
Studies in Informatics and Control, 26(2) 219-228, June 2017 ISSN: 1220-1766 eISSN: 1841-429X
https://doi.org/10.24846/v26i2y201710

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

219

1. Introduction

Software development effort estimation (SDEE)
represents the action of estimating the time it
will take for each part of a software system to
be completed during the development phase of
the product. Accurate estimates are
important in order to properly plan the
development process and allocate human
resources accordingly.

An automated solution for the SDEE problem
is introduced, consisting of a supervised
machine learning framework that, after
training, takes as input textual descriptions of
required tasks and returns a numeric value
representing an estimate of the effort required
for completing those tasks. According to a
literature review conducted in Section 3, the
proposed approach is novel, with only one
other approach even considering using textual
descriptions of tasks in order to provide effort
estimates. The results obtained are consistent
and encouraging across a software company's
entire projects base. The remainder of the paper
is structured as follows. The motivation for this
work is given in Section 2 Section 3 reviews
several existing algorithmic approaches for
effort estimation. Section 4 presents the
fundamental concepts related to the machine
learning models used in this paper. In Section 5,
the introduced data sets and experimental
methodology are presented. The case studies

and the machine learning-based proposal for
effort estimation are presented in Section 6,
together with the experimental results which
were obtained on real world data sets from a
software development company. Section 7
analyses the obtained experimental results and
compares them to existing similar work from
the literature. The conclusions of the paper and
directions for future research are outlined in
Section 8.

2. Motivation

In an effort to mimic the real life effort
estimation process, a natural language
processing and machine learning based
approach for the effort estimation problem is
introduced. The working hypothesis is that, in a
software project, for every resolved task,
textual descriptions for the task can be found in
the form of comments in the source repository
(or associated with it), together with the actual
time spent by developers on the task, by
analysing the logs. Using machine learning,
relations can be discovered between the textual
description and the needed time. Intuitively,
this corresponds to the domain knowledge and
experience factors in the actual effort
estimation done by a software developer.

In most Agile development methodologies, the
smallest unit to estimate is a task. A task has a

Natural Language Processing and Machine Learning
Methods for Software Development Effort Estimation

Vlad-Sebastian IONESCU1, Horia DEMIAN2 and Istvan-Gergely CZIBULA1
1 Babeş-Bolyai University, 1, M. Kogălniceanu street, Cluj-Napoca, 400084, Romania,
ivlad, istvanc@cs.ubbcluj.ro
2 University of Oradea, 1, Universității street, Oradea, Romania.
horia_demian@yahoo.com

Abstract: The growing complexity and number of software projects requires both increasingly more experienced
developers, testers and other specialists as well as a larger number of persons to fill these roles. This leads to increased
personnel and management costs and also makes effort and cost estimation at task and activity levels more difficult for
software development companies. An automated solution for software development effort estimation based on text
descriptions of tasks and activities, combined with available metrics, is introduced. A real world case study consisting of
data from a software company whose activity spans a rich development spectrum is conducted. The results obtained are
very encouraging and surpass the few similar approaches available in research literature.

Keywords: Software development effort estimation, Machine learning, Word embeddings, doc2vec, Support vector
machines, Gaussian Naive Bayes.

Vlad-Sebastian Ionescu, Horia Demian, Istvan Gergely Czibula

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

220

description, is usually linked to a user story, a
feature request or a usage scenario [4].
Software developers are asked to give an
estimate based on this textual information. At
first, the only input for the estimation problem
is some textual representation of the problem to
be solved.

Automated software effort estimation can be
used as a means to verify and correct actual
estimates made by developers. By comparing
the estimation (or reported effective time)
given by the developer with the predicted one,
project managers can identify problematic tasks
or incorrect reporting.

While this proposal is complex, the complexity
lies in its research and development, not in its
application. Applying it is as easy as applying
any well-known machine learning methodology
in any other field, and it saves developers time
otherwise spent on providing (sometimes
daily) estimates.

Since accurately estimating the software
development effort is a difficult and important
task, for which a lot of human estimation
methodologies, as well as some automated
methodologies, exist, this paper considers
machine learning based regression models to be
appropriate for providing estimates. In order to
solve the issue of needing project metrics and
human input for SDEE systems, the goal is to
feed machine learning models with only the
textual descriptions of the tasks that
need solving.

