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1. Introduction 

The ways human faces appear in digital images – 
still photos, video frames – cover a very wide 
variety. And this, not necessarily due to 
individual peculiarities, but mainly due to the 
way light and shadows are playing on the relief 
(3-D shape) of the respective faces, depending on 
the illumination conditions. On the other hand, 
the dimensions and resolutions of the images 
might be different, and the positions in which 
human faces may appear within them as location, 
framing, relative and absolute size, slant and/or 
rotation angles, are very numerous. Due to all the 
above-mentioned factors, the problem of human 
faces detection in images appears as a difficult 
one. Innovative researches and their outcomes in 
the last decades [22][25], mostly based on 
various representations and learning from 
examples techniques, brought remarkable 
contributions and results in the field worldwide, 
both as the rate of success for the detection 
methods and algorithms, and as processing speed 
(see also section 5). Today, effective face 
detection is hard-coded in almost all digital 
cameras, smartphones and tablets. 

This paper presents an attempt of an original, 
simple approach for face detection, in frontal 
view as a first phase. The starting idea was to 
firstly bring the human faces at certain 
representation forms as much as possible less 
dependent on peculiarities as mentioned above. 
Also, the proposed method was envisaged to be  

 

 

 

as general as possible, without constraints, 
tolerant at scaling, translation, slight skews or 
rotations, independent on the image type (color 
or grayscale), and as efficient as possible as 
volume and as duration of the computations 
involved. Next sections present the raw method 
and algorithm (section 2), and their refinement 
and optimization (section 3). Section 4 describes 
the experimental system developed, and some of 
the results obtained. In section 5, comparative 
parallels with some reference methods and 
algorithms are made, while section 6 presents 
some conclusions and possible future works. 

2. Raw method and algorithm 
The considered starting input is a digital image 
with 256 gray levels, pixel per byte. In the case 
of color images, appropriate conversion to 
grayscale [4] is performed. For example, the 
transformation from the RGB model, with each 
color coded on one byte, is based on the NTSC 
luminance (panchromatic brilliance) relation, 
which uses coefficients based on the human eye 
sensitivity for each of the three components:  

GL = 0.299 · R + 0.587 · G + 0.114 · B,       (1) 

where GL is the value of the correspondent gray 
level pixel. In the case of the YUV/Y’UV or 
YCbCr/Y’CbCr representations, with one 
brilliance component (Luma / Luminance) and 
two color components (Chroma / Chrominance), 
or HSV/HSI/HSL, with Hue, Saturation and 
Value / Intensity / Luminance components, the 
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values from the last component, Y/Y’ or V/I/L 
respectively, could be directly considered for the 
grayscale image. 

In the input digital images with 256 gray levels, 
human faces are represented by the spatial 
configuration of the pixels with various gray 
level values, compounding the respective faces. 
Depending to the number of those pixels and 
their values, a huge variety of configurations 
may appear, and they must be automatically 
identified as faces. It appears almost natural to 
try to use essentialized representations of these 
faces, with reduced dimensionality but intrinsic 
power of generalization, and to use an approach 
based on learning first such representations from 
several examples of faces, and then detect similar 
representations in (other) images, corresponding 
to (other) human faces. 

Based on the observation that the relevant 
information for a human face are contained 
within an approximately square region bounded 
by the eyebrows and mouth, and for ensuring 
invariance at scaling, it has been chosen to use 
square representations with unique dimensions to 
which any human face would be normalized. A 
face area is framed with a flexible square frame 
placed and adjusted to properly cover the entire 
region from eyebrows till mouth, inclusively. 
This framed area is split in N×N square macro-
pixels, each being computed as the average of the 
gray levels of the pixels from the original image 
covered by the respective macro-pixel. In order 
to ensure both an enough resolution in the case 
of the smallest detectable faces and 
computational efficiency at same time, a value of 
N = 21, divisible by 3 (see RBM in Section 3) 
has been chosen as tradeoff. This normalized 
21×21 square representation could be referred as 
matrix of gray levels, MG. 

Then, for obtaining a certain generalization and 
independence on local details and noises, a 
smoothing operation is applied on MG using a 
mean filter [4], by which the value of each 
macro-pixel is replaced with the average value of 
its 8-neighbors. Actually, two convolutions with 
a 3×3 matrix having all its components 1/8, 
excepting the central one, which is 0 (zero), are 
performed consecutively on MG. An effect of 
blurring, or viewing through a matte glass, is 
obtained, details and contrast being thus reduced, 
while the characteristic, essential big elements, 
which are defining the respective face image, 
remain (middle row in Image 1). The new 21×21 
matrix, resulted from the two convolutions will 
be referred as medium gray levels matrix, MGM.  

