
1. Introduction

Heuristic algorithms have been applied on a
variety of problems in operations research and
logistics for more than 50 years now. They
have been shown to be very effective in dealing
with complex problems that cannot be solved to
optimality by traditional techniques such as
mathematical programming. This is because
mathematical programming methods often fail
as the optimisation problem gets larger (i.e.
more decision variables are involved).

Two well-known heuristic local search
algorithms that have been applied on this kind
of complex optimisation problems are Tabu
Search [15] and Simulated Annealing [20, 21,
27]. In this paper we study the performance of
these two heuristic algorithms when solving a
complex problem arising in logistics called
vehicle routing problem (VRP) with
simultaneous pickup and delivery and time
windows (VRPSPDTW).

Tabu Search algorithm has been used to
approximately solve a range of combinatorial
optimisation problems [5, 10, 23]. It has been

shown to be a very simple, yet effective,
method to approximately solve large and
complex combinatorial optimisation problems
such as the one we address in this paper. Just as
Tabu Search, Simulated Annealing has also
been considered to approximately solve a
variety of optimisation problems (see for
instance [3, 17, 24, 36]).

In this paper we implement both Tabu Search
and Simulated Annealing algorithms and apply
them on the VRPSPDTW. We then compare
the results obtained by each technique.

One difficult we face when solving routing
problems by means of local search algorithms
is that neighbours of the current solution are
often not feasible. Thus, we need to restore
such neighbours so they become feasible. In
this paper we propose a generic restoration
strategy in the aim of making both local search
algorithms to perform more efficiently. It is
important to note that the restoration strategy
we propose in this paper is directly applied on
the local search algorithms. Thus, it can be seen
as a generic strategy that can be included in any
local search algorithm other than Tabu Search
and Simulated Annealing.

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 411

Comparing Two Heuristic Local Search Algorithms for a

Complex Routing Problem

Pablo CABRERA-GUERRERO1*, Andrés MOLTEDO-PERNETTI2,

Enrique CABRERA3, Nernando PAREDES4

1 Pontificia Universidad Católica de Valparaíso,
Av. Brasil 2241, Valparaíso, 2362807, Chile,
pablo.cabrera@pucv.cl (*Corresponding author)

2 Escuela de Psicología, Universidad Santo Tomás,
Los Limonares 190, Viña del Mar, 2561694, Chile,
andresmoltedo@santotomas.cl

3 CINFAV, Universidad de Valparaíso,
Blanco 951, Valparaíso, 2362905, Chile,
enrique.cabrera@uv.cl

4 Escuela de Ingeniería Industrial, Universidad Diego Portales,
Manuel Rodríguez Sur 415, Santiago, 8370109, Chile,
fernando.paredes@udp.cl

Abstract: Vehicle routing problems (VRP) have been widely studied in literature. Heuristics as well as exact algorithms
have been applied to solve this kind of problems. In this study we approximately solve the VRP with simultaneous pickup
and delivery and time windows by means of two well-known heuristics namely Tabu Search and Simulated Annealing.
We compare the obtained results and then propose a restoration technique that allows both Tabu Search and Simulated
Annealing to better explore the solution space. Results show that the proposed restoration technique allows both heuristic
algorithms to obtain better results.

Keywords: Tabu Search, Simulated Annealing, Reverse Logistic, Restoration Techniques.

This paper is organised as follows. In next
section both Tabu Search and Simulated
Annealing algorithms are described and their
main features are highlighted. In Section 3 the
VRPSPDTW problem we address in this paper
is introduced. The mathematical formulation
for this problem is presented at the end of this
section. In Section 4 we introduce the
restoration technique that is used within both
heuristic algorithms. In Section 5
computational experiments performed in this
paper are presented. In this section we discuss
how the restoration technique helps both local
search algorithms to better explore the solution
space. Finally, in Section 6 some conclusions
are drawn and future work is outlined.

2. Local Search Algorithms

2.1 Simulated annealing

Simulated Annealing is a local search heuristic
algorithm that is inspired by thermodynamic
systems. The algorithm takes concepts such as
energy, state and temperature from
thermodynamic and adapts them to fit within
optimisation framework. Simulated Annealing
needs the following parameters to work: the
initial temperature t0 , the maximum number
of iterations the algorithm can perform,
maxIter and the parameter α , which is part

of the annealing schedule. The SA algorithm
begins with a solution s

current , also called state,
that can be either randomly generated or user-
provided. After that, a neighbour solution
s

k
∈ℜ(s

current
) is generated, where

k <maxIter denotes the current iteration and
ℜ(⋅) returns the neighbourhood of a solution.