3. Software Development Effort
Estimation

This section gives an overview of Planning
Poker, a popular human SDEE methodology
used in Agile environments, and the existing
automated approaches to SDEE together with a
literature review of their results.

3.1. Planning Poker

Planning Poker is a consensus-based method
for estimating the effort required to solve
programming tasks. Its main goal is to force
developers to think independently and reach a
proper consensus regarding the effort required,
without one person influencing the rest [4].

Typical Planning Poker uses a deck of cards
with Fibonacci numbers on them, starting from
0 up until 89. These represent effort, measured
in any unit convened upon, such as hours [4].

First, the team can discuss the requirements in
order to clarify any uncertainties, without
mentioning any estimates, in order to avoid
influencing each other. Then, they lay a card
face down. Once everyone has decided on a
card, they each turn them up at the same time.

The process continues until a consensus
is reached.

An advantage of Planning Poker over more ad-
hoc methods is that it can reduce personal
biases and it forces developers to be able to
properly defend their choice. An important
disadvantage is that it takes more time due to
the multiple rounds and people involved.

Like in most complex fields, there is no silver
bullet: planning poker is a tried and true
method that adapts well in many situations, but
steals important development time. The goal of
this research, and of most research in
automating SDEE, is not yet to replace humans
completely. The current state of the art in
machine learning cannot do that currently. The
goal of this proposal is to provide alternatives
for cases in which some stated assumptions
hold and the drawbacks of other methods
outweigh our own method’s drawbacks.

3.2. Algorithmic approaches to software
development effort estimation

Most computational approaches to SDEE rely
on a mathematical formula that considers
certain project metrics and on domain
knowledge. This makes them unlikely to
perform well on a large variety of projects, and
their use is mostly avoided in practice. The
below are generally called parametric models.

COCOMO

COCOMO [3] starts by dividing projects into
three types. Then, COCOMO provides three
formulas for effort, one for each type of project.

An important disadvantage of the model is that
it tries to accommodate the existence of a lot of
important project factors into its estimations by
providing either tables of values or human
estimates. Tables are not robust, cannot easily
be adapted to one’s own situation and are
subjective. The necessity of human estimates
and evaluations means that it does not provide
a fully automated solution.

Putnam model

The Putnam model [12] bases its estimations on
similar formulas. It is known that the method is

Natural Language Processing and Machine Learning Methods for …

 http://www.sic.ici.ro ICI Bucharest © Copyright 2012-2017. All rights reserved

221

sensitive to its parameters, which must be
estimated by human factors.

An advantage of the Putnam model is its
calibration simplicity, however it still suffers
from the need of human estimations, and can be
inaccurate in practice.

Many other approaches similar to COCOMO
and the Putnam model exist in the literature,
however they mostly rely on some fixed
equations involving a number of subjective,
user-inputted parameters, which reduces their
robustness and resilience to human error.

3.3. Accuracy of estimates

The most widespread accuracy metric for effort
estimation systems is the Mean Magnitude of
Relative Error (MMRE), shown in Formula
(1), where n is the number of tasks estimated,
EAi is the actual effort for task i and EEi is the
estimated effort for task i. The objective is to
minimize the MMRE.

1 | |
 (1)

Note that, the equation in Formula (1) is
sometimes multiplied by 100, in order to
express the estimation error as a percentage.

3.4. Related work on algorithmic effort
estimation

Consider the SDEE literature divided in three
categories, with regards to how close the used
techniques are to our own approaches.

Classical parametric models

The first category consists of the classical
frameworks discussed in the previous section,
such as COCOMO. There are many studies that
apply these frameworks to various projects,
usually private ones on which, unfortunately,
none of our own methods can be applied in
order to provide a direct comparison, as the
project data is not publicly available.

In the study at [1], Basha and Ponnurangamthe
apply the COCOMO, SEER, COSEEKMO,
REVIC, SASET, Cost Model, SLIM, FP,
Estimac and Cosmic frameworks to a set of
applications of various types, such as Flight
Software and Business Applications, obtaining
MMRE values between 0.373% and 771.87%.
The authors conclude that there is no one best
framework and that they are all very sensitive
to the input data, the application type and the
various abilities of the development team.

