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1. Introduction  

Gliomas originating from glial cells are 
considered some of the most aggressive 
primary brain tumors [8]. Brain tumors are 
classified by the World Health Organization 
into four grades [12]. Tumors with a reduced 
grade of malignancy, LG (Low-Grade) are 
called grade I and II tumors, while tumors 
with an increased grade of malignancy, HG 
(High-Grade) are grade III and IV tumors. 
People with high-grade tumors have an 
average survival rate of less than two years. 
The slower- growing low-grade variants come 
with a life expectancy of several years, but 
their discovery and diagnosis is much more 
difficult, since in many cases there are no 
visible symptoms. Usually they are 
discovered accidentally through a CT or MRI 
examination. Thus, the increasing number of 
Magnetic Resonance Scanners can play a 
vital role in preventive medicine. The 
combination of various image processing 
techniques will create, in the near future, an 
efficient diagnostic tool and will offer a 
favorable environment in which the 
information required can be easily discovered 
and/or extracted from the image content.  
In medical imaging, brain tumor segmentation  

 

 

 

can be done manually, semi-automatically and 
automatically [16]. Manual segmentation is and 
active tumors, clots and necrotic tissue that 
vary greatly in size, location, shape and 
appearance across patients. Moreover, these 
lesions often show inhomogeneity in their 
intensity as well as large variations of intensity 
between subjects, especially if acquired with 
different scanners or at different imaging 
centers. Despite the progress made by recent 
studies, automatic brain tumor segmentation is 
still a challenging task. 

The BRATS Challenges [15] are organized 
with the main goal of discovering the best 
methods applied for brain tumor segmentation 
around the world. The most efficient and recent 
methods were based on deep learning 
techniques and random forest classifiers [11]. 
In deep learning methods the selection of 
lowlevel features is done automatically, but the 
choice of learning structure and the large 
amount of parameters that have to be tuned is 
more difficult. Conversely, the RF classifier 
has to be tuned by setting the appropriate 
domain range (value) of only a few parameters, 
but it is more difficult to choose the adequate 
low level features to be used. The selection of 
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features and RF parameters is based on the 
intuition and experience of the authors. The 
exact definition and usage of the features 
applied remains their secret. They are not 
clearly described, only vaguely mentioned. 
Usually, the systems work with a large amount 
of features having hardly any theoretical or 
practical study behind their utility. 

D. Zikic et al. [18] extracted 2000 attributes 
from the image intensities and from a 
generative model. For classification they used 
40 decision trees, each having a depth of 20. E. 
Geremia et al. [5] built a discriminative model 
based on an ensemble of decision trees that 
associates a vector of 412 features to each 
point. M. Goetz et al. [6] created another 
discriminative model based on an ensemble of 
Extra-Randomized Trees in which they use 208 
attributes; 52 attributes for each of the 4 image 
modalities. O. Maier et al. [13] created their 
segmentation model based on the random forest 
classifier and used a set of features which is in 
concordance with the discrimination criteria of 
the human observer. D. Mahapatra’s article 
[14] is the only study that used feature 
importance of random forest to design a feature 
selection strategy critical for high segmentation 
and classification accuracy. 

In this paper we created a learning framework 
which optimized our discriminative model used 
in brain tumor segmentation of multimodal MR 
images. The framework has two correlated 
tasks: the selection of the most important low-
level image characteristics and the tuning of the 
classifier used in segmentation. We built the 
learning framework around the RF (random 
forest) classifier, which is used both in feature 
selection and in segmentation tasks. Therefore 
we had to tune the RF classifier differently for 
the two above-mentioned tasks. 

The automatic choice of variables used during a 
training process can improve the performances 
of the final segmentation considerably. The 
choice of important variables correlated to the 
segmentation goal increases predictive 
segmentation accuracy and reduces the 
complexity of the final model. The proper 
choice of parameters in the random forest 
model can decrease the size of the final 
classifier, leading to lower complexity and a 
shorter processing time.  

The rest of paper is organized as follows: 
Section 2 describes the theoretical aspects of 
random forest classifiers;  

it continues with the details of our 
segmentation model (Section 3). Next our 
results and the performance evaluation of the 
created model are presented compared to the 
results of BRATS Challenge (Section 4). 
Finally we draw some conclusions and propose 
further future development. 