We mention here the fact that, based on this 
representation, a local gradient, due to the effect 
of light and shadows on the relief (3-D shape) of 
the face, was also evaluated and used, as detailed 
in section 2. 

For avoiding possible influences of hair (in the 
region of the forehead, eyebrows and eyes) or of 
background (in the region of the jaws and neck) 
on the faces, we shall further mask the corners of 
the 21×21 square matrix MG, as isosceles 
triangles with sides length of 7 in the lower half 
and of 3 in the upper one, as well as its first and 
last 2 lines and columns. 

The MGM representation is then binarized, by 
using an adaptive threshold value computed 
based on the histogram of the gray levels [4][5] 
of its macro-pixels that are not masked. A new 
21×21 matrix is obtained, with values of 0 and 1 
(black and white). Some black “stains” – 
patterns – on a white background appear in these 
binarized matrices, having various shapes and 
dimensions, and corresponding to the darkest 
areas of the respective face (most of them due to 
the shadowed regions, eyes, eyebrows, nostrils, 
mouth, beard and/or moustache). For an even 
greater generalization, and for more invariance at 
slight scaling, translation and rotation, a 
simplified form of morphological dilation is also 
performed on these black patterns, finally 
resulting a new representation, referred as binary 
matrix, BM. 

 
Image 1. MGM (middle row) and BM (lower row)  
representations, for slightly different framing and  

positions of a face from an image with  
256 gray levels (upper row)  

By simplifying things for the moment, we may 
consider that, through a supervised learning from 
examples process, such 21×21 binary matrices  
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(BM) representations of the faces are collected in 
a knowledge base (KB). This KB may be further 
used with a pattern matching algorithm for 
identifying in (other) images regions which lead 
to similar representations, and thus to detect 
(other) faces in these ones. In the following we 
shall briefly describe this algorithm. The 256 
gray levels input image, of W×H pixels, is 
systematically scanned with a flexible, square 
window, of 21×21 pixels initially, starting from 
the upper-left corner and sliding over it with a 
certain step p = 1, 2, or 3 pixels, horizontally and 
vertically, “row after row”, in consecutive 
positions until the entire image is thus covered. 
Then, the sides of the square window are scaled 
either by a factor (of 1.10:1 – 1.25:1) or by 
adding a constant number of pixels (e.g. 3, 5, 7) 
at each new scale, and the scanning of the target 
image is started again with this new window. 
This process continues until the scanning 
window can’t be scaled anymore because its 
sides would exceed the target image borders (W 
and/or H). At each scale and for each position of 
the scanning window, a normalized 
representation MGt of 21×21 macro-pixels is 
first generated from the area of the input image 
covered by the target window at the respective 
step. The smoothing filter is then applied on this 
MGt, resulting a medium gray levels matrix, 
MGMt. By applying binarization and dilation on 
this one, a binary matrix BMt is finally obtained. 
This latter one is then compared successively 
with all the examples BMi stored in the 
knowledge base, with which the system was 
previously trained. For each comparison, a 
similarity score, 0 ≤ si ≤ 100, is computed, 
proportional with the resemblance degree 
between the target representation and the model 
representation “i”. If the maximum score Si = 
max(si), obtained after comparing BMt with all 
the BMi representations from the knowledge 
base, is greater than a threshold b_thr, 
empirically chosen through experiments, the 
respective target window is collected as possible 
candidate to contain a face, together with the 
respective maximum score, Si. 

For evaluating the similarity score si between 
two 21×21 representations corresponding to the 
target binary matrix, BMt, and respectively to the 
model binary matrix “i”, BMi, previously learned 
as a positive or negative example, there have 
been defined and are computed, using the 
relations (2) and (3) given below, two values that 
quantify, each, the similarity degree between the 
two matrices. Be nt and ni the total number of 
black pixels (with value 0) in BMt and in BMi  

respectively, nti = nt + ni, the total number of 
black pixels in both these matrices, and ndti the 
total number of black pixels in both these 
matrices that don’t have a  correspondent in the 
other one (XOR). A similarity degree based on 
the “fullness”, 0 ≤ Sfi ≤ 1, and a similarity degree 
based on the “quantity of differences”, 0 ≤ Sdi ≤ 
1, are given by: 

                           2 · | nt – ni | 
Sfi = 1 – min(1,                     ),           (2) 
                                  nti 

                            2 · ndti 
Sdi = 1 – min(1,             ).        (3) 
                               nti 

It could be observed that, if nt is close to ni, 
namely in the situation that the target and model 
have approximately the same number of black 
pixels, regardless the way these ones are spatially 
distributed in the two binary matrices, then Sfi is 
approximately 1 (even 1 in case of equality). In 
the cases with big differences between the 
numbers of black pixels that are giving the 
“fullness” of the two binary matrices, Sfi gets 
smaller values (decreasing to 0 when either the 
target or the model contains less than 1/3 black 
pixels than the other one). Similarly, Sdi tends to 
a value of 1 if there are only very few black 
pixels in either one of the two matrices which 
don’t have a correspondent in the other one, 
which is the case of almost identical matrices, 
while it’s decreasing to a value of 0 for a number 
of differences greater than the average number of 
black pixels in each of the two matrices. Sdi 
gives the measure in which the distributions of 
black pixels in the two matrices are similar as 
spatial localizations. 