Popovi'c and Boji'c analyse in [11] 94 projects
developed between 2004 and 2010 by a single
company. These are mostly Microsoft .Net
Web projects with a lot of available metrics and
documentation. The obtained MMRE values
are between 10\% and 46\%, using linear and
non-linear models with various metrics and
phases at which effort is estimated. Once again,
the data set used is not publicly available.

A set of open source projects is experimented
on by Toka in [16] using COCOMO II, SEER-
SEM, SLIM and TruePlanning. The MMRE
values range from 34% using TruePlanning to
74% using COCOMO II.

In a recent literature survey on Software Effort
Estimation Models, Tharwon presents in [15]
an overview of experimental research that uses
the Function Point Analysis (FPA), Use Case
Point Analysis (UCPA) and COCOMO models.

The MMRE value obtained by the FPA model
in the surveyed case studies is at least 13.8%
and at most 1624.31%, with an average across
the case studies of 90.38%. Considering UCPA,
the minimum MMRE value of four surveyed
experimental papers is 27.30%, the maximum
88.01% and the average is 39.11%.
Considering COCOMO, the average is
281.61%.

A comparison that also includes human
estimates, provided through planning poker or
by an expert, is performed by Usman et al. in
[17]. On the considered projects, it found that
planning poker obtains a MMRE of 48%,
UCPA methods obtain MMRE values between
2% and 11% and expert judgments between
28% and 38%.

As confirmed by the literature, the vast
majority of the time, parametric models do not
provide useful effort estimates.

Machine learning models using software
metrics

Machine learning models using software
metrics are understood to be frameworks such
as COCOMO that are used together with more
advanced, machine learning-oriented elements,
such as fuzzy logic, neural networks, Bayesian
statistics and the like. Approaches that use pure
machine learning algorithms applied
exclusively on various project metrics and
indicators are also considered.

A Neuro-Fuzzy approach is used by Du et al. in
conjunction with SEER-SEM in [6] in order to
obtain lower MMRE values on four case

Vlad-Sebastian Ionescu, Horia Demian, Istvan Gergely Czibula

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

222

studies consisting of COCOMO-specific data.
The obtained MMRE values using the classical
SEER-SEM approach are between 42.05%
and 84.39%. Using the Neuro-Fuzzy
enhancement, they are between 29.01% and
69.05%, which is a significant improvement.

Han et al. apply in [9] a larger set of machine
learning algorithms: linear regression, neural
networks, M5P tree learning, Sequential
Minimal Optimization, Gaussian Process, Least
Median Squares and REPtree. The study is
conducted on 59 projects having between 6 and
28 developers and between 3 and 320 KLOC.
The obtained MMRE values are between
87.5% for the Linear Regression approach and
95.1% for the Gaussian Process model.

Bayesian networks, Regression trees,
Backward elimination and Stepwise selection
are applied on various metrics from two
software project data sets by van Koten and
Grayin [19]. The best obtained MMRE is
97.2% on one of the projects, using Bayesian
networks, and 0.392%, using Stepwise
selection, on the other project.

In a literature review of machine learning
models applied to the SDEE problem [20],
Wen et al. show that MMRE values fluctuate a
lot between different projects as well as
different learning algorithms. For example, for
Case Based Reasoning, the survey found
experiments with MMRE values between
13.55% and 143%. Similar ranges were found
for Artificial Neural Networks, Decision Trees,
Bayesian Networks, Support Vector Regression
and Gaussian Processes.

In [17], Usman et al. obtain MMRE values
between 66% and 90% using linear regression.
Using Radial Basis Function networks, MMRE
values between 6% and 90% are obtained.

According to our literature review, machine
learning models applied on software metrics
provide better estimates than pure parametric
models. The MMRE values are also less spread
out between different data sets, which makes
machine learning models more reliable and
predictable from an accuracy point of view.

However, a remaining drawback of these
approaches is the need for project software
metrics, which are not always available or
would take substantial effort to collect
properly. Sometimes, various parameters must
still be inputted by the developers, which takes
about as much time as it would take developers
to provide their own estimates.