2. Theoretical Aspects 

Statistical calculus confirms the fact that the 
combination of multiple uncorrelated, but 
strong classifiers in an ensemble usually 
improves the classification performance of the 
final aggregated classifier. These two 
contradictory conditions (strength but 
uncorrelation) are brilliantly combined in the 
Random Forest (RF) classifier ensemble 
proposed by L. Breiman [3]. This ensemble is a 
large collection of strong classifiers structured 
in binary decision trees. The uncorrelation 
between the trees is the main strength of the 
forest. In the learning process each tree is built 
up based on two random mechanisms: 

- the random creation of the training set 
separately for each tree; 

- the random feature selection used for 
decision-making in each node of every tree. 

First, the training set is randomly sampled with 
replacement N times. The bootstrap set will 
have the same size N as the initial training set. 
It is demonstrated [3] that if the bootstrap set 
and the training set size are equal, the bootstrap 
set will contain 63.2% different observations, 
which represents approximately 2/3 of N. The 
remaining 1/3 are duplicates. This means that 
approximately 1/3 of the training samples are 
not included at all in the bootstrap set. These 
instances form the out-of-bag (OOB) set. Thus, 
for each tree with the above described random 
sampling mechanism we obtain two different 
set: the bootstrap set and the OOB set. 

Secondly, for each node of every tree, a split 
criterion must be specified. In case of RF 
ensemble the split function is the maximum 
information gain computed from the Gini 
impurity. The maximization of the information 
gain does not consider all the M decision 
features, but only a randomly selected small 
part of them. The number of the features 
considered is denoted by mtries (mtries<<M). 
Hence, the binary trees are grown by splitting 
the instances in each node and considering only 
a random part of the existing features. 
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Consequently, each tree is built considering its 
corresponding bootstrap set. The decisions of 
the tree-nodes use a limited number of 
randomly obtained features. After the creation 
process the performance of each tree is 
measured on its own OOB set. The overall 
OOB error is the classification error obtained 
by the individual trees on their OOB sets 
averaged over all of the trees in the forest. 

L. Breiman [3] shows that the upper bound for 
the generalization error is given by:  

 2
1 1

S
GE      (1) 

where: ρ - is the mean value of correlation, S – 
is the strength of the ensemble. In order to 
decrease the error, the correlation should be 
decreased and the strengths increased. An 
interesting characteristic of RF is the fact that 
the general error (GE) can be estimated through 
the OOB error. This error is important for 
choosing and tuning RF parameters. The final 
goal is to minimize the OOB error; this means 
that the GE would decrease as well. 

The RF classifier contains a large amount of 
information concerning the relationship 
between attributes and classes. This 
information can be used for prediction, 
clustering and variable importance 
measurement. The random forest framework 
can be constructed by considering three 
different variable importance measures, either 
the selection frequency or the Gini importance 
(GI) or the permuted importance (PI). 

In our work we used the permutation 
importance. PI is the increase in 
misclassification for the OOB set after variable 
j has been permuted. Consider the following 
quantities: wk - the number of wrong decisions 
of the k-th tree on its own OOBk set and wjk -the 
number of wrong decisions of the k-th tree on 
its own OOBk set by randomly permuting the 
values of variable j. All the other variables 
remain unchanged. By scrambling the values of 
variable j, the PI difference obtained will 
measure the importance of variable j in the 
OOBk set. The difference divided by the 
number of instances in OOBk is the average 
permuted importance of variable j over all trees 
from the ensemble: 

1

1
( )/ | |

trees

j jk k k
trees

K

k

PI w w OOB
K 

    (2) 

The PI is the predictive importance of variables 
because it is calculated from the OOB samples. 
Variables with no importance will have a very 
low PI value, close to 0. At the same time, the 
value can be negative, because the number of 
errors in the permuted OOB can be lower than 
the error in the non-permuted OOB. The 
relevance of the extent of permuted importance 
can be increased by applying the random 
permutation of variables in OOB sets  
several times.  