Once a neighbour is chosen from the
neighbourhood, we compute its cost and
observe the change in objective function values
when moving from s

current to s
k ,

Δ E=cost(s
k
)−cost (s

current
) . If Δ E<0 then

the neighbour s
k is set as the new current

solution, s
current . If Δ E≥0 then the neighbour

solution s
k is accepted with a probability

P (Δ E)=e

−Δ E

tk (1)

It is clear that acceptance probability P (Δ E)
depends on the temperature parameter t

k

which usually varies over the algorithm
execution. As the temp variable cools down,
worst solutions are no longer accepted, which
provokes that the algorithm converges to a

locally optimal solution. The variable temp

cools down according to an annealing

schedule. In this paper we use the following
annealing schedule

temp
k
=αtemp

k−1 (2)

with α in the range [0,1] . Other annealing
schedules can be found in [20, 26, 38]. The
algorithm ends when either no further
improvements can be made or the maximum
number of iterations maxIter is reached.
Algorithm 1 shows the Simulated Annealing
algorithm that is implemented in this paper.

Algorithm 1: Simulated Annealing

Input: maxIter , t0 , t
max ;

Output: s
best

1 begin

2 s
current

= initSol();

3 s
best

=s
current ;

4 k =0 ;

5 whiie k <maxIter do

6 s
k = selectSol(ℜ(s

current
));

7 Δ E=cost (s
k
)−cost (s

current
) ;

8 if Δ E<0 then

9 s
current

=s
k ;

10 if cost (s
k
)<cost(s

best
) then

11 s
best

=s
k ;

12 eise

13 t
k = calcTemp(k , t , t 0 ,α);

14 P (Δ E)=e
−Δ E/ tk ;

16 if P (Δ E)>rand () then
17 s

current
=s

k ;

18 End

19 end

20 k =k +1 ;

21 End

22 end

23 end

2.2 Tabu search

Tabu Search is a heuristic local search algorithm
that implements adaptive memory structures
[15]. Since Tabu Search algorithm is a local
search, neighbourhood movements must be
performed to explore the search space. Also,
Tabu Search needs a set of parameters to work.
The divThreshold parameter is the
diversification threshold. This parameter allows
Tabu Search to move out from regions where
solutions’ quality is low and “jump” to new
regions where high quality solutions are
expected to be found. In this paper a restart
method is used to diversify the search. This

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016412

restart method keeps the best solution found by
the algorithm before the restart. The tabuSize

parameter is the length of the list of movements
that are banned by the algorithm that is called
tabu list. The tabu list, is a short-term memory
where the last tabuSize neighbourhood moves
done by the algorithm are stored. Once the tabu
list is full, every time a new movement is added
to the list, another movement is removed from
the list, so the number of movements labelled as
tabu is always equal to tabuSize . Although the
tabu list is very useful to avoid getting trapped
into a loop of movements, some strategies must
be considered to avoid missing good quality
solutions. One strategy Tabu Search implements
is the aspiration criterion. The aspiration
criterion allows that a movement from the tabu
list can be considered only if the objective
function value of the resulting solution is better
than the best solution value found so far by the
Tabu Search algorithm. The aspiration criterion
ensures that no good quality solutions are
missed because of applying the tabu list. Further,
Tabu Search implements a frequency list which
tracks how often a neighbourhood move has
been used. Knowing which movements have
been applied in previous iterations helps the
algorithm to move into not-well-explored
regions of the search space.

The TS algorithm begins with a solution s
current

that can be either randomly generated or user-
provided. This initial solution s

current is set as
the best solution (s

best). A list of candidate
solutions from the neighbourhood of s

current ,

ℜ(s
current

) , is then generated. Size of the list

of candidates is equal to listOfCandidates

parameter. The best solution from ℜ(s
current

) ,

is then selected and set as the new s
current . If

the new s
current is in the tabu list, then it will

not be considered unless its cost is less than the
cost of s

best (aspiration criterion). Each time
s

current is updated, the associated movement is
added to the tabu list and the movement that
has been in the tabu list for tabuSize iterations
is removed from the list. If
cost (s

current
)<cost (s

best
) then s

best is updated
and the noImprovement counter is reset.
Otherwise, noImprovement counter is
updated. The Tabu Search algorithm ends after
the number of iterations is equal to maxIter .
Algorithm 2 presents the Tabu Search
algorithm that is implemented in this paper.

3. The VRPSPDTW

In this section we first present a brief overview
on the VRPSPDTW problem we address in this
paper. Then, the mathematical model of the
VRPSPDTW is introduced.

