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1. Introduction 

Fault diagnosis in dynamic systems has been 
the subject of several research works. It is 
defined as a process of detecting any deviation 
or intended behaviour of a system and isolating 
the cause of this failure. There are many 
approach diagnosis and technical processes [1, 
5, 10, 16, 17, 18, 23, 24, 29] that have been 
applied to fault diagnosis of dynamic systems. 
Their goals are focused on a timely diagnosis 
of defects in order to provide a precise 
judgment rule for distribution operators. 
Particularly when serious defects occur in a 
system, a lot of alarm information is 
transmitted to the control system. In such cases 
operators must quickly and accurately assess 
the causes, location and defect system 
components. Diagnosing faults with the right 
methods can provide accurate and effective 
diagnostic information for ship operators and help 
them take adequate action in certain faulty 
situations to ensure safety. 

In the context of diagnosis more model-based 
systems have been used: finite state machine [17, 
8], Petri nets [9, 31, 34, 35, 38]. Despite the 
various researches in recent years and the 
proposed modeling approaches for the fault 
diagnosis, several unresolved problems                
have remained.  

The performances of the diagnostic approaches 
depend on the means of the model being used. 
Obtaining and using the model to construct a 
diagnosis system is a complex and difficult task 
more  particularly  for  the  uncertain  systems 

 

 

 

 

because of unforeseen and uncontrollable 
events that characterize them. 

This paper focuses on fault diagnosis of 
uncertain discrete-event systems and tries to use 
Interval Fuzzy Constrained Petri Nets (IFCPN) 
as a tool of modelling, identification                
and isolation.  

The proposed tool IFCPN model is introduced 
in order to extend some properties of the 
Interval Constraint Petri Nets [13, 14] which is 
considered as an extension the P-temporal Petri 
Net [26] and a sub-class of High Level PN     
[21, 25]. 

Our main contribution is to extend the 
functional range of ICPN applications to fault 
diagnosis of uncertain systems where the 
validity intervals of any parameter are fuzzy 
and characterized by the propagation of 
uncertain events [4, 15, 30]. 

This paper is organized as follows: In the first 
part of this work, we studied the modelling of a 
mixing system: we propose an approach using 
Statistical Process Control in order to build the 
validity ranges of fuzzy intervals and we 
compute robust control laws of this model. 

In the second part we study the robustness of a 
system which is defined as its ability to 
maintain the concentration properties specified 
on the occurrence of disruptions. After having 
proved this robustness we use the tool built for 
the diagnosis of the defaults. The diagnosis 
method is based on fuzzy logic [37]. 
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2. Interval Constrained Petri Nets 
(ICPN) 

ICPN model allows modelling and  
guaranteeing a constraint on any parameter of 
dynamic systems. 

Definition [14]:  

An Interval Constraint PN is a t-uple: 

0 0, , , , , , ,SR m I D V V X X   

where: 
 R  is a marked Petri Net model 

 m  is the application: :m P    
that associates a token to places: 

where   is a set of formulas (non-empty) and 
  is a multiset defined on V . 

     : , ,SI P R R Q        

 defines the static intervals associated to 
the places of PN.  

 D defines an application: 

              : ( )D m p P Va   

that associates a rational 
iq b  to  pair 

(place, token). It results from a   variation 
of the value of a token which associated in 
a place.  

                  
 X  defines an application: :X Va Q  that 

assigns to each variable a value:
va u Q  ;  

 
0X  defines the initial values. 

 V  associates a formula to each token (K) 
of rational values.  

 0V  is the initial formulas which is 

associated to the token. 

A token in place pi is taken into account in 
transition validations if and only if it has reached 
a value comprised between the limits of the 
static interval [ai, bi].  

After the firing of an upstream transition, tokens 
are generated in output places and their values 
will be equal to: 

V(k) + q                                                           (1) 

We did not specify the meaning of parameter q 
and V(k) to generalize the model.  

For more details see [14] 
 
 

3. Interval Fuzzy  Petri Nets 

3.1  Definition: 

The concept of an Interval Fuzzy Petri Nets 
(IFPN) [20, 36] is derived from the ICPN model 
where we define IS as a fuzzy interval associated 
with places [36]. This model is used to represent 
a fuzzy rule-based system that is capable of 
modeling the fuzzy production rules (type if pj 

and pk with certainty Factor μi) [3, 7, 27]. 

The theory of fuzzy interval has found 
applications for modeling and controlling 
uncertain presentation systems [2, 7, 19, 27] in 
the settings. Knowing that a conventional 
interval includes all possible values, in a fuzzy 
range we associate a degree of uncertainty for 
each of the possible values. 

