
1. Introduction

Finite Time Stability (FTS) was introduced in

the control literature in the Sixties in [14, 35].

Since that,  FTS has  become one of  the most

fundamental  and challenging problems  of  the

nonlinear  control.  Finite-time  stability  (or

short-time  stability)  is  a  much  stronger

requirement than classical asymptotic stability.

It requires that every solution trajectory of the

studied  system reaches  the  origin  in  a  finite

time, called settling time [9]. Many approaches

were proposed in the literature to solve FTS of

nonlinear  continuous  systems.  In  [9],  a  solid

development for finite-time stability theory of

non-Lipschitzian  systems  is  provided  and

sensitivity  of  finite-time-stable  systems  to

perturbations  is  investigated.  Some  necessary

and  sufficient  conditions  for  FTS of  systems

with  the  uniqueness  of  solutions  in  forward

time  are  given  in  [25].  In  [33],  finite-time

stability and finite-time boundedness sufficient

conditions for systems with polynomial vector

fields are provided and computational method

checking developed conditions introduced.

Moreover, finite-time control and stabilization

techniques have developed, in the last decades,

an  increasing  attention  in  nonlinear  control

systems  theory  [17].  Considered  first,  in  the

literature  of  time-optimal  control,  one  of  the

main  advantages  of  the  finite-time  control

strategy, is its ability to force a control system

to  reach  a  specified  target  in  finite  time.  By

consequence,  various  theoretical  control

techniques were developed for different classes

of  nonlinear  continuous  systems.  In  this

context,  feedback  finite-time  stabilization

controllers  of  double  integrators  systems  was

considered  in  [8]  and  [19],  perturbed  double

integrator systems in [32], chain of integrators

systems  in  [27],  higher-order  controllable

systems in [18],  systems with parametric  and

dynamic  uncertainties  in  [20],  large-scale

interconnected  dynamical  systems  in  [26],

stochastic  systems  in  [36]  and  nonlinear

systems  which  can  be  represented  by  affine

fuzzy system in [23].

Although the method has potential application

to practical  discrete-time processes,  the study

of feedback finite-time stabilizing controllers of

discrete-time systems is  quite underdeveloped

and  most  of  the  results  in  the  literature  are

focused on the linear case. Actually,  feedback

finite-time  stabilizing  controllers  are

synthesized for linear perturbed systems in [2],

for uncertain linear perturbed systems in [38],

for linear time-varying systems in [1] and, for

linear systems with time-varying delay in [37].

In  the  last  few  years,  other  contributions  on

finite-time  stabilization  of  nonlinear  discrete-

time systems have been introduced in [23], for

systems  which  can  be  represented  by  affine

fuzzy system, and in [15], for a class of lower-

triangular nonlinear systems.

In  this  work,  the  finite-time  stabilization

problem for the class of discrete-time nonlinear

Lur’e Postnikov systems [24] is considered. A

procedure  showing  how  to  develop  a

compensator  ensuring  the  system  trajectories

convergence to zero, in finite sampling time, is

introduced.  Transient  behaviours  of  the
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controlled nonlinear and linearized systems are

then discussed.

This paper is organized as follows. In Section

2,  the  class  of  the  discrete-time  Lur’e

Postnikov–type systems is  introduced and the

problem  formally  stated.  In  Section  3,  the

existence conditions of a state feedback dead-

beat  controller  guaranteeing  n–FTS

convergence of the n–order linearized discrete-

time  system,  is  provided.  In  Section  4,

sufficient stability conditions for Lur’e system

are  developed  via  the  Borne  and  Gentina

stability criterion and the Benrejeb arrow form

matrix,  and  the  case  of  a  third  order  Lur’e

system  discussed.  Concluding  remarks  are

provided in Section 5.