Many research articles addressing different
vehicle routing problems can be found in the
literature (see [6] for a recent survey on VRP).
Since the first academic paper addressing the
VRP in late 50’s [11], many optimisation
problems based on the simplest version of the
VRP have been proposed [32]. One of these
problems is the VRPSPD. The VRPSPD was
firstly introduced by Min in [28]. Since then,
many authors have proposed different strategies
to (approximately) solve the VRPSPD problem
[1, 4, 8, 9, 13, 22, 31]. Tabu search as well as
simulated annealing have also been considered
to solve the VRPSPD [35, 39].

One optimisation problem that result of adding
time windows constraints to the VRPSPD

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 413

Algorithm 2: Tabu Search

Input: maxIter , divLim , tabuSize ;

Output: s
best

1 Begin

2 k=0;

3 s
current =initSol();

4 s
best

=s
current ;

5 whiie k <maxIter do

6 s
k
=best (ℜ(s

current
)) ;

7 whiie s
k
∈tabuList do

8 if cost (s
k
)<cost(s

best
) then

9 remove s
k from tabuList ;

10 Eise

11 remove s
k from ℜ(s

current
) ;

12 s
k
=best (ℜ(s

current
)) ;

13 end

14 end

15 updateTabuList (s
current

, s
k
, tabuSize) ;

16 s
current

=s
k ;

17 k =k +1 ;

18 if cost (s
current

)<cost (s
best

) then
19 s

best
=s

current ;

20 noImprovement=0 ;

21 end

22 noImprovement=noImprovement +1 ;

23 if (noImprovement>divLim) then
24 s

current =initSol();

25 end

26 End

27 End

problem is the VRPSPDTW we address in this
paper. Although less studied than the VRPSPD
problem, this problem is very important in
reverse logistics. Swarm intelligence [14, 16,
18] as well as local search algorithms [19, 25,
29, 37] have been used to approximately solve
this problem. Exact algorithms have also been
presented to solve the VRPSPDTW. For
instance, a branch-and-price algorithm is
presented in [2]. The authors claim that this is
the first exact algorithm to solve the
VRPSPDTW. Only small instances can be
solved using this technique though.

Authors in [12], [30] and [35] proposed three
different models for the VRPSDP. Particularly,
the author in [12] modelled the VRPSPD as
part of the reverse logistics process. In this
paper we extend the VRPSPD model presented
in [12] and present a model for the
VRPSPDTW we solve in this paper.

Table 1 shows the parameters we consider in
this paper.

Table 1. Parameters of the VRPSPDTW

Parameter Value

Max number of vehicles (m) 10;25

Vehicles capacity (L) [100,350]

Number of customers (n) 25;50;100

v x y d p t
min

t
max

t
s

0 x0 y0 -- -- -- -- --

1 x1 y1 d 1 p1 t
min

1
t

max

1
t

s

1

2 x2 y2 d 2 p2 t
min

2
t

max

2
t

s

2

… … … … …

N x
n

y
n

d
n

p
n t

min

n
t

max

n
t

s

n

In the VRPSPDTW a set of customers C must
be served for a fleet of vehicles we denote by
V . Each customer i∈C has its own delivery

and pick-up demands, denoted by d
i and p

i ,
respectively, with i=1 ,… ,n ; indexing
customers in C . We assume that both,
delivery and pick-up demands are served by the
same vehicle v=1 ,… ,m and at the same
time. A vehicle v∈V can serve one or more
customers and it always starts and ends in a
central depot we call O . Thus, the problem
consists on finding a set of routes for the
vehicles in the fleet that minimises the total
distance covered by the vehicles while ensuring
that all customers’ demands are served
considering time windows constraints. Routes
are represented by a binary decision variable

x
ijv such that x

ijv
=1 if the customer j is

visited immediately after customer i by
vehicle v ; x

ijv
=0 otherwise.