Finally, the similarity score is defined and 
computed as the product of the above two 
degrees of similarity, as percent: 

si = 100 · Sfi · Sdi %.         (4) 

One may remark that relation (3) defining the 
similarity degree based on the quantity of 
differences between the two binary matrices that 
are compared, may be seen as an adapted 
complementary form of Tanimoto’s similarity 
degree [15], as Jaccard index / coefficient [9], 
respectively Sørensen-Dice coefficient / index 
[1][18], for the case of two binary sets of the 
same dimension. Experimentally, it has been 
found that, instead of computing the similarity 
score through the sequence of relations (2)÷(4), 
this one might be directly computed – 
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with more or less comparable results if 
appropriately adjusting threshold parameters – as 
a particular variant of Jaccard coefficient 
(defined as ratio between the dimensions of 
intersection and reunion of two finite sets), 
which evaluates the distributions of the black 
pixels in the two binary matrices. Be ncti the 
number of the black pixels that are located at the 
same coordinates in the two compared binary 
matrices, ndti the total number of the black pixels 
in these matrices that don’t have a correspondent 
in the other one (XOR), through which they are 
differing, and nti = ncti + ndti, the total number of 
the black pixels in both matrices. The similarity 
score, as percent, is given by: 

                  ncti 

si = 100 ·          %.        (4’) 
                  nti 

We mention that, after computing each of the 
similarity degrees with the relations (2) and (3), 
if the respective one is lower than the threshold 
b_thr, further comparison with current model “i” 
is skipped. If all the models in the knowledge 
base are thus skipped, the current target window 
is rejected, and the algorithm goes to the next 
position or scale. One may consider these as a 
cascade of filters applied during the analysis of 
the current window. 

Due to the intrinsic potential for generalization 
of the binary representation that we used, often, 
mostly for big faces, for a same face not one, but 
several overlapped candidate windows with 
dimensions and/or positions slightly different 
between them are obtained. Also, depending on 
the value chosen for the b_thr threshold, it is 
expectable to get several or fewer false 
detections, too. A smaller b_thr threshold allows 
a more optimistic generalization, but with the 
drawback that it will lead also to more false-
positives, while a higher b_thr threshold will 
restrain the generalization, but will also diminish 
the number of false detections. The key here 
consists in finding the optimum tradeoff between 
the two alternatives, the appropriate adjustment 
of the threshold being realized through 
experiments, trials and testing. 

During the training process, both positive and 
negative examples may be learned from 
normalized 21×21 framing windows effectively 
containing faces, or respectively, that don’t 
contain faces, each being appropriately marked 
with a tag (T) in the knowledge base. We are 
talking about an interactive, user guided, 
supervised learning mechanism.  

The framing of each human face that should be 
learned as a positive example is performed 
manually, from the faces undetected yet after 
initially trying an automatic detection on the 
respective image using the existing experience 
(knowledge base), available at that moment. In 
the case that after the detection on the current 
image some false-positives appear too, these 
ones may also be manually selected one by one, 
and learned as negative examples. 

3. Refinements and optimizations 

Once the knowledge base starts growing, the 
comparison of all the representations obtained 
from each target window, scaled and glided step 
by step over the image, with all previously 
learned examples for detecting possible faces, 
becomes excessively expensive as duration. Also 
several false-positives appear. Therefore, the 
detection algorithm described in previous section 
needs refinements and optimizations. 

Firstly, for improving detection performance as 
well as processing speed, some more coarse 
representations have been also generated. Based 
on them, at detection, corresponding filters, with 
gradual computing complexity, were added to 
the cascade. They allow early rejection, with 
minimum computational effort, of those target 
windows that are definitely not susceptible to be 
detected as containing a face (relying on the 
content of the knowledge base at the respective 
moment). Also, even the structure of the 
knowledge base has been refined and optimized 
based on these coarse representations, for 
minimizing the computing effort and duration for 
each position and scale of the scanning window. 

On one hand, a hash code vector, HC, has been 
defined, whose 9 components conventionally 
quantify a coarse description of the binary matrix 
BM, as described in the following. 