2.  System Description and

Problem Statement

Let  consider  the  class  of  Lur’e  discrete-time

system (S) of Figure 1, where  r∈ℜ  denotes

the  reference  input,  ε(kT
s
)∈ℜ  the  control

error  at  the  instant  kTs  denoted  εk ,  Ts the

sampling  time  and  y∈ℜ  the  output  of  the

closed loop system. f (ε
k
):ℜ→ℜ  represents a

memoryless  nonlinear  valued  function,  B0  a

zero  order  holder  and  D(s)  and  N(s)

polynomials defined by

D (s)=a
0
+a

1
s+⋯+a

n
s

n
(1)

N (s)=λ
0
+λ

1
s+⋯+λ

n−1
s

n−1
(2)

Where  the  coefficients  a
i  and  λ j  for

∀ i=0,1,… , n  and  ∀ j=0, 1,…, n−1 ,  are

constant parameters such that  an   0 and  N(s)

characterizing  the  nonlinear  system  state

feedback compensator.

The introduced nonlinear discrete time system

(S) can be described by the following nonlinear

recursive scalar equation

S : εk +n+∑
i=1

n

ai
*
(ε k+ n−1 )ε k+ n−1=rk +n+∑

i=1

n

bi r k+ n−1 (3)

which, for r=0 , becomes

S :εk+n+∑
i=1

n

ai

*

(εk+n−1 )εk+n−1=0 (4)

By noting  x
i , k  the  ith component of the state

vector  x
k
∈ℜn

 at  instant  kT
s
 and  choosing

x
n , k
=ε

k  and  x
i , k+1

, ∀i=1 ,…, p  and

∀ p=2,… ,n  such that

{x1 , k+1
=−a

n

* (ε
k
)x

n , k

x p ,k+1=−an− p+1

* (εk) x n ,k+x p−1, k

(5)

the  corresponding  state  space  studied  system

description, can be written as

S : x
k+1
=A

BF
(ε

k
) x

k
(6)

where  the  instantaneous  characteristic  matrix

A
BF
(ε

k
)  is expressed in the Frobenius form as

ABF(εk)=[
0 ⋯ ⋯ 0 −an

*(εk)

1 ⋱ ⋮ −a
n−1

* (ε
k
)

0 ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 ⋮
0 ⋯ 0 1 −a

1

*(ε
k
)
⋯ (7)

The main aims of this paper is, firstly, to find a

dead-beat  controller  ensuring  the  FTS

convergence of the studied system (4) or (6) –

(7),  with a transient behavior elimination in a

finite sampling time, and, secondly, to compare

the  finite-time  stability  efficiencies  of  the

controlled studied nonlinear system with those

of the corresponding linearized one.

3. Transient  Behavior Elimination

of Linear Systems

In classical control engineering [3,  34],  dead-

beat control [13, 16, 29, 31] is considered as an

advanced control  design technique,  developed

in the context  of  finite  time stabilization and

finite  settling  time,  which  aims  to  perfectly

tracking a step reference in a finite number of

sampling periods.
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Figure 1. Lur’e discrete-time system



Definition 1. 413] A stabilizing controller of (S)

is  said  to  be  a  dead-beat  controller  if  the

tracking error ε(kT
s
)  settles down to zero in a

finite number of steps k=N
d  and ε(kT

s
)=0 ,

∀ k≥N
d

,  where  Ts indicates  the  sampling

period and Nd the settling step.

In this  section,  we provide a methodology to

design dead-beat controllers that achieve good

transient  performance  of  the  linear  discrete-

time  system defined  by  (3)  or  by  (6)  –  (7),

when  the  nonlinearity  f (ε
k
)  is  considered

constant  and  equal  to  K.  The  main  issue  to

solve  this  problem,  is  how  to  choose  the

controller  parameters  λ
i
, i=0,1,… ,n−1  of

the  polynomial  N(s)  which  guarantee  a

transient  response  elimination  in  n  sampling

time, where nTs constitutes the shortest possible

settling  time  of  a  linear  discrete-time  control

system for a given value of Ts [31].