3. The Segmentation Model 

The segmentation task is done voxel-wise by a 
discriminative function [17]. This function is 
determined during a supervised learning 
algorithm (Section 3.4.). The main part of the 
learning process is based on Random Forest 
classification algorithm. In this article we 
present the most important parts of the learning 
framework considered to be significant and 
bring essential improvement in segmentation 
performances.We also analyzed in detail and 
described two further, even more important 
parts of the learning process in this article: the 
choice of features to be used and the choice of 
parameters for the RF classifier. The main 
components of the complete segmentation 
model are: the annotated image database, the 
preprocessing, the learning framework and the 
post-processing.  

The difference between this model and the 
standard discriminative model is the feature 
selection step. In this step, the feature selection 
algorithm consists of the variable importance 
evaluation for the defined segmentation task.  

Using the results of the variable importance we 
are able to eliminate the unimportant variables. 
At the same time it allows testing new low-
level features that should improve the 
segmentation performances or be more 
important than the existing features. 

3.1. Database 

In our experiments we have used the most 
recent training dataset, the BRATS 2015 
database [1], described in [15]. This version of 
the database contains 220 high-grade (HG) and 
54 low-grade (LG) brain tumor image sets. All 
image set contains the following four RM 
images: T1-weighted, T1c:T1-weighted with 
contrast material Gadolinium, T2-weighted and 
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FLAIR: T2-weighted FLAIR image. Every 
brain RM scan was manually annotated by 
experts in this field. The ground truth provided 
contains four types of tumor structures:  
1-edema, 2-non-enhancing core, 3-necrotic 
core and 4-enhancing core. 

In this paper we describe the experiments and 
the classification performances obtained for 
two classes: whole tumor (WT-including all the 
tumor tissues) and tumor core (TC-not 
containing the edema). These classes are more 
significant in medical practice. 

 3.2. Preprocessing 

MRI acquisition is associated with many 
artifacts. Some of them can be eliminated by 
medical staff, by setting the acquisition 
parameters adequately. The images acquired 
are sufficiently appropriate for human visual 
analysis, but the main issue is that these 
artifacts significantly influence automatic 
segmentation. In our work we have dealt with 
three important artifacts: inhomogeneity 
correction, noise filtering and intensity 
standardization. More details can be found in 
our previous works [4, 9]. 

3.3. Feature Extraction 

Image processing offers many procedures for 
the extraction of characteristics from images. 
In the field of tumor segmentation there are 
many studies that try to find certain 
characteristics with a high correlation to the 
brain tumor appearance in MR images. 
Despite these research efforts, no proper 
feature sets have been found yet. That is the 
reason for using a large feature set, with the 
features having little correlation to the goal of 
classification. In our approach we started with 
defining a large feature set, this is later 
reduced in order to eliminate the irrelevant or 
noisy features. For each feature,      we defined  
many  low-level  characteristics   that describe 
the intensities in the neighborhood of the 
voxels studied. Thus we have chosen 240 low-
level features described in detail in our 
previous article [11]. By extracting all of these 
features for every voxel in all modalities, we 
transform the image segmentation task into a 
statistical pattern recognition problem.  

3.4. The learning framework 

The learning framework is the main part of our 
segmentation model, including several 

interrelated modules such as feature 
extraction, feature selection, learning 
algorithm, classification function and 
segmentation performance evaluation. These 
modules use a lot of information stored in 
non-overlapping databases such as the 
training set, test set and evaluation test set, 
each containing other examples. In order to 
create a well-working discriminative function 
we delimitated eight sequences described in 
the processing flowchart (Figure 1) of our 
proposed framework.  

1. The low-level image characteristics are 
extracted from the set of image databases 
mentioned. For every image the values of low-
level image characteristics are organized and 
stored in a stack image file. Each layer of the 
image obtained in the stack contains a feature 
map corresponding to the image. So the total 
number of slices (images) in the stack is  equal 
to the number of extracted features. The stacks 
corresponding to one 3D image are 
concatenated and form a 4D stack of volumes. 
The feature extraction functionality is 
implemented by a number of independent 
scripts or functions. Independence provides 
flexibility in the choice of corresponding  
image characteristics that are integrated in the 
final classifier. 