As mentioned before, in this paper we also
consider time windows. Time windows
constraints ensure that the service for customer
i starts within a pre-defined period of time
[t

min

i
, t

max

i] . Each service (delivery + pick up)
takes t

s

i time units and it does not depend on
the vehicle that provides the service. We
assume that a service can finish after t

max

i .
Another distinctive feature of the VRPSPDTW
is that we have to make sure that the vehicle
capacity is never violated during the entire
route. To do this, we need, first, to define the
initial load a vehicle v has after leaving the
depot. This initial load is defined as follows

l0
v=∑

i=0

n

∑
j=1

n

xijv d j (3)

We then define the vehicle load after visiting a
customer in its route as

l j

v≥{l0
v−d

j
+ p

j
∀ j∈C , v∈V ;if x0 jv

=1

l i

v
−d j+ p j ∀ i , j∈C ,v∈V ;if x ijv=1

(4)

Equation (4) says that in route load of a vehicle
v∈V is equal to the load of the vehicle after

serving the previous customer i (or after
leaving the depot in case customer j is the
first customer in the route of vehicle v) minus
the items that are left to customer j (d

j) plus
the items that are picked up from the same
customer (p

j). It is clear that if

l
j

v >L (5)

the route becomes infeasible. To ensure that
each customer is served exactly once, we make

∑
i=0

n

∑
v=1

m

xijv=1 ∀ j∈C (6)

Also, we need to make sure that a customer is
served by the same vehicle.

∑
i=0

n

xihv=∑
j=0

n

x hjv ∀ h∈C ,v∈V (7)

Moreover, we need to make sure all vehicles
start from the depot

∑
j=1

n

x0 jv=1 ∀ v∈V (8)

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016414

Regarding time windows, three constraints are
considered in this paper

st
j≥{st

i+t
s

i+T
ij
∀ i , j∈C , v∈V ;if x

ijv
=1

0 Otherwise
(9)

st
j≤tmax

j ∀ j∈C (10)

st
j≥tmin

j ∀ j ∈C, (11)

where st
j is the starting time for serving

customer j , and T
ij is the travel time

between customers i and j . Equation (9)
ensures that there is enough time to serve a
customer i and to travel to the next customer
j before serving it. Equation (10) ensures that

service of customer j will not start after t
max

j .
Similarly, Equation (11) ensures that service of
customer j will not begin before t

min

j .

The VRPSPDTW problem we solve in this
paper is then

min∑
i=0

n

∑
j=0

n

∑
v=1

m

Dij xijv (12)

subject to Equations (3) to (11).

As mentioned in the introductory section of this
paper, two local search algorithms are used to
solve the VRPSPDTW, namely Tabu Search
and Simulated Annealing. One issue that local
search algorithms face when solving this
problem is that resulting neighbours are not
always feasible making the search in the
solutions space less effective. For this reason,
in this paper we propose a restoration technique
that helps to fix neighbours that are not
feasible. We explain the restoration technique
in the next section.

4. Restoration Technique

After all customers are assigned to a vehicle,
we need to make sure that feasible routes can
be constructed using the current assignation.
Finding the optimal route for each vehicle is a
simple task that can be done by using
mathematical programming methods, as long as
not many customers are involved. In spite of
that, we observe that routes in the
neighbourhood of a feasible route are,
sometimes, not feasible. Thus, we can either
look for a feasible neighbour or repair the
infeasible neighbour. In this paper we choose to
repair those neighbours that are not feasible.
The restoration phase we propose in this paper

consists on a sequence of 2-opt movements
between those customers that violate time
windows constraints and/or load capacity
constraints. We exchange those conflicting
customers among infeasible routes until a
feasible route is found. Figure 1 shows an
example the restoration phase proposed here.

(a) Vehicle route example. Two infeasible routes are
considered. Conflicting customers are identified

(customers 2 and 5).

(b) Vehicle route example – restoration phase. A 2-
opt like movement is performed between conflicting

customers 2 and 5. One of the obtained routes
becomes feasible. We then focus on the “new”

infeasible route and optimise it.

Nigure 1. An example of the restoration phase.
Using 2-opt like movements among customers from
infeasible routes we obtain routes that are feasible.

As we can see in Figure 1, two vehicle routes are
infeasible. Then, we first exchange those
“conflicting” customers from each route. For the
example in Figure 1, we exchange customers 2
(from route 1) and 5 (from route 2). After doing
this, we optimise the route using mathematical
programming methods and see if the resulting
routes are feasible. For the example in Figure 1,
both routes result in feasible routes and no more
changes are needed.

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 415

Algorithm 4 describes the restoration technique
proposed in this paper.

Algorithm 4: Restoration Techniqre

 Inprt: A set of infeasible rortes Ρ
1 Begin

2 For each ρ∈Ρ
3 Θ

ρ
Identify Conflicting Crstohers(ρ);

4 Θ=Θ≥Θ _ ρ
5 End

6 While (Ρ is not ehpty)

7 For each ρ∈P

8 If ρ is not feasible then

9 θ= Randoh (Θ _ ρ)
10 θ '= Randoh (Θ ∖ {{θ }≥{Θ _ ρ})
11 ρ= UpdateRorte(ρ , θ , θ ')

12 optihise(ρ)

13 Else

14 Ρ=Ρ∖ {ρ}
15 End

16 End

17 End

20 End

In the next section we present the obtained
results after applying both Tabu Search and
Simulated Annealing to the VRPSPDTW.