Machine learning models using text processing

To the best of our knowledge, the thesis by
Sapre in [14] is the only other research that
approaches the SDEE problem by inputting
task descriptions directly to ML learning
pipelines. It uses a bag of words approach on
keywords extracted from Agile story cards,
which it then feeds to multiple learning models.
Experiments are conducted both with the
Planning Poker estimates included in the actual
learning part of the pipeline and without. The
author reports 106.81% MMRE for Planning
Poker estimates, and 92.32% MMRE using J48
(which outperforms the other models) with the
Planning Poker estimates excluded from the
learning stage. Including the Planning Poker
estimates leads to slightly better results,
although not enough so as to not defeat the
purpose of an automatic approach.

The approach classifies instances into classes
representing Fibonacci numbers, in the same
way that Planning Poker estimates
are provided.

4. Fundamentals of the machine
learning elements used

This section presents the fundamental of the
machine learning elements used throughout our
experiments: term frequency-inverse
document frequency (TF-IDF), distributed
representations of documents (doc2vec) and
support vector regression (SVR). Gaussian
Naive Bayes (GNB) classification is also used
in order to replicate an approach from the
literature.

4.1. Term frequency-inverse document
frequency (TF-IDF)

TF-IDF is a weighting scheme for terms in a
text corpus. It represents the multiplication
between the term frequency statistic, that
counts how many times a term appears in a
document, and the inverse document frequency
statistic, that is the inverse fraction of the
documents that contain the term.

The TF-IDF process is usually the first step of a
text processing machine learning pipeline. Its
results are then fed to classifiers and regressors.

4.2. Distributed representations of
documents (doc2vec)

Models such as word2vec [7] and doc2vec [8]
address a key weakness of bag of words models

Natural Language Processing and Machine Learning Methods for …

 http://www.sic.ici.ro ICI Bucharest © Copyright 2012-2017. All rights reserved

223

like TF-IDF: that words lose their semantics in
the process. For example, in TF-IDF, there is
no necessarily stronger relationship between
the words “Paris” and “London” than between
the words “Car” and “Skyscraper”. In
distributed vector representation models, the
model would learn, from a large enough
corpus, that “Paris” and “London” are both
capital cities, and their vectors would be closer
together than those of words with less meaning
in common.

This is achieved in word2vec by training a
model to predict a word given a context, which
is a set of words around it.

As shown in [19], this can be extended to
documents as well, allowing us to obtain
vectors for entire documents and to infer new
vectors for unseen documents.

Because semantics are kept, feeding these
vectors into classifiers and regressors, in a
similar manner as the TF-IDF vectors are used,
leads to better results for some tasks. Doc2vec
vectors are employed for the same purpose.

Doc2vec vectors can be combined with TF-IDF
vectors by multiplying the two, thus potentially
keeping the information provided by both
approaches. Our experiments consider this case
as well.

4.3. Support vector regression

Cortes and Vapnik originally developed
support vector machines for supervised
classification [5], but they have also been
successfully applied in regression. The
regression method is known as ε-support vector
regression (SVR), since an extra
hyperparameter ε is used for controlling the
algorithm's error level.

4.4. Gaussian Naive Bayes

The Gaussian Naive Bayes (GNB) is a
classification algorithm that assumes that the
values in each class follow a Gaussian
distribution. This allows the algorithm to
function without having to discretize
the features.

First, the algorithm computes μc and σc,
representing the mean and variance of all
instances in class c. When having to classify a
new instance, the algorithm uses the Gaussian
distribution parameterized by μc and σc to find
the probability of the instance belonging to
class c. By not having to discretize the feature
values, which would be required in order to

apply the classical Naive Bayes algorithm,
GNB makes use of all the available information
in the data.

5. Data sets and methodology

In this section, our data sets and experimental
methodology are presented.

5.1. Data sets

Description of data sets

The data sets consist of a templated data set
(i.e. a data set following a given template,
described below), which is called T, and eight
other data sets, which are referred to as d1, d2,

..., d8
. All data sets are provided by a software

company that deals with software development
and general IT maintenance work. The software
development activities are desktop and web-
related using Microsoft .NET technologies and
the maintenance work consists of network
management, printers servicing and other such
work.

The T data set consists of tasks that are
described by team members in a certain format
that is meant to help learning algorithms infer
estimates more accurately. For our T set, all of
the following holds true:

 A task has one or more actions that have to
be performed with the goal of completing
the task.

 A task can take one or more days
to complete.

 An action refers to an indivisible set of
development activities that have to be
performed during a single work day.

 One or more actions, done by one or more
developers, can be necessary to complete
a task.