Be n1 ÷ n4 the number of black pixels (values of 
0) in each quarter of the square 21×21 matrix 
BM, indexed starting from the upper half, left to 

right, n = Σni, i = 1÷ 4, the total number of the 
black pixels in the whole matrix, and nIJ = nI + 
nJ, the total number of black pixels in the halves 
formed by the pairs of horizontally and 
respectively vertically adjacent quarters {I,J}, 
where {I,J} = {1,2}, {3,4}, {1,3}, {2,4}. 

The first component, HC(1), quantifies in 6 
conventional domains the “fullness” of matrix 
BM, based on the number of black pixels (values 
of 0) contained by it, as below: 
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If n < N2 / 7, then HC(1) = 0; 
else, if n < N2 / 3, then HC(1) = 1; 
else, if n < N2 / 2, then HC(1) = 2; 
else, if n < 2 · N2 / 3, then HC(1) = 3; 
else, if n < 6 · N2 / 7, then HC(1) = 4; 
else, HC(1) = 5;      (N2 = 212 = 441).       (5) 

The second and third components, HC(2) and 
HC(3), quantify in 3 conventional categories the 
distribution of the black pixels among the two 
halves, on the vertical and respectively 
horizontal, in the binary matrix BM, coarsely 
reflecting the way they are balanced in these 
halves. Be k = 0,6 · n, an empirically chosen 
value for ensuring a certain tolerance to possible 
noises, which represents 60% from the total 
number of the black pixels in the whole matrix. 
These components are thus defined: 

If n13 > k, then HC(2) = 1; 
else, if n24 > k, then HC(2) = 2; 
else, HC(2) = 0,          (6) 

If n12 > k, then HC(3) = 1; 
else, if n34 > k, then HC(3) = 2; 
else, HC(3) = 0.          (7) 

The next six components, HC(4) ÷ HC(9), 
quantify, also in 3 conventional categories, the 
distribution of the black pixels among the pairs 
of quarters, on vertical, horizontal and, 
respectively, diagonal in the binary matrix BM, 
coarsely reflecting the way they are balanced in 
these quarters. Be kIJ = 0,6 · nIJ, with nIJ = nI + 
nJ, an empirically chosen value for ensuring a 
certain tolerance to possible noises, which 
represents 60% from the total number of the 
black pixels in each pair {I,J} of quarters, where 
{I,J} = {1,3}, {2,4}, {1,2}, {3,4}, {1,4}, {2,3}. 
These HC(m) components, where m = 4, 5, 6, 7, 
8, 9, each corresponding to one such pair of 
quarters {I,J} are defined as: 

If nI > kIJ, then HC(m) = 1; 
else, if nJ > kIJ, then HC(m) = 2; 
else, HC(m) = 0.         (8) 

This hash code vector, HC, is also stored in the 
knowledge base while learning, together with the 
binary matrix BM, and the tag T specifying the 
type of the example, positive or negative. 
Moreover, the knowledge base is structured as a 
kind of hash tree. On each branch all the 
representations with identical hash code vectors 
HCi – as nodes of the respective tree – are 
gathered, positive and negative samples on 
separate branches. This allows the comparison of 
the target window only with those models from 
the branch with same HCi as the current HCt at 

detection, which leads to an obvious 
optimization in terms of computing duration and 
efficiency. Whether HCt is different of all 
positive HCi from the knowledge base, the 
current target window is directly rejected. We 
may consider this as another filter, HC, in 
cascade, preceding the BM one described in the 
previous section, which will be applied only to 
those windows that passed the HC filter. 

Another coarse representation is obtained from 
the square binary matrix BM by reducing its 
dimensions to 1/3 for each of its sides, resulting a 
7×7 reduced binary matrix (RBM). Each new 
macro-pixel in this one is obtained by replacing 
each non-overlapping block of 3×3 pixels from 
BM with a value of 0 if there exist at most 4 
white pixels (values of 1) in the respective block, 
or with a value of 1 otherwise (Image 2). 

 

 

Image 2. RBM representation of a face 

 

At detection, while scanning the image, for each 
target window, exclusively on the branch of the 
knowledge base tree corresponding to the current 
HCt, firstly the RBMt will be compared with 
each RBMi on the respective branch, using the 
same similarity score formulae as described for 
the BM in previous section. This may be 
considered also as another filter inserted in the 
cascade, between the HC and the BM ones, more 
efficient computationally than the latter one due 
to the smaller dimensions of RBM. Thus, only 
for those windows that passed the HC and RBM 
test, the BM comparison will be also performed, 
while the others are rejected.  
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It should be mentioned that a different threshold, 
3_thr, is used in the RBM case instead of b_thr, 
its value being also experimentally adjusted. 