5. Computational Experiments

As proposed in [2], the set of solutions used to
test our algorithms is based on the Solomon's
instances for the VRPTW [33]. Here, we
assume that values given in Solomon's
instances corresponds to the delivery demands
d

i , i=1 ,… ,n ; and pick-up demands p
i ,

i=1 ,… ,n , are as follows

pi≔ {(1−α)d
i

if i is even ;

(1+α)di if i isodd

where 0≤α≤1 . This new set of instances is
similar to the one in [18]. Unlike in [18], in
this study we only consider instances where
customers are organised in clusters.
Parameters for both Tabu Search and
Simulated Annealing are as in Table 2.
Parameters values in Table 2 were obtained
after a trial and error process and, thus, might
not be the best values for other instances.

Table 3 shows the set of instances that are
considered in this study. The number of
vehicles ranges from 5 to 7 and the number of
customers ranges from 31 to 48. The
maximum load capacity of a vehicle is set to
200 product units.

For each instance both algorithms are applied
and the obtained results are presented in Tables
4 and 5. In general, Tabu Search tends to find
solutions that are better in terms of cost.
However, Tabu Search takes longer to converge.
This is because it needs to call the restoration
module more often, as more neighbours needs to
be generated at each iteration.

Table 4. Results obtained by Simulated Annealing
with restoration strategy

Instance

VRP

Opt SA II

Time

(sec)

SA II

%GAP

Spdtw1 672 682.39 1.156 1.54
Spdtw2 784 832.96 1.078 6.24
Spdtw3 669 685.14 1.031 2.41
Spdtw4 805 819.11 0.750 1.75
Spdtw5 742 770.87 1.062 3.89
Spdtw6 1073 1158.17 1.921 7.93

Table 4 shows the results obtained by the
Simulated Annealing algorithm with the
restoration strategy (SA II). As expected,
solutions for the VRPSPDTW has a cost higher
than the best solution of the corresponding
VRP. The cost of the solutions the Simulated
Annealing algorithm found is, in average,
3.96% higher than the cost of optimal solutions
of the corresponding VRP problems.

Just as in Table 4, in Table 5 we present the
results obtained by the Tabu Search algorithm.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016416

Table 2. Parameters for the
Local Search Algorithms

Tabu Search

Parameter Value

maxIter 2000
tabuSize 6
diversLimit 35
listOfCandidates 5

Simulated Annealing

Parameter Value

maxIter 2000
α 0.85

intialTemp 50

Table 3. Set of Instances considered in this paper.

Instance n m L
max

Spdtw1 31 5 200
Spdtw2 32 5 200
Spdtw3 37 5 200
Spdtw4 38 6 200
Spdtw5 43 6 200
Spdtw6 48 7 200

These results considers the restoration strategy
proposed in this paper.

On the one hand Tabu Search takes, in average,
almost 8 seconds more than the Simulated
Annealing algorithm to converge. On the other
hand, Tabu Search finds solutions that are more
than 50% cheaper than the ones found by the
Simulated Annealing algorithm.

Figure 2 shows an instance from Table 5 that is
solved in this paper. Circles represent the
customers’ location and the red triangle
represents the depot position.

10 10 30 40 50 60 70 80 90 100
0

10

40

60

80

100

Customers Depot

Nigure 2. An example of customers and depot
position in the Euclidean space.

From Figure 2 we can note that the customers
are distributed in clusters. In particular, there
are four clusters in the example in Figure 2.
Figure 3 shows the routes for all five vehicles
needed to solve the instance Spdtw1 using the
Simulated Annealing algorithm and the
restoration strategy proposed in Section 3.

It is interesting to note that vehicles do not
necessarily visit the closest customer from their
current position. This is because sometimes the

capacity constraints make such movements
infeasible. Moreover, when we compare the
routes generated by both Tabu Search and
Simulated Annealing from Figures 3 and 4, we
can see that the algorithms converge to
different solutions, even though they start from
the same initial solution. This is because both
algorithms explore the decision space
differently.

10 10 30 40 50 60 70 80 90 100
0

10

40

60

80

100

v_1 v_1 v_3 v_4 v_5

Depot

Nigure 3. Vehicles routes for the instance Spdtw1
using the Tabu Search algorithm including

restoration phase.