 Each instance describes a task and its
associated actions.

 The content of a task represents a
development goal.

 The content of an activity represents what
was done in order to achieve the goal
(reinstalling a program, installing some
hardware, restoring a backup etc.).

Only development (programming) tasks are
described.

In T, an instance consists of text representing:

Vlad-Sebastian Ionescu, Horia Demian, Istvan Gergely Czibula

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

224

1. For the task:

 The Interface worked on: the name of a
database table, class, source file etc.

 The Complexity: as estimated by the
project manager, an integer between 1
(trivial) and 5 (very difficult).

 The Number of entities: how many
entities the change will affect, usually an
objective measure.

 The Estimation: a very rough human
estimate, in minutes.

 The Functionality: a short textual
description of the goal.

2. For each action:

 The Description: a short textual
description of the action.

 The Type: one of “Creation” or “Change”,
representing if something new was added
to the project (a file or database table, for
example), or if an existing entity was
somehow changed.

3. The last number represents the actual time in
minutes it took to complete the task.

For example, an instance of T can look
like this:

Interface: Catalog
Complexity: 4
NumEntities: 2
Estimation: 100
Functionality: Add a new admin only field
for the internal product rating
Description: Insert new columns
Type: Change
Description: Make new column admin only
Type: Change
150

This describes a task with two actions, since
“Description” and “Type”, which are particular
to actions, appear twice. It took 150 minutes to
complete the task.

The d1 through d8 data sets have a simpler
format and they refer to non-programming
tasks. The following is what each instance of a
di data set contains:

 A textual description of the task, similar to
the “Functionality” field of the instances
of T.

 A number representing the count of
physical systems the client has that are
managed by the company.

 Another number representing the licensed
software count that the client has and that
must be managed by the company.

 A final number representing the actual time
in minutes it took to complete the task.

Table 1 presents the number of instances in
each data set, along with a short presentation of
each data set's contents.

Each di data set contains instances until the
same time as those for T were collected.

Note that our data sets are diverse: 	
T was collected over a relatively short period of
time with the express purpose of being
adequate for the SDEE problem, while the
others represent a simple, ad-hoc, internal
tracking of the company's business. Moreover,
the di data sets were collected over a period of a
few years, with more developers introducing
data in their own particular styles, since there
was no guideline for how descriptions should
be written.

Table 1. Number of instances and short presentations for each data set.

Data set Number of instances Short presentation

T 203
The templated data set, containing data collected over a five
months period.

d1 147
Contains data referring to network administration tasks, since the
company started tracking them (a few years).

d2 1756
Contains data referring to financial software activities, such as
receipts, billings etc., since the company started tracking them (a
few years).

d3 138 Contains various maintenance activities.

d4 – d7 318, 564, 220, 194 Same as above.

d8 862 More general hardware maintenance tasks.

Natural Language Processing and Machine Learning Methods for …

 http://www.sic.ici.ro ICI Bucharest © Copyright 2012-2017. All rights reserved

225

For both the T and di data sets, the descriptions
are very short, usually not containing more than
10 words.

Visualization of data sets

In order to get a better understanding of the
complexity and difficulty of the problem at
hand, consider a visualization of the data sets in
two dimensions. This is achieved this by
applying t-SNE [18] to the values returned by
applying either TF-IDF, doc2vec or TF-IDF
xdoc2vec (with and without parsing) on all
instances of a data set. By visualizing the data
in two dimensional space, intuition is gained
about how well learning is likely to work on a
certain data set.

For this purpose, only the T data set is
considered. Figure 1 shows visualizations for
the T data set using TF-IDF with parsing (using
doc2vec is similar). It can be seen that this is a
difficult problem, since simple linear regression
does a very poor job of fitting the reduced
data sets.

Figure 1. Visualization of TF-IDF transformer

reduced to two dimensions on the data set, with
initial preprocessing (parsing).

5.2. Experimental methodology

The experiments consist of a machine learning
pipeline with multiple steps, a hyperparameter
search and a final model evaluation.

Before the learning starts, the data set is first of
all randomly shuffled.

The machine learning pipeline

All experiments start with and without a text
preprocessing step that differs based on the
type of data set: T or a di set. Then, they
proceed in the same manner.

