learning models, such as 
neural networks. The results indicate that neural 
networks can effectively predict pressure drop by 
using synthetically generated data, with notable 
errors observed only in highly severe cases of AS. 
In this sense, it is important to acknowledge the 
inherent limitations of this approach.

In the context of the proposed approach, the 
dataset employed for both training and testing 
exclusively featured generic valve geometries. 
Although the employed model achieved a 
satisfactory performance for the synthetic dataset, 
the outcomes might differ when this model is 
applied to patient-specific data. These differences 
might also be caused by the fact that the synthetic 
geometries are idealized, e.g., there is no curvature 
in the aorta. Additionally, the Computational 
Fluid Dynamics (CFD) simulations were based 
on a turbulent flow model. In reality, blood flow 
through the aortic valve is pulsatile in nature, 
meaning it may fail to reach a completely turbulent 
state (Zhang & Zhang, 2018).

However, the proposed approach does hold 
significant advantages for use cases where real-
world patient data cannot be readily obtained. 

With the introduction of stricter data privacy 
regulations such as GDPR, obtaining patient-
specific data for ML model training has become 
more challenging, often requiring privacy 
preserving techniques. Synthetic data solves this 
issue, while also enabling the generation of large 
datasets faster than through the acquisition and 
segmentation of patient CT scans. Additionally, 
estimating the pressure drop value through CFD 
simulations can take up to several hours. By 
contrast, neural networks trained on synthetic data 
can provide the results almost in real time, with a 
high degree of accuracy.

This paper evaluated the viability of CFD-based 
synthetic data as an alternative to real-world 
data when training ML models for pressure drop 
assessment. The methodology detailed above 
has shown that large datasets can be obtained 
through CFD simulations of parametrized 
meshes. Furthermore, the neural network trained 
on the synthetic dataset was able to provide an 
accurate estimation of the pressure drop, being 
a promising non-invasive alternative to current 
clinical methods. 
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