Figure 4 shows the routes found by the Tabu
Search algorithm using the restoration strategy
proposed in Section 3.

10 10 30 40 50 60 70 80 90 100
0

10

40

60

80

100

v_1 v_1 v_3

v_4 v_5 Depot

Nigure 4. Vehicles routes for the instance Spdtw1
with a vehicle capacity equal to 200. All five

available vehicles are used (v_1 to v_6).

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 417

Table 5. Results obtained by TS with
restoration strategy

Instance Opt TS II Time Save %

Spdtw1 672 680.96 3.578 1.33

Spdtw2 784 787.08 3.437 0.39

Spdtw3 669 672.74 10.125 0.55

Spdtw4 805 808.70 4.531 0.45

Spdtw5 742 751.75 12.453 1.31

Spdtw6 1073 1107.45 21.438 3.21

Finally, Tables 6 and 7 shows the
improvements on both algorithm after
including the restoration strategy.

While for the Tabu Search including the
restoration strategy proposed in this paper leads
to solutions that are, in average, 3.9% cheaper,
for the Simulated Annealing savings are equal
to 5.9%. However, the restoration strategy
makes Tabu Search considerably slower. As
mentioned before, this is because Tabu Search
needs to generate many neighbours and often
they are not feasible, thus the restoration
strategy needs to be applied.

Table 6. Simulated Annealing before (SA) and after
(SA II) considering the restoration strategy proposed

in this paper.

Instance SA SA II Save %

Spdtw1 698.87 682.39 2.36%
Spdtw2 855.87 832.96 2.68%
Spdtw3 777.79 685.14 11.91%
Spdtw4 851.21 819.11 3.77%
Spdtw5 825.26 770.87 6.59%
Spdtw6 1251.60 1158.17 7.46%

Although this situation also occurs in the
Simulated Annealing algorithm, since this
algorithm generates fewer neighbours per
iteration the impact in the computational time
required to converge is marginal.

Table 7. Tabu Search before (TS) and after (TS II)
considering the restoration strategy

proposed in this paper.

Instance TS TS II Save %

Spdtw1 681.17 680.96 0.03%
Spdtw2 830.81 787.08 5.26%
Spdtw3 741.89 672.74 9.32%
Spdtw4 818.06 808.70 1.14%
Spdtw5 790.61 751.75 4.91%
Spdtw6 1144.48 1107.45 3.24%

5. Conclusions

In this paper we have presented a comparison
between two well-known local search
algorithms, namely Tabu Search and Simulated
Annealing. Results confirm the effectiveness of
these two heuristics when solving the
VRPSPDTW. Although both algorithms find
solutions that are quite competitive to other
previously proposed strategies (such as the ant
colony optimisation in [18]) within an
acceptable time, we noted that the algorithms

have some problems when dealing with
infeasible neighbours. As a consequence, the
algorithms sometimes took too long to find a
feasible neighbourhood. To solve this issue, a
generic restoration strategy is proposed in this
paper. Results show that local search
algorithms considered in this paper consistently
obtain better results when they make use of the
restoration strategy.

As a future work we expect to try the
restoration strategy within heuristic algorithms
other than Tabu Search and Simulated
Annealing. For instance, variable
neighbourhood search as well as population
based algorithms such as particle swarm
optimisation and ant colony optimisation might
be considered.

RENERENCES

1. AI, T. J., V. A.
KACHITVICHYANUKUL, Particle

Swarm Optimization for The Vehicle

Routing Problem with Simultaneous

Pickup and Delivery, Computers &
Operations Research, vol. 36(5), 2009, pp.
1693-1702.

2. ANGELELLI, E., R. MANSINI, The

Vehicle Routing Problem with Time

Windows and Simultaneous Pick-up and

Delivery. Quantitative Approaches to

Distribution Logistics and Supply Chain

Management, Lecture Notes in Economics
and Mathematical Systems, vol. 519, 2002,
pp. 249-267.

3. AREIBI, S., G. GREWAL, D. BANERJI,
P. DU, Hierarchical NPGA Placement.
Canadian Journal of Electrical and
Computer Engineering, vol. 32(1), 2007,
pp. 53-64.

4. AVCI, M., S. TOPALOGLU, An Adaptive

Local Search Algorithm for Vehicle

Routing Problem with Simultaneous and

Mixed Pickups and Deliveries.
Computers & Industrial Engineering, vol.
83(C), 2015, pp. 15-29.