A remark should be made in the case of the 
negative examples learned in the knowledge 
base. When comparing a target window with this 
ones as described above, another specific 
threshold n_thr is used, whose value was also 
experimentally adjusted, any similarity score 
above this value leading to the rejection of that 
window in the early stages during detection. 

Finally, for (better) filtering the false-positives 
resulted at detection, a local gradient related 
representation, based on the MGM one as 
mentioned in the previous section, was also 
introduced. It is a 21×21 relief (3-D shape) 
matrix (RM), whose components may get one of 
3 conventional values a1, a2, a3, (arbitrarily 
chosen 50, 200 and 125), representing one of the 
categories: “valley”, “peak” and “plateau” 
respectively, as below: 

RM(x,y) = a1, if over 4 of the 8-neighbors of 
pixel MGM(x,y) have greater values than it; 
RM(x,y) = a2, if over 4 of the 8-neighbors of 
pixel MGM(x,y) have smaller values than it; 
RM(x,y) = a3, in other cases.        (9) 

Obviously, the term “relief” and the values 
comparisons are referring to the gray levels, but 
these are however intimately related to the 3-D 
shape from the image window as it appears in the 
respective illumination conditions. 

These RM representations (Image 3) quantify 
information about the local gradient around each 
macro-pixel in MGM, i.e. whether this one is 
lower, higher, or at the same level with the 
majority of its neighbors. 
 

 
Image 3. RM representations for the face with  

slightly different framing and positions from Image 1 
 

During the training process, such RMi matrix is 
also stored in the knowledge base together with 
the other representations mentioned until now, 
for each learned example. At detection, for each 
target window that passed all the previous filters 
in cascade, a comparison of the RMt and RMi 
representations will also be performed. Finally, 
there will be collected only those candidates for 

which also the similarity score sri obtained in this 
case is greater than a threshold r_thr, also 
experimentally adjusted. 

The similarity score sri is simply computed in 
this case as a Tanimoto similarity degree 
(Jaccard coefficient), respectively as the percent 
ratio between the number of components in RMt 
which have equal values with their correspondent 
component in RMi, and the total number of the 
compared pairs of components, avoiding the 
masked corners as shown in the previous section. 
It should be mentioned here that the comparisons 
are made in fact on 3×3 neighborhoods, for 
covering also slightly shifted but similar 
representations. 

Concluding, complete pyramidal data structure 
of the representations for the examples of human 
faces learned in the knowledge base, containing 
the components described above, sorted based on 
their growing dimensions and the order of their 
correspondent similarity filter in the cascade at 
detection, is shown in Table 1. 

 

Table 1. Pyramid of representation forms 

Data Name / description, size, values 

T  Polarity tag (“face” / “non-face”), w/ value of 1 or 0 

HC  Hash code vector, w/ 9 components 

RBM  Reduced binary matrix, 7×7, w/ values of 0 and 1 

BM  Binary matrix, 21×21, w/ values of 0 and 1 

RM  Relief matrix, 21×21, w/ values of 50, 125 and 200 

 

Based on the observation that certain symmetry 
exists in the human faces, for accelerating the 
building / growing of the knowledge base, each 
trained example is mirrored about its vertical 
symmetry axis. Its mirrored representations are 
automatically generated and learned with the 
normal ones, for each example. 

It should be emphasized that, before adding any 
new example, it is checked if wasn’t already 
identically learned in the knowledge base, case in 
which it isn’t doubled, avoiding redundancy. 

For efficiently computing each macro-pixel’s 
value in the initial gray levels matrix (MG) to 
which each target window is normalized, an 
integral image [21] is computed and used. This 
one is computed in a single step from the original  
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image in 256 gray levels, and is a matrix with 
same dimensions W×H, in which each 
component gets as value the sum of all of the 
pixels located to the left and above its 
corresponding pixel in the original image, 
inclusively. This way, each macro-pixel’s value 
in MG isn’t computed as average of all pixels 
that it replaces. Instead, it is always obtained at 
any position and scale through only two 
additions, a subtraction and a division, by using 
the corners of the area covered by the respective 
macro-pixel in the integral image. 

For the cases of possibly multiple candidates 
obtained at detection for a same face, as 
mentioned in the previous section, it has been 
developed a simple algorithm, based on 
clusterization of overlapped candidates with 
centroid covered by all the other candidates. For 
each such cluster, only a representative member 
is kept, having centroid and sides dimension 
computed as weighted averages, in which 
candidates with similarity scores over an 
adaptive threshold computed per cluster being 
considered twice. Other candidates partly 
covered by the respective cluster, if any, are 
filtered. When clusters of multiple candidates are 
detected, and also other isolated or smaller 
candidates, these latter ones are also filtered. 