2. The starting point of a statistical pattern 
recognition system (supervised learning) is the 
database. The database (ADB-annotated 
database) contains all information extracted 
from the annotated image feature stacks. Thus, 
the ADB can be very large. Each instance 
corresponds to an image voxel, and the 
attributes are values of the local image 
characteristics extracted for that voxel. Because 
the ADB is too large to be manageable by any 
of the most recent learning algorithms in 
existence, we have to extract a certain 
important part of it. In practice, it is sufficient 
to work with only a subsampled part of the 
database. Each class was randomly subsampled 
considering a weighted balanced number of 
entities in each class, leading to the creation of 
the sampled database (SADB). The weight ratio 
was computed according to the cardinality of 
each class in an image. 

3. Unfortunately the obtained SADB is still 
unmanageable by any existing learning 
algorithm; we must further reduce its size by 
reducing the number of applied features. Here, 
the attributes of the ADB are reduced. The 
dimensionality reduction algorithm [10] 
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evaluates the variable importance (VI) and 
eliminates part of the unimportant variables. 

4. Taking into account the segmentation 
performances we can eliminate a considerable 
portion of unimportant variables in each cycle. 
The dimensionality reduction algorithm was 
repeated several times until all features 
considered unimportant by the VI measure were 
reduced from the original SADB. 

5. In this step the feature set can be further 
enlarged with new low-level image 
characteristics, if necessary. This evidently 
leads to the growth of the ADB database. 

 

6. The actual feature set is obtained after 
adding new variables to the existing set. 
Repeating steps 4, 5 and 6 cyclically, the 
important variables are kept based on the 
segmentation performances, and thus 
unimportant variables can be further reduced 
from the SABD. 

7. In the previous step we were able to find the 
significant variable set for the target 
segmentation task. Next, we need to tune the 
RF classifier. By tuning the RF parameters we 
were able obtain an efficient classifier for the 
proposed segmentation task. The detailed 
description and the result obtained by tuning 
the RF classifier are given below. 

8. Finally, the tuned RF ensemble obtained 
classifies all instances of the test database, 
which is built from unseen test images (UTI). 
The results obtained are converted in 
segmented images. The goodness of 
segmentation is evaluated using special 
segmentation measures to obtain the average 
final segmentation performances. 

3.4.1. Dimensionality Reduction 

Dimensionality reduction in the database can 
be achieved in two independent ways: 

1. Reduction of the number of instances 
used; 

2. Reduction of unimportant variables. 

The effect of such reduction can be tracked in 
the diagram below, which illustrates the 
dimensionality reduction (Figure 2). Here, the 
first step is the reduction of instances by 
random subsampling and by eliminating similar 
or  redundant  instances.  Redundant  
instancescan be determined by using the 
proximity evaluation offered by the RF 
classifier and computed during the creation of 
the ensemble. 

In the second reduction (Figure 2) we used our 
dimensionality reduction algorithm, described 
in detail in a previous article [10]. For this 
purpose we used the permuted variable 
importance (PI) evaluation obtained during the 
RF training process. The evaluation is repeated 
several times on a random sampled part of the 
database. Because each sample set is only a 
very small part of the complete database, we 
proposed a statistical evaluation of the variable 
importance (VI) obtained in each cycle. 

The SADB contains many instances (I) and for 
each instance we defined a considerable 
number of features (F), thus the size of the 
SADB is very large; it is practically 
unmanageable by any of the learning 
algorithms. In order to reduce the large number 
of features (F), we proposed a feature selection 
algorithm which can handle large databases 
(Algorithm 1). 

Subsequently, we need to distinguish between 
the training database and the RF-training set 
(RFTS, size G×F, G≪I) which is a part of the 
SADB and is directly involved in training the 
RF classifier. The principle of the algorithm is 
to create a different RFTS in each cycle using  
a bagging process. On this RFTS,  
 

 
Figure 1. Learning framework 
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the RF algorithm evaluates the variable 
importance (VI) and the OOB error (step 6). If 
the OOB error is less than 35%, the resulting 
importance vector is updated by the VI values 
(step 7). The resulting variable importance RVI 
is a sum of VI weighted by the errorOOB  
obtained in each cycle (steps 8, 9). The cycles 
are repeated until one of the stop conditions 
(step 11) is satisfied: time limit, number of 
cycles or the condition related to the repetitions 
(i.e. number of cycles>2I/G). 