5. BARANY, M., Z. TUZA, Circular

Coloring of Graphs via Linear

Programming and Tabu Search. Central
European Journal of Operations Research,
vol. 23(4), 2015, pp. 833-848

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016418

6. BRAEKERS, K., K. RAMAEKERSA, I.
V. NIEUWENHUYSEC, The Vehicle

Routing Problem: State of the Art

Classification and Review. Computers &
Industrial Engineering, to be published.

7. CABRERA, G., S. Roncagliolo, J. P.
RIQUELME, C. CUBILLOS, R. SOTO, A
Hybrid Particle Swarm Optimization-

Simulated Annealing Algorithm for The

Probabilistic Travelling Salesman

Problem, Studies in Informatics and
Control, vol. 21, 2012, pp. 49-58.

8. CAO, E., M. LAI, An Improved

Differential Evolution Algorithm for the

Vehicle Routing Problem with

Simultaneous Delivery and Pick-up

Service, Proceedings of the 3rd

International Conference on Natural
Computation (ICNC), 2007, pp. 436-440.

9. CHEN, J. F., T. H. WU, Vehicle Routing

Problem with Simultaneous Deliveries

and Pickups. Journal of the Operational
Research Society, vol. 57, (5), 2006,
pp 579-587.

10. COSSI, A. M., J. R. S. MANTOVANI,
Integrated Planning of Electric Power

Distribution Networks. IEEE Latin
American Transactions, vol 7(2), 2009,
pp. 203-210.

11. DANTZIG, G. B., J. H. RAMSER, The

Truck Dispatching Problem.
Management Science, vol. 6(1), 1959, pp.
80-91.

12. DETHLOFF, J., Vehicle Routing and

Reverse Logistics: The Vehicle Routing

Problem with Simultaneous Delivery and

Pick-Up. OR-Spektrum, vol. 23(1), 2001,
pp. 79-96.

13. GAJPAL, Y., P. ABAD, An Ant Colony

System (ACS) for Vehicle Routing

Problem with Simultaneous Delivery and

Pickup, Computers & Operations
Research, vol. 36(1), 2009, pp. 3215-3223.

14. GAN, X., Y. WANG, S. LI, B. NIU,
Vehicle Routing Problem with Time

Windows and Simultaneous Delivery

and Pick-Up Service Based on MCPSO.
Mathematical Problems in Engineering,
vol. 2012, Article ID 104279, 2012, pp. 1-
11. doi:10.1155/2012/104279.

15. GLOVER, F., Artificial Intelligence,

Heuristic Nrameworks and Tabu Search.
Managerial and Decision Economics, vol.
11(1), 1990, pp. 365-375.

16. GOKSAL, F. P., I. Karaoglan, F.
ALTIPARMAK, A Hybrid Discrete

Particle Swarm Optimization for Vehicle

Routing Problem with Simultaneous

Pickup and Delivery. Computer and
Industrial Engineering, vol. 65(1), 2013,
pp. 39-53. doi: 10.1016/j.cie.2012.01.005.

17. HIERMANN, G., M. PRANDSTETTER
A. RENDL, J. PUCHINGER, G. R.
RAIDL, Metaheuristics for Solving A

Multimodal Home-Healthcare

Scheduling Problem. Central European
Journal of Operations Research, vol. 23(1),
2015, pp. 89-113.

18. JOHNSON, F., J. VEGA, G. CABRERA,
E. CABRERA, Ant Colony System for a

Problem in Reverse Logistic, Studies in
Informatics and Control, vol. 24(2), 2015,
pp. 133-140.

19. KASSEM, S., M. CHEN, Solving Reverse

Logistics Vehicle Routing Problems

WITH Time Windows. The International
Journal of Advanced Manufacturing
Technology, vol. 68(1), 2013, pp. 57–68,
doi: 10.1007/s00170-012-4708-9.

20. KIRKPATRICK, S., Optimization by

Simulated Annealing: Quantitative

Studies. Journal of Statistical Physics, vol.
34, no. 5-6, 1984, pp. 975-986.

21. KIRKPATRICK, S., C. D. GELATT, M. P.
VECCHI, Optimization by Simulated

Annealing. Science, vol. 220, no. 4598,
1983, pp. 671-680.

22. KOLEN, A. W. J., A. H. G. RINNOOY
KAN, H. W. J. M. TRIENEKENS, Vehicle

Routing with Time Windows. Operations
Research, vol. 35(2), 1987, pp. 266-273.

23. LAGOS, C., B. CRAWFORD, E.
CABRERA, R. SOTO, J. M. RUBIO, F.
PAREDES, Combining Tabu Search and

Genetic Algorithms to Solve the

Capacitated Multicommodity Network

Nlow Problem. Studies in Informatics and
Control, vol. 23(3), 2014,pp. 265-276.