It must be mentioned that our method has a 
limitation, however reasonable, due to the 21×21 
pixels minimum size of the scanning window: 
faces with lesser resolution (smaller dimension) 
than this one can’t be detected. 

4. Experimental system. Results. 
An experimental system has been designed and 
developed for testing the learning mechanisms 
and the detection algorithm described in the 
previous sections. 

The implementation and development have been 
realized for Windows® 32-bit, using the C 
programming language and the Win32 API, 
compilations being performed with Borland® 
C++ 5.5, free command line tools. 

Experiments were done on an Intel® Core™2 
Duo @ 2.66 GHz CPU, with 2 GB RAM, and 
Windows® XP SP3 operating system. 

Simple operations, mainly with integers, were 
employed. Several programming “tricks” and 
optimizations have been used. However, it is 
rather a proof of concept implementation. 

A unified mechanism for decoding, loading and 
displaying images from files in BMP, PGM, 
PNG, GIF, TIFF, PCX, and JPEG formats, with 
automatic conversion from colors to 256 gray 
levels when necessary, has been implemented. 
Image files may be interactively selected, either 
one by one or several at once for being loaded, 
displayed and analyzed successively. 

On each image, a flexible square window may be 
interactively defined by clicking and dragging 
with the mouse, and then adjusted or moved for 
appropriately framing a human face to be learned 
in the current knowledge base. Alternatively, on 
a loaded and displayed image, one may start the 
automatic detection based on the currently 
loaded knowledge base. The detections are 
graphically marked on the image by framing 
squares, red colored for all possible candidates, 
and green colored for the finally determined as 
representative ones. The current knowledge base 
may be interactively selected (when several 
available). While learning, an automatic 
detection on the current image using the 
knowledge base as is at the respective moment 
may be tried first. This allows to frame for 
learning as positive examples only faces that 
were not detected yet, and/or as negative 
examples only detected false-positives. 

There have been provided means for the user to 
externally setup and adjust, for experimental 
necessities, several parameters as: the step while 
sliding the scanning window over the image, the 
type of current learning at a certain moment 
(positive / negative examples), the similarity 
thresholds (n_thr, 3_thr, b_thr, r_thr), whether all 
the detected candidates to be marked or only the 
representative ones, whether certain filters of the 
cascade be skipped, whether to use pre-filtering 
of the candidates, whether to use the tree 
structure of the knowledge base, or whether to 
shrink the original image before analyzing it. 

For learning and testing, there have been used 
images both from public reference sets (BioID, 
Vision Group of Essex University, CMU+MIT, 
and Bao) or synthesized ones (University of 
Regensburg) downloaded using their links from 
http://www.facedetection.com/datasets.htm and 
others randomly got from the Internet, and also 
personal images. 

We started first by employing the whole BioID 
set of 1,520 single-face images (excepting one,  
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which contains two faces, as shown in Image 4), 
with 384×286 pixels. A number of 456 examples 
of faces have been finally used for learning, from 
455 images. For each such face, its image 
mirrored about its vertical axis of symmetry has 
been also automatically learned. 

 

Image 4. Results of detection on a 384×286 pixels  
image of BioID set (BioID_1140.pgm), without  

filtering candidates, with scaling factor 1.15:1 and  
initial step of 3 pixels while sliding the scanning  

window over image 

Detection testing on the other 1,065 single-face 
images, found almost all of the contained faces, 
less 14, which represent 1.31% (= 14 / 1,065) 
false-negatives. Most of these 14 faces are either 
partially truncated at images’ borders or masked 
by fingers, or are too slanted, or their detection 
was filtered due to some false-positives that 
prevailed. A total of 110 false-positives were 
erroneously detected in certain images from the 
whole set (one or, at most, two per image), that is 
6.80% from all the detections (= 110 / (1,521 – 
14 + 110)). We then also trained as negative 
examples some of these false-positives, together 
with various other false candidates susceptible to 
be detected also as false-positives (a total of 217 
such negative examples, with their mirrored 
images, too). The result was that the number of 
undetected faces (false-negatives) decreased to 8 
that is 0.75% (= 8 / 1,065), with 0 (zero) false-
positives. This could be finally expressed as a 
clean detection rate of 99.25% on the test subset, 
or 99.47% on the whole set. 

We continued this interactive guided training, 
using the single-face sets from Regensburg and 
parts from Essex (faces94, faces95), and then 
rechecking backwards for new false-positives 
that were also trained as negative examples. 
After thus training 809 positive and 708 negative 
examples,  from  a  total  of  4,991  test  images,  

 

(only) 14 false-negatives (0.28%), with 0 (zero) 
false-positive, were detected. This means a 
detection rate of 99.72%, or 99.76% from all 
5,800 faces employed so far. 