In this article, we introduce a method for 
calculating the limits of a given range. First we 
present in the following lines the basic concepts 
of conventional and fuzzy intervals. 
 
3.2 Conventional interval 
 
A number of the fuzzy interval U is defined as 
the set of real numbers x such that: 

 , /FI i i x R i x i            

Let’s consider two closed intervals of  
reel numbers: 
 ,  and L ,F FI i i l l             

The arithmetic operations in the interval are 
defined as follows [30, 32]: 

- Addition: ,  F FI L i l i l          

-  Subtraction: 
,  F FI L i l i l          

- Multiplication: 

 ( ), ( )  F F F FI L Min I Max I  , where 

, , ,  I i i i i i i i i            

- Division:  1 1 1
 ,  if 0 F

F

I
I i i 

    
 

- 

min , , , ,

 

max , , ,

F

F

i i i i

l l l lI

L i i i i

l l l l

   

   

   

   

  
  

          
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3.3 Fuzzy interval 

A fuzzy interval IF is defined as a conventional 
interval to which is associated a membership 
function denoted I :  

 0,1

( )
i

i

R

x x




  


 

In a fuzzy interval each value has a degree of 
belonging. The higher it is the more plausible  
the value. 

If the membership function is a trapezoidal or 
triangular function, this interval can be 
expressed by the following relations: 

- Case 1: trapezoidal function: 

     ,  FI i i     :      mod mod,  FCore I i i
     

  

- Case 2: triangular function: 

,  FI i i     :   m do
F FCore I I     

The Core represents the plausible values.  

Fuzzy concepts [36] are based on more 
membership functions (trapezoidal, triangular, 
Gaussian …) and the rules if …then. 

The trapezoidal and triangular membership 
functions are most frequently used. These two 
functions make it possible to transform the 
numerical values into fuzzy spaces. 

In this work, we use the triangular function 
defined by lm and Ih, respectively, the lower and 
the upper limit. 

We also use the trapezoidal function with variable 
intervals depending on the slopes which vary 
between 0% and 100% (high function value). 

In this analysis the probabilities are included in 
the representation of the numbers, so that the 
fuzzy intervals may be first described with a 
base and then with a larger interval. Figure 1 
shows the three fuzzy intervals A, B and C of the 
level h with different bases and tops. 
 
 
 
 
 
 
 

Figure 1: Example of Fuzzy intervals 

 

 
    h1 = [(0, 10): (0, 5)]    
    h2 = [(5, 55): (10, 50)]  
    h3= [(50, 60): (55, 60)]  
 

Moreover, in the fuzzy theory, the rules must be 
expressed in terms of fuzzy variables and is to be 
placed in fuzzy space. 

In this work we combine two methods: we use 
mathematical equations to construct the limits of 
intervals and secondly we use the rules to 
determine the faults. To do this, one must define 
the qualitative arithmetic which allows 
mathematical operations on qualitative numbers. 
The basic operations required are addition  
and subtraction. 

Consider the operations of addition and 
subtraction of two fuzzy intervals h1 and h2 of 
figure. 2. They are performed as the operations 
on the conventional intervals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Fuzzy interval operations addition 

 

Fuzzy IF - THEN Rules 

The concept of fuzzy IF-THEN [15, 36] is 
frequently used for describing logical 
dependence between variables of the following 
form:  

 IF V1 is K1 AND Vn is Kn THEN U is M.  

We define with K1, ..., Kn and M as the 
predicates which characterizes the variables V1, 
..., Vn and U. These variables have often 
specified as typically linguistically. Our work is 
based on these specific linguistic expressions. 
The variables V1, ..., Vn are often called 
independent inputs or variables. M is the output 
variable (dependent variable).  
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Example of the linguistic description: 
 
 Rule1 = IF V1 is X11 AND ...AND Vn is X1n 

THEN U is M1… 
Rule m= IF V1 is  Xm1 AND ...AND Vn is Xmn 
THEN U is Mm  

 
The relation between fuzzy PN and the linguistic 
description “IF THEN rules” is obvious. Figure 3 
shows this correspondence between fuzzy PN and 
“IF THEN” rule of the above previous form: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Correspondence between linguistic 
description and one rule “IF-THEN”. 

4. Workshop modeling 

Modelling with IFPN will be illustrated on 
example of mixing system (Figure 4). We 
simplify it as much as possible to show 
described modeling technique. Two ingredients 
Q1 and Q2 are filled in the mixer tank and then 
mixed with water.  The quantity of each 
ingredient as well as that of the water is 
adjusted by a modulating valve. The total 
quantity must not exceed 95% of the total 
capacity of the tank. After the mixing operation 
the product will be filled in bottles to be 
marketed. The quality of the product depends 
on the concentration limits of 
mixture's ingredients that we want to                   
keep constant. 