 

Assuming that the statistical evaluation tends to 
its real limit, the importance value of 
significant variables increase, while for noisy 
or insignificant variables, it remains low. 
Following the algorithm proposed and resumed 
above, we could eliminate a considerable 
portion of unimportant variables. 

Furthermore, the elimination of variables 
depends on the decrease of the segmentation 
performances. The proportion of reduction is 
empirical; it depends on the number of 
attributes used and the performances obtained. 
In the first step we are able to reduce a large 
number of attributes, whereas in the last steps, 
only a small number. This must be in 
correlation with the attainable performances. 

In our framework we defined 240 image 
characteristics on each voxel of a 3D image. 
Thus, considering four acquisition modalities, 
there are (4240) 960 different characteristics 
for every voxel in a brain. Because a single 
brain contains about 1.5 million voxels it 
requires 10 GB of memory for storage. The 
memory size necessary to store 100 brain 
images in the annotated database (ADB) is 
about 1 TB. In a statistical learning algorithm 
the more data is included, the better its 
generalization. Consequently, we should 

include more than 100, but clearly the 100 
brain images also produce an unmanageable 
dataset size. In the first reduction step we could 
decrease the number of instances used by a 
factor of 12. Thus, the sampled database 
(SADB) becomes 80 GB instead of  
1TB (Figure 2). 

 
 

In the second step of the reduction we used our 
feature selection algorithm repeatedly. By 
monitoring the overall evaluation of the OOB 
error we can see a significant increase in a 
restricted interval at only about M[80,120], 
illustrated in Table 1. and Figure 3. The OOB 
error is a type of estimated error which does not 
reflect the segmentation performances directly; 
instead, it represents the goodness of the model. 
Segmentation performances can be evaluated in 
several ways, but the Dice coefficient is  
one of the most accepted measures of 
segmentation similarity.  

 1 2 1 22Dice S S S S      (3) 

| | is cardinality, S1 the region in the annotated 
image, S2 that of the segmented image. 

 

We evaluated the Dice coefficient of our 
segmentation obtained for two classes  
(WT-whole tumor, TC-tumor core) on the 
whole ADB (containing all voxels of 100 brain 

Table 1. The effect of parameter M on the 
classification performances 

M - attributes 960 480 240 120 80 60 45 30

OOB error 5.01 5.08 5.1 5.22 5.32 5.51 5.8 6.35
 

M-attributes 240 120 80 60 45 30 

Dice WT-ADB 0.868 0.866 0.848 0.843 0.838 0.828

Dice TC-ADB 0.861 0.861 0.868 0.860 0.849 0.806

Dice WT-UTI 0.805 0.803 0.783 0.780 0.777 0.767

Dice TC-UTI 0.757 0.755 0.757 0.748 0.737 0.685

 

Figure 2. Dimensionality reduction 

Algorithm 1. Feature selection algorithm 
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image sets) and on UTI (unseen test images of 
20 brain image sets). The evaluation can be 
done by including M=240 features at most, 
because learning time increases exponentially 
with the increase of this parameter. Analyzing 
the segmentation results obtained, we see 
almost the same behavior on the two image 
sets; i.e., the Dice coefficient increases 
significantly from about M=80 features and 
remains almost constant for M>120. According 
to this result, a value of M=120 is an 
appropriate choice for the number of features. 
The elimination of unimportant features 
reduced the database to 10 GB (Figure 2.), 
which was used to create the classification 
function for segmentation. 

Simultaneously, we emphasize the relationships 
between the OOB error and the Dice coefficient 
obtained in segmentation for both classes WT 
and TC. The Dice index is evaluated on two 
different databases, ADB and UTI. The reason 
for using both databases is to demonstrate the 
similar behavior in the tuning of RF 
parameters, so that the test on the UTI set can 
be omitted. 

 

 

As we will see, the classifier is trained and 
evaluated several times until we attain the final 
tuned classifier. The RF parameter-tuning can 
be done by using only one test set, thus we used 
only the ADB set.  