All in all, we continued our experiments up to a 
total of 8,998 single-face images, plus a two-
faces one. From these ones, 2,000 examples of 
faces, 1,149 positive and 851 negative, all also 
being mirrored about their vertical symmetry 
axis, were used for training. Finally, 261 false-
negatives (3.32%) and 192 false-positives 
(2.12%) were found while testing the detection 
on the rest of 7,851 not trained faces, while 7,590 
from these ones being detected correctly. That is 
a detection rate of 96.68%, or 97.10% from all 
9,000 faces. 

The evolution of the knowledge base and of the 
detection results is summarized in Table 2. 

Table 2. KB training and detection rate evolution 

Set(s) 
Total
Faces 

ExP ExN FN FP 

FN/ 
(TF-
ExP) 

% 

Det 
% 

DetAll 
% 

FP/
(TF-
FN+
FP)
% 

BioID 1521 375 0 115 80 10.03 89.97 92.44 5.38

BioID 1521 456 0 14 110 1.31 98.69 99.08 6.80

BioID 1521 456 217 8 0 0.75 99.25 99.47 0

+R,E94 3550 598 381 9 37 0.30 99.70 99.75 1.04

+E95 5800 809 708 14 0 0.28 99.72 99.76 0

Stop 9000 1149 851 261 192 3.32 96.68 97.10 2.12

Knowledge base training is still far from being 
complete, and therefore it is premature and 
irrelevant to try now a rigorous evaluation, either 
qualitative or quantitative, for the overall 
performance of the system. We shall however 
make a few more comments on the findings of 
our experiments. 

Detection has been tested both with a fixed step 
of 7, 5 or even 3 pixels added at each scale, and 
with a scaling factor of 1.10:1, 1.15:1, 1.20:1 and 
1.25:1 for scaling the scanning window. Also, 
while sliding it, there have been tried initial steps 
of 1, 2 or 3 pixels, increased to ½ of the macro-
pixel’s side length once the target window grows 
enough. The number, positions and dimensions 
of the candidate windows collected at detection 
depend on these parameters, besides the 
appropriately adjusted thresholds for various 
similarity scores. 

For images containing relatively big faces (e.g. 
as in BioID and Essex sets), even initial 
gliding steps of 3 and 2, and fixed scaling  
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step of 7 pixels produced acceptable (even good) 
results at detection. On the other hand, in the 
case of faces with smaller areas of pixels (e.g. in 
not so big images with groups of several 
persons), only an initial gliding step of 1 pixel 
and a scaling factor of at most 1.10 – 1.15 could 
provided satisfying results. Obviously, smaller 
values for these parameters, imply substantially 
longer computing duration, that could become 
annoying mainly for big images despite all the 
optimizations applied. A possible way for 
diminishing such an impediment could be to 
automatically reduce enough the image to be 
analyzed, while still taking care to keep enough 
resolution on the contained faces, not lesser than 
21×21 pixels (as it was the case of the smallest 
face in the last row from Image 5). 

 

Image 5. Results of detection on an image of the  
CMU+MIT set (judybats.gif), reduced by 50% from  
716×684 pixels, without filtering candidates, with  

scaling factor 1.15:1 and initial step of 1 pixel  
while sliding the scanning window over image 

The thresholds we used at various comparisons 
were empirically setup. The n_thr threshold for 
negative examples was set to a higher value, of 
70%, for rejecting at the respective stage only 
those windows that are very similar with learned 
examples of non-faces. The 3_thr threshold for 
the pre-filtering of candidates based on their 
reduced representations was set to a lower value, 
of 55%, for not rejecting any window that might 
somehow contain a face. 

The b_thr and r_thr thresholds used with the 
main similarity scores were set to a medium 
value, of 65%, for ensuring an optimal tradeoff 
between the generalization power and correct 
discrimination between faces and non-faces. 

5. Parallels with other methods 

Our proposed method may be compared on 
portions with the one of Rowley, Baluja and 
Kanade [16] (or, more likely with the one of 
Sung and Poggio [19], partially used and 
mentioned also in [16]), and, respectively, with 
the one of Viola and Jones [21]. All these 
methods are based on supervised learning of two 
classes (face and non-face), from positive and 
negative examples, and then using the gained 
experience in the automatic face detection 
process. Similarly, a grayscale input image is 
analyzed by sliding over it a square window with 
small dimensions – in our case 21×21, vs. 20×20 
or 19×19 and, respectively, 24×24 – in 
consecutive positions, at various scales. In [16], 
same as in [19], the scanning of the input image 
at detection was performed by analyzing a 
pyramid of images obtained by successively 
scaling the original one. In our case it’s the 
scanning window the one that is scaled and 
normalized to 21×21 macro-pixels at each step 
and scale. The value of each macro-pixel is the 
average of the covered pixels in the input image, 
and is computed using an associated integral 
image, as in [21]. 