There are 5 steps in the mixing process: 

step1: Add Ingredient Q1 

step2: Add Ingredient Q2 

step3: Add Water 

step4: Mix the products 

step5: Product filling 

 

 

Figure 4.  Mixing system 

 

Considering the following relationship: 

1 2m m

Ve
C


                                                      (2) 

Where:  

m1 is the masse of product 1 in kg 

m2 is the masse of product 2 in kg 

Ve: volume of water in mm3 

Such that: 

1 1 1 2 2 2   and m CV m C V   where Ci an Vi are 

respectively the concentration (in Kg/mm3) and 
the volume (in mm3) of the product Qi (i= 1, 2). 

The relation (2) can be written as following: 

1 1 2 2C h S C h S
C

Ve


                                       (3) 

C is the concentration of the final product in 
Kg/mm3. There is a validity range of  
this parameter:  
C   [ Cmin, Cmax]. 

An out of range value of the concentration C, the 
product will be rejected.  

The variation of C depends on those of C1 and 
C2. Our aim is to control the specifications 
required for concentration C and to maintain 
these values within a validity interval:  

C1 is the concentration of the final product in 
Kg/mm3. And there is a validity range of         
this parameter:  
C1   [ C1min, C1max].  

C2 is the concentration of final product in K/mm3. 
There is a validity range of this parameter:  
C2   [ C2min, C2max]. 
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Ve is the volume of water in mm3:                       
Ve  [ Vemin, Vemax] 
 
S: is a section of tank in mm2 

1 1 2 2
min max

C h S C h S
C C

Ve


                         (4) 

4.1 Possibility of simulation: 

The construction of the model requires a prior 
calculation of the tolerances on each parameter. 
For this purpose it is possible to use the 
simulation on real values from statistical data 
on production [11, 22, 28]. The following 
paragraph describes the steps of this method of 
calculation and the assumptions taken into 
consideration 

4.2 Linearization approximation 

We suppose that the variation of the parameters 
around the mean is very small. Then we can 
approximate the relationship (eq. 3) by the first 
order linearization in the neighborhoods of the 
reference setting: 

C [Cmin, Cmax] 

Either C0, C10, h10, C20, V20 and Ve0, are 
respectively the values targets of parameters C, 
C1, h1, C2, h2 and Ve. After linearization of 
equation (3) around the operating point we      
can write: 

0 1 10 1 10 2 20
1 1 2

2 20 0
2

( ) ( ) ( )

( ) ( )

C C C
C C c c h h c c

c h c

C C
h h Ve Ve

h Ve

  
  

 
 

       

  
+

2 2
2 2

1 0 1 02 2
1

1 1
( ) ( )

2 2

C C
c c h h

c h

 
 

   +

2 2
2 2

2 20 2 202 2
2 2

1 1
( ) ( )

2 2

C C
c c h h

c h

 
 

   +

2
2

02

1
( )

2 e e
e

C
V V

V


                                                 (5)                                                         

This relation can be written down as:   
5

2
0

1

[ ]i i ii i
i

C C b X b X


                                  (6) 

 
 
 
 
 

with:                               
 1 0

1
1

c c
X




   ;  1 0
2

2

h h
X




 ;  2 20
3

3

c c
X




        

 2 20
4

4

h h
X




 ;  0
5

5

e eV V
X




 ;  

and i i ib c   ;  
2

ii ii ib c    

where: 
1

1

C
b

c





:

2
1

C
b

h





 ; 

3
2

C
b

c





;   

4
2

C
b

h





;  

5
e

e

V
b

V





; 

2

11 2
1

C
b

c





  ;  

2

22 2
1

C
b

h





;  

2

33 2
2

C
b

c





    

2

44 2
2

C
b

h





and  

 

2

55 2
e

C
b

V





   

 
where i  is the standard deviation of the 
considered parameter. 