3.4.2. Tuning the RF 

The RF has only two main parameters: the 
number of trees Ktree and the number of features 
mtries, selected randomly in each node. By 
increasing the value mtries, the correlation 
between trees increases, and by increasing Ktree, 
the generalization error of the ensemble 
decreases. If we include enough trees in the 
forest, the classification overfit is avoided. In 
practice, unpruned trees can become 
exceedingly large and deep. In order to avoid 
classification overfit, we should add a fairly 
high number of such large trees to the forest. 
The memory requirements of the RF classifier 
increase with each tree included, and decision 
times are also drastically extended. Therefore, 
we must limit the number of nodes (Tnodes) in 
each tree. 

The primary goal of this study is to find the 
best parameters for the final classifier used in 
the proposed segmentation task.  

In the literature, there are no theoretical 
suggestions with regard to choosing the main 
RF parameters: 

1. the number of trees Ktree in the ensemble, 

2. the number of selected features mtries in 
each node 

3. the number of nodes Tnodes in each tree. 

By considering these three parameters, we were 
able to tune the RF classifier according to  
our goal. 

1. The first parameter tuned was the number of 
trees Ktree.  

It is clear that the generalization error is 
reduced with the increase in the number of 
trees Ktree. But increasing the number of trees 
Ktree also increases the memory storage 
required as well as the computation complexity.  

The adequate number of trees can be estimated 
by following the variation of the OOB error 
dependent on the number of trees. In the final 
model, only the classification accuracy can 
determine the overall number of trees Ktree used 

 

 
 

Figure 3. OOB error and Dice coefficient against the 
parameter M 
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(Table 2 and Figure 4). Fewer trees are required 
if we consider prediction purposes, because the 
OOB error stabilizes rapidly, but more trees are 
necessary to refine and stabilize the variable 
importance [7]. Stronger predictors will lead to 
faster convergence. The Dice coefficient is not 
increasing further at 100 trees or above, and 
thus choosing Ktree=100 is enough for our 
segmentation task. Taking into account the 
computation of variable importance, about 
Ktree=300 trees are needed in the ensemble. 

2. The second parameter analyzed was the 
number of selected features mtries. An mtries 
number of randomly selected variables is 
chosen in each node of the trees. These 
variables restrict the search for the optimal 
split; from the total of M, only mtries  
are computed. 

 

 
The parameter mtries controls the correlation of 
trees. Hence, for a small value of mtries, the trees 
are uncorrelated, and by increasing mtries the 
correlation increases. As the number of mtries 
increases, the variance of the randomized 
variables decreases. At the maximum value of 
mtries =M, which means that in each node, all 
variables are used to compute the best split. In 
this case the uncorrelation between trees arises 
only from the different bootstrap sets used. At 

the same the RF classifier is transformed into 
bagging. A large value of mtries considers fewer 
variables in the tree, resulting in a sparse 
solution [7]. In addition, the generalized error 
becomes larger, yet the variable importance 
measure will be more reliable. If the value of 
mtries is reduced, the chance of selecting the 
important variables is higher as well; this will 
add additional noise to the tree. Therefore, this 
leads to an increase of the variable variance, 
and the correlation between trees will also  
be lower. The quantity of the OOB error and 
the variable importance are not particularly 
sensitive to this parameter. 

However, a default mtries value cannot be 
determined; it is data-dependent. In every 
distinct application based on RF, a course 
search is recommended. In Table 3 we can see 
that the OOB error reaches its minimum at 
about 2 M , and further increasing its value is 
useless. (mtries=25 for M=120). More 
interesting results can be obtained by analyzing 
the Dice coefficient versus mtries (Table 3. and 
Figure 5). This coefficient does not change 
significantly in the domain analyzed. A good 
choice can be at about M ; such a low value 
ensures a strong uncorrelation between the 
trees of the ensemble. 

3. The third parameter for tuning the RF is the 
size of the tree, i.e. the number of nodes Tnodes. 
The trees of the forest are not pruned at a given 
level, but their growth can be limited by 
specifying the number of splits (nsplit) or the 
number of nodes (Tnodes). Theoretically, there is 
no need to limit the size of the tree because the 
bagging process already reduces the variance 
and also avoids over fitting. If the trees grow 
until no more splits can be performed, then this 
leads to very large trees. The processing time of 
data during the training and testing phases 
increases drastically in this case. Meanwhile, 
their memory requirements can also become 
very large. To avoid these disadvantages, we 
must limit the number of nodes (Tnodes) in every 
tree. Limiting tree size induces additional 
diversity in the RF and thus creates a smaller, 
but more efficient classifier. 