The representations that we are using are 
obtained starting from the gray levels values of 
the macro-pixels in the 21×21 matrix obtained 
from the scanning window at each step and scale. 
Simple transformations are applied to become as 
independent as possible on specific details. This 
set of representations for each scanning window 
(HC, RBM, BM, RM) are used by a pattern 
matching algorithm, built as a cascade of 
consecutive filters with gradual complexity. [19] 
also uses the gray levels from the scanning 
window, initially applying some pre-processing 
for compensating illumination gradient and 
equalizing the histogram for improving visibility. 
Then uses a pattern matching method, by 
clustering positive and negative examples, each 
in 6 representative clusters through a modified  
k-means method and using k-nearest neighbors, 
measuring for each target the distance to the 
centroids of these distributions at detection. [16] 
also uses gray levels from the scanning window 
initially, as [19]. The result is applied as input to 
a system of multiple neural networks, configured 
and specialized on certain morphological 
features specific to component elements of the 
faces (eyes, nose, mouth). [21] uses a set of 
Haar-like  features that  are computed  based on  
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the gray levels pixels within rectangular sub-
regions of various shapes, dimensions, aspect 
ratios and orientations within the scanned 
window. These features are then selectively and 
successively used in a cascade of composed 
Haar filters. 

All these methods are based on learning from 
numerous positives and negatives examples. All 
are extremely laborious and intensively 
computational in the phase of defining, 
configuring and building their knowledge base 
structures for the classifiers (multiple neuronal in 
the case of [16], cascade of simple binary filters 
based on thresholds for the Haar-like features 
configured through an AdaBoost meta-algorithm 
in the case of [21] and, respectively, cascade of 
simple similarity filters based on thresholds in 
our case). At detection [21] is the fastest one 
from all. 

All the above-mentioned methods (including 
our) automatically solve the cases of multiple 
candidates for a same face, by keeping only one 
representative candidate, as well as the cases of 
false candidates, by rejecting them. 

We referred here (only) to [16], [19] and [21] 
considering them (especially [21]) as being 
among the most significant landmarks for          
face detection. 

Other more recently reported methods [25] are 
often variations and/or extensions of [21], using 
Haar-like features or local binary patterns (LBP) 
or anisotropic Gaussian features filters with 
AdaBoost type algorithms ([2], [8], [10], [11], 
[12], [13], [20], [24]), or employ other 
techniques like support vector machine, SVM 
([2], [6], [7], [23]), Haar wavelets ([17]), 
convolutional neural networks – CNN / ConvNet 
([3]), facial landmarks models ([26]), or energy 
based methods ([14]), while (some) are still 
using portions of image scanning and pre-
processing as in [19] and/or [16]. These methods 
also demonstrate good (or promising) results, 
several not only for the frontal-view, but also for 
the multi-view case. 

6. Conclusions 

Our proposed approach based on pattern 
matching could be, more or less, comparable 
until a certain point with Sung - Poggio [19].  

Anyhow, it differs from this latter one, mainly 
through: the way the scanning of the original 
image is performed (by scaling the scanning 
window as in Viola-Jones [21], instead of 
generating a pyramid of scaled images),            
the simple averaging with no other pre-
processing involved, the multiple gradual 
representations and the similarity filters applied 
in cascade on these representations. Also,            
it differs through    the interactive,  user  guided 
supervised learning mechanism, implying an 
initial detection on the current image, followed 
by the learning of only those yet undetected faces 
(false-negatives) as positive examples, and of the 
false-positive detections as negative examples. 

Conducted experiments proved that although this 
mechanism might appear unwieldy (being 
anyhow laborious), it is oriented to efficient 
learning avoiding redundancy in the knowledge 
base. Also they showed that the pyramid of 
gradual representations that we proposed (HC, 
RBM, BM, RM), is quite appropriate to ensure a 
good generalization and discrimination at the 
same time due to independence on details while 
still reflecting the relief of the faces, as well as a 
good computational efficiency by applying the 
similarity filters with gradual complexity in 
cascade (as in [21]). 

Even if currently implemented rather as a proof 
of concept and with an incipient, only partially 
trained knowledge base, our proposed method 
and algorithm seem however to be promising and 
with potential to be further improved and 
optimized. These would possibly include: 
clusterization of the knowledge base, keeping 
only representative members for each cluster, 
separate comparisons on the upper and lower 
halves of the faces at detection, automatic 
reduction of the image dimensions when 
appropriate, training of an as complete and 
strong as possible knowledge base etc. 
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