If we assume that the variations of the 
parameters follow the normal distribution the 
first approximation can be writing [11, 30]: 

5 5
2 2 2

1 1
C i i

i i i

C
b

x

 
 

 
   

 
                                 (7) 

 

The application of the relation (7) gives us: 

 

 

2 2 2 2
2 2 21 1

1 12 2

2 2 2 2 2
2 2 22 2
2 2 1 1 2 22 2 4

C c h

c h Ve

S h S C

Ve Ve

S h S C S
C h C h

Ve Ve Ve

  

  

 

   

 (8) 

 

And after simplification of this relation (8) we 
obtain: 

     

    2

2 2 2 24
2 2 21 1

1 12
1 1 2 2 1 1 2 2 1 1 2 2

2 2 2 2
2 21 2
2

1 1 2 2 1 1 2 2

C c h

Ve

c h

h Ve C VeVe

S Ch Ch Ch Ch Ch Ch

h Ve C Ve

Ch Ch Ch Ch
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
 

 
  


 

 

(9) 
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4.3 Application: design of experiments 

In the previous chapters we defined reasons for a 
concentration values: 

- Factor C1: the concentration of ingredient Q1   

- Factor C2: the concentration of ingredient Q2   

- Factor Ve: the quantity of water  

For a traditional experimental design, we 
research the response system facing varying 
input values.  In this case we adjust these 
factors to give the corresponding response of 
system. 

In our case we consider uncertain parameters 
values: 

- the concentration values C1 and C2 depend on 
several parameters as certain treatments and 
there are uncertain and  uncontrollable. 

- Levels h1 and h2 are adjustable while acting on 
the quantity or weights of products Q1 and Q2.  

- the volume of water Ve depends on the values 
of C1 and C2.   

To resolve this problem we will use in this 
paper the statistical real data of the production. 
Afterwards we are going to calculate tolerances 
for these parameters. For a more details see the 
results of this study.  

Statistical data of the process gives us the 
standard deviation of concentrations C, C1, C2: 
and quantity of water Ve. These  
are respectively: 

 c   0.2, 1c  0.6, 2c  0.6; 0.5Ve   

Let consider that the value targets for a good 
concentration are following:   

m1 = 200 kg with a concentration C10 = 0.25 

m2 = 80 kg with a concentration C20 =  0.07 

Target volume of water: Ve0 = 650 L   

Capacity of a mixing tank = 1 m3 

Section of mixing tank S = 1m2  

Under these conditions the standard deviation 
of the concentration can be determined while 
applying the following equation: 0.427C   

The tolerance in the volume of water is:   

ITVe = 0.26 

The tolerances of the parameters are given by 
the following table.  

Table I: Limit values of parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The figure 5 represents the network ICPN 
model of mixing system (figure 4). In this 
model place P01 and P02 represent stocks to the 
entries of system. Places Pc1, Ph1, Pc2 and Ph2 are 
respectively the quantity of product C1 in tank 
1, the level in tank 1, the quantity of product C2 
in tank 2, the level in tank 2. The places Pe and 
Pc represent respectively the quantity of water 
and the concentration of finished mixing 
operation. Place Pc is a place of control which 
prevents the simultaneous crossing of the 
transitions T1 and T4. 

Finally, after the ICPN process model is 
building, we can analyze its structural properties 
and we prove that most P-time PN structural 
properties can be extended to IFCPN [15]. 

When using information on production data, 
the method was applied in order to calculate the 
limits of the intervals (Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.  Validity intervals of the ICPN model 
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Target value of C g/mm3 0.6 



 
Fault diagnosis of uncertain system based on Interval Fuzzy Petri Net 

 

 http://www.sic.ici.ro                ICI Bucharest © Copyright 2012-2017. All rights reserved   

245

5. Computing a robust command  

The process model is defined by valid fuzzy 

intervals. Under some particular assumptions, 
we can usually extend the structural properties of 
ICPN to analyse the structural properties Interval 
Fuzzy PN model. Our goal is to provide the 
internal and external robustness system [6].  

The robustness of a dynamic system is defined 
as its capacity to maintain the properties 
specified in the face any deviations. The 
robustness characterizes the ability of system 
with input fluctuations. For each system two 
types of disturbances are defined [11, 12, 33] 
external and internal:  the internal disturbance is 
due to the change of the states of the organs of 
the machine.  The external derivate is due to 
input fluctuation. 

So we define two types of robustness [11, 26]: 

A passive and an active robustness. The first one 
is insured when reaching the objectives  without 
adjustment. On the other hand the second type is 
insured when it can not reach objectives  without 
adjustment and we need to calculate a new 
command. 

The figure 6 illustrates the notion of robustness 
and their margins. The determination of which is 
crucial for the calculation of a new command in 
the event of violation of the constraints. 

Exceeding these values involves a violation of 
the constraints. 
 
 
 
 
 
 
 
 
 

Figure 6. Margins of robustness 

This study concerns the problem of the passive 
robustness of the mixing system in the case of 
derivatives of the values of the input products 
C1 and C2. In this case the calculated control 
system must be able to compensate for these 
deviations and specifications on the 
concentration C of the final product must not     
be violated. 