In order to choose an optimal value for Tnodes 
we analyzed the progress of the OOB error 
according to Table 4 and Figure 6. We obtained 
the expected theoretical result, i.e., that the 
OOB error decreases with the increase in tree 
size and reaches its minimum for the  
unpruned trees.  

 
 

 

Figure 4. OOB error and Dice coefficient against the 
parameter Ktree 

Table 2. OOB error and Dice coefficient against the 
parameter Ktree 

treesK
 30 40 50 100 200 300 400 500

OOB err. 6.05 5.81 5.68 5.44 5.34 5.33 5.27 5.28
 

treesK
 50 100 200 300 

Dice WT-ADB 0.865 0.866 0.867 0.867
Dice TC-ADB 0.895 0.898 0.898 0.899
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At the same time, the Dice coefficients 
decrease, but their variation can be considered 
small and negligible with regard to the 
segmentation performances. 

 

Thus, we can consider Tnodes at 2048 an optimal 
choice in our application; this means approxi-
mately 1/4 of the nodes in the unpruned tree. 

3.5. Post-processing 

In the last phase, post-processing can correct 
the false detection rate of the classifier obtained 
in the testing phase. As a consequence of 
voxel-wise segmentation, some noise is also 
detected and considered to be part of the tumor. 
These regions are single isolated voxels or 
small voxel zones far away from the main 
tumor region detected. These small, standalone 
and unconnected volumes are clearly the effect 
of false detection and can be removed. 

 

The elimination of these parts leads to the 
reduction in false detections. The post-
processing step applied assumes that the tumor 
is a connected region in each brain. This nature 
is found in the BRATS annotated database used 
in our experiments.  

4. Results and Evaluation 
The main results are presented in Section 3. 
This section only describes the detection 
performances of our optimized tumor 
segmentation framework. The training 
database (ADB) was created from a set of 
100 3D brain images, each containing 4 
images corresponding to the acquisition 
modalities and the fifth image was the expert 
annotated image used in our supervised 
learning model. 

 
Figure 6. OOB error and Dice coefficient against the  

Tnodes parameter 

For each image in the 100 sets, we extracted 
120 image features. We worked with an ADB 
training database of more than 150 million 
instances. From this we obtained the sampled 
database STDB with about 10 million instances.  

The Random Forest classifier was trained on 
this database by using the previously 
determined parameters: Ktrees=120, mtries = 9 
and Tnodes=2048. The segmentation results 
obtained by this system were evaluated with the 
SICAS online evaluation system, specifically 
implemented to compare brain segmentation 
frameworks. [1]. The online segmentation 
performances (Table 5) are compared with the 
performances reported on BRATS 2012 and 
BRATS 2013 Great Challenges [15].  

 

Table 5. Compared Dice indexes 

HG Our segm. Brats 12[15] Brats 13 [15]
WT 75-86[%] 63-78[%] 71-87[%] 
TC 71-82 [%] 24-37[%] 66-78[%] 

Table 4. The influence of tree-size Tnodes on the 
classification performances 

Tnodes 64 128 256 512 1024 2048 4096 MAX

OOBerr. 12.46 11.04 9.76 8.71 7.68 6.86 6 5.22
 

Tnodes 512 1024 2048 4096 MAX
Dice WT-ADB 0.817 0.830 0.841 0.853 0.867
Dice TC-ADB 0.798 0.823 0.838 0.850 0.899

Figure 5. OOB error and Dice coefficient against the 
parameter mtries 

Table 3. The influence of mtries on the 
classification performances 

tiresm
 7 9 11 15 19 25 31 43

OOB err. 5.54 5.44 5.39 5.34 5.27 5.25 5.22 5.22
 

tiresm
 9 11 15 19 25 

Dice WT-ADB 0.850 0.850 0.852 0.849 0.846
Dice TC-ADB 0.869 0.872 0.864 0.871 0.867
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5. Conclusion and Future Work 
In this paper we described a learning framework 
developed for brain tumor segmentation in 
multimodal MR images. As future work we 
propose further improvements which may lead 
to a considerable performance increase  
in segmentation. 