3.1 Transient elimination in n steps

Let  consider  the  Lur’e  system  of  Figure  1

where  the  nonlinearity  f (ε
k
)  is  considered

constant  and  equal  to  K.  For  r=0 ,  the  free

system is described by the following equation

εk+n+∑
i=1

n

ai

*εk+n−1=0 (8)

such  that  a
1

*
 is  a  linear  relation  with  the

controller gains λ
j
, ∀ j=0 ,1 ,…, n−1

ai

*=bi+K∑
j=0

n−1

a j

i λ j , ∀ i=1 ,… ,n (9)

The nth linear discrete-time system (8) is said

to  be  FTC stable  in  n  sampling  time,  if  the

gains λ
j
, ∀ j=0 ,1 ,… ,n−1  are synthesized,

such that  εk+n  settles down to zero in n steps,

that’s equivalent to setting [10, 29, 31]

a
i

*≡0 ∀ i=1 , 2 ,… ,n (10)

By solving the system equations (8) it  comes

the parameters of the state feedback control law

characterized by N(s) which guarantees the  n–

time convergence to zero of the state variables.

3.2 Case of a third order system

3.2.1 System description and analysis

To show the interest of the proposed approach, 

let consider the third order linear closed loop 

discrete-time system (SL) such that f (.) = K and

D(s)=s(1+ τ
1
s)(1+ τ

2
s) (11)

N (s)λ
0
+λ

1
s+λ

2
s (12)

Where  τ1,  τ2,  λ0,  λ1 and  λ2 are  constant

parameters. The system is described by

S
L
: ε

k +3
+a

1

*ε
k+2
+a

2

*ε
k+1
+a

3

*ε
k
=0 (13)

Expressions of the coefficients a
3

*
, a

2

*
 and a

1

*

are given, respectively by (14),  (15) and (16)

for f = K.

a
3

*=(τ
2
−τ

1
)−1×e

−T s (τ1−τ2)
τ1 τ2 ×

×(τ1−τ2− f λ0 (τ1

2−τ2

2−τ1

2
d 1

−1+ τ2

2
d 2

−1)+

+ f λ1( τ1−τ2−τ1 d 1
−1+τ2 d 2

−1)+

+ f λ
2
(d

1

−1−d
2

−1)−T
s

f λ
0
( τ

1
−τ

2
) ) (14)

a2
*= f×((d1−1d2−1)(τ2−τ1))

−1

×(
λ0 τ1

2(1−d1
−1+d2

−1−d 1
−1
d2
−1)

−2λ2d 1
−1−λ0 τ2

2(1+d1
−1−d2

−1

−d 1
−1
d2
−1 )

+2λ
2
d
2

−1+τ
1(λ1(

d1
−1−d2

−1

+d
1

−1
d
2

−1−1)
+T s λ0 (d 1

−1+d
2

−1)

−d
1

−1−d
2

−1−1
)

+τ2(λ1 (d1
−1−d

2

−1−d
1

−1
d
2

−1+1)

−T sλ0(d1
−1+d

2

−1)

+d1
−1+d2

−1+1 ) ) (15)

a1
*=(d1−1d2−1( τ2−τ1))

−1
×

×(
f λ

0(d2
−1(d

1

−1−d
2

−1) τ
1

2+

+d
1

−1(1−d
2

−1) τ
2

2 )+
+τ1(d 1

−1+d2
−1+d1

−1
d2
−1+

+ f λ1d2
−1 (1−d1

−1)−

−T s f λ0d 1
−1

d
2

−1 )−
−τ

2(d2
−1+d1

−1+d1
−1
d2
−1+

+ f λ1d1
−1(1−d 2

−1)−

−T s f λ0d1
−1

d2
−1 )+

+ f λ
2
(d

1

−1−d
2

−1)

) (16)

with d1
−1=e

T s

τ1  and d2
−1=e

T s

τ2 .