Indeed, the mixing systems are subject to 
disruptions. Their causes vary: changes in 

operating times, variations in the quality of raw 
materials, state of the process...  

In this work we propose to build a robust control 
synthesis tool. The tool uses static intervals 
constraint on the components. Thus, this control 
is ensured through a few real-time adjustment 
operations. The calculation of these settings is 
made as a function of the static intervals 
assigned to the parameters and using the 
developed graph (Figure 7) relating to the Fuzzy 
Petri Net model. 

In this developed graph the nodes correspond to 
the transitions of the Petri net of the figure 5. 

For each place p of PN model we associate two 
arcs. The value of first arc from place to 
transition is obtained by: 

Xp = a - C.m              
The value of second one from transition to place 
is calculated by: 

   Yp = -b + C.m         
Where C represents a periodic control of the 
parameters that is obtained with implementation 
of an algorithm [26]. 
In our case we for the IFPN of the Figure 5 we 
suppose that C = 1 then we obtain the developed 
graph (figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Developed Graph 

6. Simulation and results 

The monitoring of the system during a period 
of one month allowed us to operate the 
variations of the output measures: 
concentration C1, concentration C2 and the 
final product C. 

The Fuzzy PN model has been simulated with 
the values of Table 1. Our aim was to preserve 
the specifications on these parameters. The 
results obtained (figure 8) show the robustness 
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of our model. Indeed the variation of the 
measured concentration values do not exceed 
must respect the constraint specification. In 
these conditions the process  is robust. 

The following production sequence takes place: 
first phase is preparation of the mixing product. 

Firstly, the valve V1 is open, an ingredient Q1 
flows into tank. When the level h1 in the tank is 

 
Figure 8.Variation of concentration value  

reached ( 1min 10 1maxh h h  ), the valve V1 is 

closed and the valve V2 is opens, ingredient Q2 
flows into the tank. When the h2 in the tank is 
reached ( 2min 20 2maxh h h  ) and valve  

V2 closes.  

After the activation of sensors h1 and h2, valve 
V3 is open, water Qe flows into the mixing 
tank. When the level h3 in the tank is reached (

3min 30 3maxh h h  ), valve V3 is closed and the 

agitator will run for 3 mn until the batching 
cycle is complete.  

Control sequence: 
(1) S0: initialization phase (the mixing tank is 
empty).  

(2) S1: V1 is open, the Fill with Q1. 

(3) S2: When the level h1 is reached then V1 is 
closed and V2 is opened. 

(4) S3: If Level h2 is reached then V2 is closed. 

During every phase of the preparation of the 
product, the ingredient level of must be 
controlled. If the total level rises to greater than 
95% of tank’s mixing capacity, the command 
will generate an alarm and the process must 
be stopped. 

Considered faults: 

We considered three faults _f = {f1, f2, f3}, 
where: 

 f1: valve V1 stuck close. This means that the 
tank is empty. Controller waits for event h1 
which cannot occur because of the fault. 

 f2: valve V2 stuck close. Controller waits for 
event h2 which cannot occur because of the 
fault. 

 f3: valve V3 being stuck open. This fault 
causes an overflow. 

 f3: The third considered fault is sensor h3 
which stays in close position. It means there 
is an overrun of 95% of the tank capacity but 
the sensor is faulty. 

Figure 9 shows the three membership functions 
associated to h1, h2 and V3.  

 

 

 

 

 

 

 

 

Figure 9. Membership functions 
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Suppose that at a given instant the quantities 
measured are the following V1 = 170 and V2 = 
40. Under these conditions we shall have 
(Figure 10) 

1max 2min 2max0.8, 0.4, 0.8V V V     , 

from where:  

    3 3( 3) max min 0.8, , min 0.4,V F V NV    

The defuzzification by the method of the first 
maximum gives V3 = 0, we conclude that the 
valve V2 is in default. 
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Figure 10.  Membership function of the fuzzy sub-set 

7. Conclusion 
In this paper we present an approach dealing 
with automatic control specification of an 
industrial process. We propose a control loop 
which is able to maintain a constant 
concentration value of product despite the fact 
that the concentration values of C1 and C2 are 
not deterministic. 

The applied methodology is based upon the use 
of an IFCPN model. The design experiments 
were used in order to compute the validity 
intervals of the critical parameters. The manual 
control generated a great variety of different 
settings but they were not all taken into account.  

The IFCPN model with its completely defined 
intervals has been built. Our approach is 
validated through an industrial application and 
for this validation we have chosen the simplest 
case. However, the proposed approach can be 
extended to the diagnosis analysis of the 
multiple causes and common cause failures. 
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