It is necessary to improve the learning 
framework by completing the training with all 
272 annotated image sets from BRATS 
2015 [1]. Secondly, we are developing a 
hierarchical segmentation system which could 
better delimitate the surfaces between different 
tissues. With additional steps in preprocessing 
and post-processing, it can also increase 
segmentation performances. In the future we 
would like to test and integrate supplementary 
low-level image features that may be more 
relevant for brain tumor segmentation.  

Another important aspect is to determine the 
tumor structure and to forecast its future 
behavior. Our ultimate goal would be to create 
a segmentation system which could be used in 
current medical diagnosis in the near future. 

Acknowledgements 
This work was supported by a grant of 
Sapientia Foundation – Institute for Scientific 
Research (KPI), P.N. 13/19/17.05.2017. 

REFERENCES 

1. SICAS www.smir.ch/BRATS/Start2 

2. Trainable segmentation http://imagej.net/ 
Scripting_the_Trainable_Segmentation 

3. Breiman, L. (2001) Random forests. 
Machine learning, 45(1), 5-32. 

4. Chiorean, L. D., Suta, L. & Vaida, M-F. 
(2010) Medical Fusion Components for a 
Web Dedicated Application. Studies in 
Informatics and Control, 19(4), 435-444.  

5. Geremia, E., Menze, B. H. & Ayache, N. 
(2012) Spatial decision forests for glioma 
segmentation in multi-channel MR 
images. MICCAI-BRATS. 

6. Goetz, M, Weber, C. et. al (2014) 
Extremely randomized trees based brain 
tumor segmentation. MICCAI-BRATS. 

 

 

7. Goldstein, B. A., Polley, E.C.et. al. (2011) 
Random Forests for Genetic Association 
Studies. Statistical Applications in 
Genetics and Molecular Biology: 10(1). 

8. Holland, E. C. (2001) Progenitor cells and 
glioma formation. Current opinion in 
neurology. 14(3), 683–688. 

9. Lefkovits, L., Lefkovits, Sz. & Vaida, M.-
F. (2016) Brain Tumor Segmentation 
Based on Random Forest Memoirs of the 
Scientific Sections of the Romanian 
Academy, 39, 83-93. 

10. Lefkovits, L., Lefkovits, Sz. & Emerich, 
S., Vaida, M-F. (2017) Random forest 
feature selection approach for image 
segmentation. SPIE 10341, 9th Int. Conf. 
on Machine Vision, 1034117-1034117. 

11. Lefkovits L., Lefkovits Sz. & Szilágyi L. 
(2017). Brain Tumor Segmentation with 
Optimized Random Forest. Brainles 2016 
LNCS 10154 ISBN: 978-3-319-55524-9. 

12. Louis, D. N., Ohgaki, H. et al. (2007) The 
2007 who classification of tumours of the 
central nervous system. Acta 
Neuropathologica, 114(2), 97-109 

13. Maier, O., Wilms, M. & Handels, H. 
(2016) Image Features for Brain Lesion 
Segmentation Using Random Forests. 
Brainles 2015 LNCS Vol. 9556, 119 - 130. 

14. Mahapatra, D. (2014). Analyzing training 
information from random forests for 
improved image segmentation.IEEE Trans 
Image Processing, 23(4), 1504-1512. 

15. Menze, B. H., Jakab, A. et al. (2015) The 
Multimodal Brain Tumor Image 
Segmentation Benchmark IEEE Trans. on 
Medical Imaging, 34(10), 1993-2024.  

16. Pham, D. L., Xu, C. &  Prince, J. L. (2000) 
Current methods in medical image 
segmentation. Annual review of 
biomedical engineering, 2(1), 315–337. 

17. Reza, S., & Iftekharuddin, K. M. (2013) 
Multi-class Abnormal Brain Tissue 
Segmentation Using Texture Features. 
MICCAI-BRATS. 

18. Zikic, D., Glocker, B. et. al. (2012) 
Context-sensitive classification forests for 
segmentation of brain tumor tissues. 
MICCAI-BRATS. 