A state space description (SL) associated to the

linear  system  (8)  with  (14)  –  (16)  and
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developed in the Fobenius canonial form, can

be introduced as

S L:[ zk+1wk+1
ε k+1

⋯=[0 0 −a3
*

1 0 −a
2

*

0 1 −a
1

*⋯[ z k

wk

ε k
⋯ (17)

By applying  (10),  setting  ai

*=0 , ∀ i=1 ,2 ,3
and choosing λ

0
=1 , the transient behaviour of

the closed loop system (13) with (14) – (16) or

(17) is eliminated in three sampling periods for

K, λ1 and λ2 defined, respectively, by

K=(T s(1−d1)(1−d2))
−1

(18)

λ1=τ1+τ2−T s

(d
1
+d

2
−d

1
d
2
)2−d

1
d
2

(1−d 1)(1−d 2)
(19)

λ2=τ1 τ2−T s

τ
1
d
2

3(1−d
1
)2−τ

2
d
1

3(1−d
2
)2

(d1−d 2)(1−d 1)(1−d 2)
(20)

with d1=e
T s

τ1  and d2=e
T s

τ2 .

Equations (18) – (20) characterize solutions to

the  FTS  problem for the third order nonlinear

plant (SL).

3.2.2 Simulation results

The plant (SL) is used for simulations where the

constant  times  system  are  chosen  to  be

τ
1
=0,1 s  and τ

2
=0,05s , the sampling period

T s=0,2 s  and  the  initial  conditions

x
1
(0)=0,1 ,  x

2
(0)=0,011  and

x
3
(0)=−0,073 .  Satisfaction  of  the  FTS

conditions  (18)  –  (20)  is  accomplished  by

making  the  static  gain  K  and the  dead-beat

controller gains λ1 and λ2, respectively equal to

K=K FTCS=5,89 (21)

λ
1
=0,14 (22)

λ
2
=0,48 × 10−2 (23)

The  system  with  the  given  controller

parameters  is  asymptotically  stable  for  the

sector domain D1, defined by

D
1
={K ∣ 0,2 × 10−3 < K < 10,35 } (24)

as shown in Figsures 2, 3 and 4. With the same

control  law (12) with (22) – (23),  the system

dynamics,  for  K=K
FTCS ,  are  presented  in

Figure  2  and,  for  K=4 ,  in  Figure  4.

Simulations results for K=K FTCS  
highlight the

three-sampling-time  stability  convergence

(0,6s)  of  (SL),  as  depicted  in  Figure  2.  By

varying K in D1, the system transient behaviour

becomes more important than for the particular

case K=K FTCS . Comparing results of Figure 2

with those of Figure 4,  one can note that the

stability convergence is obtained for a number

of sampling times m, m > 3.
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Figure 2. System dynamics for: K=K
FTCS
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Figure 4. System dynamics for K = 4



4. Stability Convergence Conditions

for Nonlinear Systems

Most  of  stability  results  of  nonlinear  Lur’e

Postnikov  systems  focused  on  frequency

analysis: absolute stability [24], Popov criterion

[28]  and circle  criterion [21].  In  this  section,

stability  conditions  for  the  Lur’e  Postnikov

systems (6) – (7) are developed using the Borne

and  Gentina  stability  criterion  [10-12]

(Appendix)  and  the  Benrejeb  arrow  form

matrix [4-7]. Moreover, a stabilizing dead-beat

controller for the nonlinear studied system (4)

or (6) – (7) exploiting the controller parameters

of the linearized system (13) with (14) – (16) or

(17) is proposed.

4.1 Lur’e system stability analysis

Let (S) be a Lur’e-type system of the form (4)

or (6)-(7), a j
,∀ j=1 ,2 ,…,n−1 ,a

i
≠a

j
,∀ i≠ j

be distinct arbitrary constant parameters and βj,

γj and  γn be parameters expressed respectively

by [4-7].