For the T set, this preprocessing step consists of
transforming the text of each instance
as follows. Since the fields for each action can
appear multiple times, they are concatenated
such that the keywords Description, Type etc.

only appear a single type, followed by the
contents of all of them. The numeric contents
of the Complexity, Number of entities and
Estimation numeric fields are also copied into
a separate numerics vector that will be carried
over to the next stages of the pipeline together
with the preprocessed text. Note that the
preprocessed text still contains these
numeric fields.

For the di data sets, the preprocessing consists
of simply copying the numeric fields into the
separate numerics vector.

Experiments are performed with and without
the initial preprocessing step. Without it, the
raw text data, as described in the previous
subsection, is fed to the next stages.

The next part of the learning pipeline is the
transformation of the text into a vector model.
Experiments are performed using TF-IDF and
doc2vec. In case the first preprocessing step is
applied, the vector model is fed to the next part
of the pipeline concatenated with the numerics
vector and scaled to zero mean and
unit variance.

The final part of the pipeline is using an actual
learning model to learn relations between the
text and the real completion times.

The proposed method relies on the SVR
algorithm. Tests are also run with GNB in order
to compare the proposed methodology with the
one used in [14] where the authors employ
abag of words approach that results in discrete
features. Since TF-IDF and doc2vec do not
produce discrete features, GNB was chosen so
as not to lose information by discretization. The
authors employ classification into Fibonacci
classes, as used in Planning Poker. Each
training instance is put in the class
corresponding to the Fibonacci number closest
to its actual effort. MMRE values are computed
by using the Fibonacci numbers associated with
each class. The same is done on the introduced
data sets.

Hyperparameter search

The pipeline involves many hyperparameters
for the TF-IDF or doc2vec stages and for the
SVR stage. There are no hyperparameters for
GNB. Hyperparameters need proper values in
order to obtain good results. Since there are so
many, it is impossible to run a full grid search
over them, so a random search is used, which
has been shown to provide good results in
general [2].

Vlad-Sebastian Ionescu, Horia Demian, Istvan Gergely Czibula

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

226

For the hyperparameter search, in the case of
TF-IDF, values are sampled for 11 TF-IDF-
specific hyperparameters, such as the level of
ngrams (character or word), the ngram range,
the maximum number of features to keep,
the normalization method etc., either from
discrete sets of likely to perform well values or
from uniform distributions over known good
ranges. In the case of doc2vec, 11 doc2vec-
specific hyperparameters are sampled, in
similar manner.

For the SVR model, hyperparameters such as C
and other SVR-specific ones are sampled from
the same type of distributions. Only the linear
kernel is considered in our experiments, having
found that others take much longer to evaluate
and provide almost no improvements.

The hyperparameter search runs for 5000
iterations on each experiment, using 10-fold
cross-validation (10CV) to evaluate
each configuration.

Model evaluation

Once the random hyperparameter search
completes, the best result it has found for some
configuration of hyperparameters, according to
our sampling sets and distributions, is reported.
The best ones are applied to a new pipeline, the
data is reshuffled and the pipeline is evaluated
on the data set again using 10CV. These are the
reported results of the paper.

built with care to how the tasks are described,
in order to help our algorithms perform better.
This was successful, and shows that better
written task descriptions can help improve
MMRE results.

6. Experimental results

In this section, the experimental results on the
real world data for SDEE, described in Section
5.1, are reported. The experiments are divided
by the text representation method used
(TF-IDF, doc2vec and TF-IDF x doc2vec) and
within each representation method by whether
or not the initial text preprocessing was used.

For each experiment, average MMRE on the
test folds within 10 fold cross validation is
reported. The scikit-learn machine learning
library is used for experiments [10].

Table 8 shows that TF-IDF followed by SVR
provides the best results on all but one data set.
When using GNB, doc2vec and TF-IDF x
doc2vec lead to better results most of the time,
without surpassing the regression approach
however. This suggests that doc2vec might be
better for classification problems than for
regression problems, at least in the context of
SDEE. The training is also faster with TF-IDF.
While doc2vec vectors store more data about
the semantics of the documents, this did not
improve our regression results. Similar
observations hold when not using initial
text preprocessing.

Note that, generally the best results were obtained
on the T data set, which was specifically

For both methods, there aren't big differences
between the data sets. This shows that our
machine learning approach to SDEE is robust
and is likely to perform well on various
data set.