24. LAGOS, C., B. CRAWFORD, R. SOTO,
E. CABRERA, J. VEGA, F. JOHNSON, F.
PAREDES, Improving Tabu Search

Studies in Informatics and Control, Vol. 25, No. 4, December 2016 http://www.sic.ici.ro 419

Performance by Means of Automatic

Parameter Tuning, Canadian Journal of
Electrical and Computer Engineering, vol.
39(1), 2016, pp. 51-58.

25. LIU, R., X. XIE, V. AUGUSTO, C.
RODRIGUEZ, Heuristic Algorithms for

a Vehicle Routing Problem with

Simultaneous Delivery and Pickup and

Time Windows in Home Healthcare.
European Journal of Operational Research,
vol. 230(3), 2013, pp. 475-486.

26. LUNDY, M., A. MEES, Convergence of

an Annealing Algorithm. Mathematical
Programming, vol. 34(1), 1986, pp. 111-
124.

27. METROPOLIS, N., A. W.
ROSENBLUTH, M. N. ROSENBLUTH,
A. H. TELLER, E. TELLER, Equation of

State Calculations by Nast Computing

Machines. The Journal of Chemical
Physics vol. 21(6), 1953, pp. 1087-1092.

28. MIN, H. The Multiple Vehicle Routing

Problem with Simultaneous Delivery and

Pick-Up Points. Transportation Research
Part A General 23(5), 1989, pp. 377-386.

29. MLADENOVIĆ, N., P. HANSEN,
Variable Neighborhood Search.
Computers & Operations Research, vol.
24(11), 1997, pp. 1097-1100.

30. NAGY, G., S. SALHI, Heuristic

Algorithms Nor Single And Multiple

Depot Vehicle Routing Problems With

Pickups And Deliveries. European Journal
of Operational Research, vol. 162(1), 2005,
pp. 126-141.

31. RIECK, J., J. ZIMMERMANN, Exact

Solutions to the Symmetric and

Asymmetric Vehicle Routing Problem

with Simultaneous Delivery and Pick-

Up. Business Research, vol. 6(1), 2013,
pp. 77-92.

32. RODRIGUEZ, D. A., A. C. OLIVERA, N.
B. BRIGNOLE, Vehicle Routing for

Public Transport with Adapted

Simulated Annealing. Latin American
Applied Research, vol. 44(3), 2014,
pp. 247-252.

33. SOLOMON, M. M., Algorithms for the

Vehicle Routing Problem with Time

Windows. Transportation Science, vol.
29(2), 1995, pp. 156-166.

34. SUBRAMANIAN, A., L. S. OCHI, New

Lower Bounds for the Vehicle Routing

Problem with Simultaneous Pickup and

Delivery, Technical Report - RT 01/10,
Universidade Federal Fluminense, Niteri-
RJ, Brazil, 2010.

35. TANG, F. A., R. D. GALVAO, A Tabu

Search Algorithm for the Vehicle

Routing Problem with Simultaneous

Pick-Up and Delivery Service.
Computers & Operations Research, vol.
33, 2006, pp. 595-619

36. TOADER, F. A., A Hybrid Algorithm for

Job Shop Scheduling Problem. Studies in
Informatics and Control, vol. 24(2), 2015,
pp. 171-180.

37. WANG, C., F. ZHAO, D. MU, J. W.
SUTHERLAND, Simulated Annealing

for a Vehicle Routing Problem with

Simultaneous Pickup-Delivery and Time

Windows. Advances in Production
Management Systems. Sustainable
Production and Service Supply Chains, vol.
415(2), 2013, pp 170-177.

38. WILHELM, M. R., T. L. WARD, Solving

Quadratic Assignment Problems by

Simulated Annealing, IIE Transactions,
vol. 19(1), 1987, pp. 107-119.

39. ZACHARIADIS, E., C. D. TARANTILIS,
C. KIRANOUDIS, A Hybrid

Metaheuristic Algorithm for the Vehicle

Routing Problem with Simultaneous

Delivery and Pick-Up Service. Expert
Systems with Applications, vol. 36(2),
2009, pp. 1070-1081

40. ZHU, N., C. SHAO, Vehicle Routing

Problem with Simultaneous Delivery and

Pick-up Based on the Improved Genetic

Algorithm, in Proc. of the 4th International
Conference on Genetic and Evolutionary
Computing (ICGEC), Shenzhen, China,
2010, pp. 312-316.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016420