β j=∏
k=1
k≠ j

n−1

(α j−α k)
−1

,∀ j=1,…, n−1 (25)

γ
j
(.)=−P

ABF

(. ,α
j
) ,∀ j=1 ,… ,n−1 (26)

γ n(.)=−a1(.)−∑
i=1

n−1

α i (27)

PABF

(. ,λ)  is  the  instantaneous  characteristic

polynomial such that

PABF
(. ,λ)=λn+∑

i=1

n

ai(.) λ
n−1

(28)

By applying  the  Borne  and Gentina  practical

stability criterion [11, 12] to the discrete Lur’e

type system (4) or (6) – (7) characterized by the

Benrejeb arrow form matrix [4-7], it comes the

following theorem [30].

Theorem.  The  Lur'e  Postnikov  discrete-time

system  (S)  (4)  or  (6)  -(7)  is  asymptotically

stable, if there exists constant parameters  α i ,

∀ i , j=1 ,2 ,…, n−1, α i≠α j ,∀ i≠ j  and

ε >0  such  that  ∀ xk∈D⊂ℜn
,  the  following

conditions are satisfied

|α i|<1 , ∀ i=1 ,… , n−1 (29)

1−|γ n( .)|−∑
j=1

n−1

|γ j (.)||β j|(1−|α j|)
−1
≥ε (30)

If D=ℜn
, the stability is global.

Proof. Let consider the Lur’e type system (S) of

the state representation form (6).  A change of

coordinate  defined by  yk=Txk  with  y
k
∈ℜn

and T∈ℜn×n
 inversible, defined by

T=[
0 0 ⋯ 0 1

1 α 1 ⋯ α 1

n−2 α 1

n−1

⋮ ⋮ ⋯ ⋮ ⋮
1 α n−1 ⋯ α n−1

n−2 α n−1
n−1⋯ (31)

leads to the following state space description

yk+1=AF (.) yk (32)

where AF(.) is an arrow form matrix given by

AF (.)=[
γ n(.) β

1
⋯ β n−1

γ 1(.) α 1

⋮ ⋱
γ n−1(.) α n−1

⋯ (33)

and βi, γj, γn and αi, ∀ i=1 ,2 ,⋯,n−1  defined

respectively in relations (25) – (27) with (28). A

pseudo-overvaluing  matrix  M(AF(.))  of  (32),

corresponding  to  the  use  of  the  vector  norm

p ( y k)=[|y1, k|,|y2 , k|,⋯,|y n,k|⋯
T

 with

yk=[ y1 ,k , y2 ,k ,⋯ , yn ,k ⋯
T

,  for  the  stability

study, such that [12]

p ( y k+1)≤M (AF (.))p ( yk) (34)

leads to the following comparison system

zk+1=M ( AF (.)) zk (35)

M (A F)=[
|γ n( .)| |β

1
| ⋯ |β n−1|

|γ 1( .)| |α 1|

⋮ ⋱
|γ n−1 (.)| |α n−1|

⋯ (36)

with M (A F(.))∈ℜ
n×n

, zk∈ℜ
n

 and z
0
=p ( y

0
) .

Since  the  nonlinearities  of  the  comparison

nonlinear system (35) are isolated in one row of

M (A F(.)) ,  stability  conditions  are,  then,

deduced  by  applying  Borne  and  Gentina

stability criterion

(I n−M (AF (.)))=(1 2 ⋯ h

1 2 ⋯ h)>0
∀ h=1 ,2 ,…,n

(37)

This completes the proof.

Corollary.  If  there exists  constant  parameters

ε >0  and  α j
∈ℜ, 0<α

j
<1 ,α

j
≠α

k
,∀ j≠k ,
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j , k=1 ,⋯,n−1  such  that  δ n( .)>0  and

γ j (.)β j>0 ,∀ j=1 ,…, n−1 ,  then,  the

nonlinear discrete time system (S) (4) or (6) –

(7)  is  asymptotically  stable  if  the  following

condition is satisfied

Ps (. ,λ)|λ=1≥ε (38)