Table 8. Results using each text vectorizer with the initial text preprocessing. The best SVR and GNB results
are highlighted across the three different text vectorizers.

Data set Set size
TF-IDF doc2vec TF-IDF x doc2vec

SVR GNB SVR GNB SVR GNB

T 203 0.53 0.668 0.589 0.592 0.565 0.727

d1 147 0.593 0.705 0.683 0.731 0.637 0.716

d2 1756 0.641 0.743 0.657 0.713 0.66 0.695

d3 138 0.588 1.262 0.618 0.981 0.611 1.463

d4 318 0.571 0.674 0.62 0.666 0.606 0.614

d5 564 0.594 0.849 0.606 0.755 0.597 0.925

d6 220 0.587 0.973 0.623 0.748 0.621 1.128

d7 194 0.597 1.033 0.576 0.759 0.618 1.045

d8 862 0.643 0.707 0.662 0.681 0.663 0.712

Natural Language Processing and Machine Learning Methods for …

 http://www.sic.ici.ro ICI Bucharest © Copyright 2012-2017. All rights reserved

227

7. Discussion and comparison to
related work

Considering the results found in the literature
and presented in Section 3.3, the results
obtained on our data sets are better than most of
the results found for this problem. Table 9
presents a comparison to the related work
reviewed in Section 3.3.The most relevant
comparison is with [14], due to the fact that it
also uses raw text data for the experiments.
Observe that, considering this related work, the
proposed approach obtains significantly better
results with both regression and classification.
Moreover, the regression results on the
introduced data sets are considerably better
than the classification results, which indicates
that regression could be the better choice for
the SDEE problem.

8. Conclusions and future work

We have shown that using text vectorization
methods such as TF-IDF and doc2vec, together
with regression algorithms, can obtain better
results for the SDEE problem than classical
parametric models such as COCOMO.

Table 9. Comparison to related work. The related
works with higher average MMRE values than our
best result on the T data set are marked in green.

Those for which we do better than the upper bound
on the T set are marked yellow.

Related work MMRE

[6] 0.373% -771.87%

[11] 10% - 46%

[16] 30% - 74%

[15]
13.8% - 1624.31%, 90.38%
average.

[15]
27.30% - 88.01%, 39.11%
average

[17]
48% for planning poker, 2% -
11% for UCPA, 28% - 38%
for human estimates.

[6] 29.01% - 69.05%

[9] 87.5% - 95.1%

[19]
97.2% on one of the projects
and 0.392% on the other.

[20] 13.55% - 143%

[17]
66% - 90% for linear
regression, 6% and 90% for
RBF networks.

[14] 92.32%

Our method is also, as far as we know, one of
only two that uses text data for providing
estimates. It is the only one that uses modern
machine learning algorithms and regression in
order to do this.

We are confident that better structured text can
significantly reduce the MMRE values, as
indicated by the generally lower errors on the T
data set, which has a decent structure compared
to the others. More data would be needed in
order to properly assess this, however.

In the same way, our experiments also suggest
the following:

 Regression approaches perform better for
SDEE than classification into Planning
Poker Fibonacci classes.

 Preprocessing the initial text using basic
parsing strategies and extraction of numeric
values helps obtain better results, especially
when using regression.

 Basic TF-IDF vectorization leads to better
results than more advanced methods, such
as doc2vec, at least for regression. For
classification, doc2vec and TF-IDF x
doc2vec obtain slightly better results.

In the future, we plan to gather more data from
more companies, in order to better determine
which models work better and in which cases.
We also plan to incorporate metrics in our data
sets, so as to make use of the information they
provide together with the information the
textual description of a task provides.

Acknowledgments

This work was supported by a grant of the
Romanian National Authority for Scientific
Research and Innovation, CNCS--UEFISCDI,
project number PN-II-RU-TE-2014-4-0082.

REFERENCES

1. Basha, M. S. S. & Ponnurangam, D.
(2010). Analysis of Empirical Software
Effort Estimation Models, CoRR,
abs/1004.1239, URL:
http://arxiv.org/abs/1004.1239.

2. Bergstra, J. & Bengio, Y. (2012). Random
Search for Hyper-parameter Optimization,
J. Mach. Learn. Res., 13, 281-305, ISSN:
1532-4435.

Vlad-Sebastian Ionescu, Horia Demian, Istvan Gergely Czibula

ICI Bucharest © Copyright 2012-2017. All rights reserved http://www.sic.ici.ro

228

URL:http://dl.acm.org/citation.cfm?id=218
8385.2188395.

3. Boehm, B. W. et al. (2010). Software Cost
Estimation with Cocomo II with Cdrom.
1st. ed., Upper Saddle River, NJ, USA:
Prentice Hall PTR.
ISBN: 0130266922.

4. Cohn, M. (2005). Agile Estimating and
Planning, Upper Saddle River, NJ, USA:
Prentice Hall PTR,
ISBN: 0131479415.

5. Cortes, C. & Vapnik, V. (1995). Support-
vector networks, Machine Learning, 20,
273-297. ISSN: 0885-6125.

6. Du, W. L.; Ho, D. & Capretz, L. F. A.
(2015). Neuro-Fuzzy Model with SEER-
SEM for Software Effort Estimation,
CoRR, abs/1508.00032.
URL: http://arxiv.org/abs/1508.00032.

7. Le, Q. V. & Mikolov, T. (2014).
Distributed Representations of Sentences
and Documents, CoRR, abs/1405.4053.
URL: http://arxiv.org/abs/1405.4053.

8. Mikolov, T. et al. (2013). Distributed
Representations of Words and Phrases and
their Compositionality, CoRR,
abs/1310.4546.
URL: http://arxiv.org/abs/1310.4546.

9. Han, W. et al. (2015). Comparison of
Machine Learning Algorithms for Software
Project Time Prediction. International
Journal of Multimedia and Ubiquitous
Engineering, 10, 1-8. URL:
http://dx.doi.org/10.14257/ijmue.2015.
10.9.01.

10. Pedregosa, F. et al. (2011). Scikit-learn:
Machine Learning in Python, Journal of
Machine Learning Research, 12,
2825-2830.

11. Popović, J. A. B. D. A. (2012).
Comparative Evaluation of Effort
Estimation Methods in the Software Life
Cycle, Computer Science and Information
Systems, 455-484. URL:
http://eudml.org/doc/253105.

12. Putnam, L. H. & Myers, W. (2003). Five
Core Metrics: Intelligence Behind

13. Successful Software Management, New
York, NY, USA: Dorset House Publishing
Co., Inc. ISBN: 0932633552.

14. Rehurek, R. & Sojka, P. (2010). Software
Framework for Topic Modelling with
Large Corpora. In: Proceedings of the
LREC 2010 Workshop on New Challenges
for NLP Frameworks (pp. 45-50). URL:
http://is.muni.cz/publication/884893/en

15. Sapre, A. V. (2012). Feasibility of
Automated Estimation of Software
Development Effort in Agile
Environments, Ph.D. Thesis at The Ohio
State University.

16. Tharwon, A. (2016). A Literature Survey
on the Accuracy of Software Effort
Estimation Models. In Proceedings of the
International Multi Conference of
Engineers and Computer Scientists.

17. Toka, D. (2013). Accuracy of
Contemporary Parametric Software
Estimation Models: A Comparative
Analysis. In Proceeding of the 39th
Euromicro Conference Series on Software
Engineering and Advanced Applications
(pp. 313-316).

18. Usman, M. et al. (2014). Effort Estimation in
Agile Software Development: A Systematic
Literature Review. In Proceedings ofthe
10th International Conference on
Predictive Models in Software Engineering
(pp. 82-91).

19. Van Der Maaten, L. J. P. & Hinton, G. E.
(2008). Visualizing High-Dimensional
Data Using t-SNE, Journal of Machine
Learning Research, 9, 2579-2605.

20. Van Koten, C. & Gray, A. R. (2006) An
Application of Bayesian Network for
Predicting Object-oriented Software
Maintainability, Inf. Software Technol.,
Newton, 48, pp. 59-67, ISSN: 0950-5849.
URL: http://dx.doi.org/10.1016/
j.infsof.2005.03.002.

21. Wen, J. et al. (2012). Systematic Literature
Review of Machine Learning Based
Software Development Effort Estimation
Models, Inf. Software Technol., Newton,
54, 41-59, ISSN: 0950-5849. URL:
http://dx.doi.org/
10.1016/j.infsof.2011.09.002.