Proof.  If  there  exists  constant  parameters

α j∈ℜ, 0<α j<1 , α j≠α k , ∀ j≠k ,  and

j , k=1 ,…,n−1  such  that  δ n(.)>0  and

γ j (.)β j>0 , ∀ j=1 ,…, n−1 ,  then,  the

comparison system (35) – (36) is  identical  to

the system itself.  Linear  Aizerman conjecture

is,  consequently,  satisfied.  In  this  case,  by

substituting (25) – (27), stability condition (30)

of (S) becomes

{1+a1 (.)+∑p=1
n−1

α p+

+∑
p=1

n−1
1

1−α p
((λ−α p)P s(, . λ)

Q(λ) )
λ=α p

}>0 (39)

where Q(λ)  is defined by

Q(λ)=∏
p=1

n−1

(λ−α p) (40)

Now, observing that,

PS (. ,λ)

Q(λ )
=λ+a1(.)+∑

p=1

n−1

α p+

+∑
p=1

n−1
1

λ−α p (
(λ−α p)PS (. ,λ)

Q (λ) )
λ=α p

(41)

stability condition (39) is, then, equivalent to

PS (. ,λ)

Q(λ) |
λ=1
>0 (42)

or equivalently to

PS (. ,λ)|λ=1>0 (43)

That ends the corollary proof.

4.2 Finite time stability: Case of a third

order Lur’e system

We reconsider the nonlinear Lur’e third order

system presented  in  the  previous  section  and

introduced in Figure 1 with (11) and (12). The

system  can  be  described  by  the  following

recursive equation

S :ε k+3+a1
*(ε k+2)ε k+2+

+a
2

* (ε k+1)ε k+1+a3
*(ε k)ε k=0

(44)

where the expressions of the parameters a
3

*(.)

,  a
2

*( .)  and  a
3

*(.)  depending  on  the

nonlinearity f are defined respectively by (14),

(15) and (16). By using (5), it comes the state

space representation

S :[ zk+1w k+1
ε k+1

⋯=[0 0 −a3
*(ε k)

1 0 −a
2

*(ε k)

0 1 −a
1

*(ε k)
⋯[ zkwk

ε k
⋯ (45)

The dead-beat control for the linearized model

(SL)  (13) will,  in  reality,  be  applied  to  the

nonlinear  model  (S)  (44),  which  includes

property  modifications.  The  effects  of  this

choice  on  the  FTS  property  of  the  resulting

feedback  system are  to  be  investigated.  This

investigation will be simplified by representing

the nonlinearity around uk=K FTCSε k .

For the defined system constants time and the

synthesized controller parameters  (λ0 ,λ1 ,λ2) ,

the state matrix ABF(.) of (45), expressed in the

Frobenius form, is such that

ABF(.)=[0 0 0,24×10−2−0,50×10−3 f (ε k )

1 0 −0,15+0,26×10−1f (ε
k
)

0 1 1,15−0,19 f (ε k)
⋯ (46)

Now, using the transformation (31)  – (35)  to

(45) with  α
1
=0,14  and  α

2
=0,02  satisfying

(29), the new state matrix of (44) or (45) – (46)

is in the Benrejeb arrow form as following

AF (.)=[ 0,99−0,19 f (ε k)

0,50×10−3−0,60×10−3 f (ε k)

−0,20×10−3−0,30×10−4 f (ε k)

8,33 −8,33
0,14 0

0 0,02 ⋯
(47)

Stability condition of (S) characterized by (44)

or  (45)  –  (46),  deduced  from the  developed

Theorem, is then

{
1−|0,99−0,19 f (ε k

)|−
−9.68×10−3×|0,50−0,6 f (ε k)|−
−8.5×10−3×|−0,02−0.03×10−1 f (ε k)|}>0

equivalent to

D
2
:0,30×10−3< f (.)<9,88 (48)

For purposes of comparison with the linearized

system  (SL)  behaviour,  let  consider  the

nonlinear  function  f (ε k)=c
1 (ε k+c2sin(ε k)

p )
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and  study  the  influence  of  the  constant

parameters c1, c2 and p, on the elimination time

of the transient. Three cases are introduced in

Table 1.

Table 1. Parameters definition of f (ε k)

c1 c2 p

Case 1 4 0.5 2

Case 2 5.89 0.5 2

Case 3 5.89 0.7 5

The responses of the system, with the cases 1, 2

and 3 of f (ε k) , are shown for initial values of

x(0)=[0.1, 0.011, −0.073 ⋯T  in, respectively,

Figures 5, 7 and 9. As shown in cited Figures,

f (ε k)  is in the sector characterized by (48) for

all considered cases. The corresponding system

controller  stabilizes  the  Lur’e  system  (S)  as

illustrated in Figures 6, 8 and 10. For case 1,

(S) remains stable but looses the proper of three

sampling period convergence to zero, as shown

in Figure 6.  For cases 2 and 3,  the nonlinear

functions  vary  around  the  line  uk=K FTCSε k

and  the  transient  behaviour  is  eliminated  in

three sampling periods, as shown in Figures 8

and 10. Figure 11 compares the response of the

linearized  and  nonlinear  (case  2)  systems.

When  uk is around  KFTCSε k ,  the (SL) and (S)

responses  are  nearly  identical.  Else,  the

responses are significantly different, the system

is FTS in n+m  step times with m>0 .
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Figure 5. Nonlinear function - Case 1
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Figure 6. System dynamics - Case 1
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Figure7. Nonlinear function- Case 2
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Figure 8. System dynamics - Case 2
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Figure 9. Nonlinear function - Case 3
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Figure 10. System dynamics - Case 3
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Figure 11. Linearized and nonlinear (Case2)

System dynamics

5. Conclusion

The design approach considered in this paper,

is based on specifying an  n–FTS behavior for

the  Lur’e  type  nonlinear  systems  via  the

linearized  system  dead-beat  controller.

Although,  this  does  not  guarantee  an  n–FTS

behavior  in  general  case,  linearization

approaches  have  proved  successful  in  many

practical situations in literature. Validity of the

proposed method was illustrated with success

via an example of a third order Lur’e system.

Appendix

Definition 2.  (Vector Norm)  Let  E=ℜn
 be a

vector space and E
1
, E

2
,⋯, Ek  subspaces of E

which verify:  e=E
1
∪E

2
∪⋯∪Ek .  Let  x∈E

be an n vector defined on E with a projection in

the  subspace  Ei denoted  by  xi , xi=Pi x ,

where Pi is a projection operator from E into Ei.

Let pi be a scalar norm (i=1 ,⋯ ,k)  defined on

the  subspace  Ei pi (x):ℜ
n→ℜ

+

k
 and  p(x)

denotes the vector  norm of  dimension  k  with

p (x )=[ p1T( x ) p2
T (x ) … pk

T (x )⋯
T

.

Kotelyanski Lemma 422]. The real parts of the

eigenvalues of matrix  A, with non negative off

diagonal elements, are less than a real number

 if  and  only  if  all  those  of  matrix

M=μ In−A  are positive, with In the n identity

matrix.  When  successive  principal  minors  of

matrix  (–A)  are  positive,  Kotelyanski  lemma

permits to conclude on stability property of the

system characterized by A.

Borne  and  Gentina  practical  stability

criterion 411,  12].  Let  consider the nonlinear

discrete system

zk+1=A(.) z k (49)

and  the  overvaluing  matrix  M (A(.))∈ℜn×n

associated  to  the  use  of  the  vector  norm  pz

defined  by  p z=[|z1,k|,|z2 ,k|,… ,|zn ,k|⋯
T

 with

zk=[ z1 , k , z2, k ,…, z n,k ⋯
T

 and such that

M (A(.))={|a j, k|}, ∀ j , k=1 ,⋯,n (50)

If  the nonlinearities are isolated in either one

row or one column of  M(A(.)), the verification

of  the  Kotelyanski  condition  enables  to

conclude to the stability of the original system

characterized by A(.).

The system (49) is asymptotically stable if all

successive principal minors of  (I n−M (A (.)))
are positive.
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