
1. Introduction

Heuristic  algorithms  have  been  applied  on  a
variety of problems in operations research and
logistics  for  more  than  50  years  now.  They
have been shown to be very effective in dealing
with complex problems that cannot be solved to
optimality  by  traditional  techniques  such  as
mathematical  programming.  This  is  because
mathematical programming methods often fail
as  the  optimisation  problem  gets  larger  (i.e.
more decision variables are involved).

Two  well-known  heuristic  local  search
algorithms that have been applied on this kind
of  complex  optimisation  problems  are  Tabu
Search [15] and Simulated Annealing [20, 21,
27]. In this paper we study the performance of
these two heuristic algorithms when solving a
complex  problem  arising  in  logistics  called
vehicle  routing  problem  (VRP)  with
simultaneous  pickup  and  delivery  and  time
windows (VRPSPDTW).

Tabu  Search  algorithm  has  been  used  to
approximately solve a range of  combinatorial
optimisation problems [5, 10, 23]. It has been

shown  to  be  a  very  simple,  yet  effective,
method  to  approximately  solve  large  and
complex  combinatorial  optimisation  problems
such as the one we address in this paper. Just as
Tabu  Search,  Simulated  Annealing  has  also
been  considered  to  approximately  solve  a
variety  of  optimisation  problems  (see  for
instance [3, 17, 24, 36]).

In this paper we implement both Tabu Search
and Simulated Annealing algorithms and apply
them on the  VRPSPDTW.  We then  compare
the results obtained by each technique.

One  difficult  we  face  when  solving  routing
problems by means of local search algorithms
is  that  neighbours  of  the  current  solution  are
often  not  feasible.  Thus,  we  need  to  restore
such  neighbours  so  they  become  feasible.  In
this  paper  we  propose  a  generic  restoration
strategy in the aim of making both local search
algorithms  to  perform  more  efficiently.  It  is
important  to note that  the restoration strategy
we propose in this paper is directly applied on
the local search algorithms. Thus, it can be seen
as a generic strategy that can be included in any
local search algorithm other than Tabu Search
and Simulated Annealing.
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This  paper  is  organised  as  follows.  In  next
section  both  Tabu  Search  and  Simulated
Annealing  algorithms  are  described  and  their
main features are highlighted. In Section 3 the
VRPSPDTW problem we address in this paper
is  introduced.  The  mathematical  formulation
for this problem is presented at the end of this
section.  In  Section  4  we  introduce  the
restoration technique that  is  used within both
heuristic  algorithms.  In  Section  5
computational  experiments  performed  in  this
paper are presented. In this section we discuss
how the restoration technique helps both local
search algorithms to better explore the solution
space. Finally,  in Section 6 some conclusions
are drawn and future work is outlined.

2. Local Search Algorithms

2.1 Simulated annealing

Simulated Annealing is a local search heuristic
algorithm  that  is  inspired  by  thermodynamic
systems. The algorithm takes concepts such as
energy,  state and  temperature from
thermodynamic  and adapts  them to fit  within
optimisation framework.  Simulated Annealing
needs  the  following  parameters  to  work:  the
initial  temperature  t0 ,  the  maximum number
of  iterations  the  algorithm  can  perform,
maxIter  and the parameter  α , which is part

of  the annealing schedule.  The SA algorithm
begins with a solution s

current , also called state,
that can be either randomly generated or user-
provided.  After  that,  a  neighbour  solution
s

k
∈ℜ(s

current
)  is  generated,  where

k <maxIter  denotes  the  current  iteration and
ℜ(⋅)  returns the neighbourhood of a solution.

Once  a  neighbour  is  chosen  from  the
neighbourhood,  we  compute  its  cost  and
observe the change in objective function values
when  moving  from  s

current  to  s
k ,

Δ E=cost( s
k
)−cost ( s

current
) .  If  Δ E<0  then

the  neighbour  s
k  is  set  as  the  new  current

solution, s
current . If Δ E≥0  then the neighbour

solution s
k  is accepted with a probability

P (Δ E)=e

−Δ E

tk (1)

It is clear that acceptance probability P (Δ E)
depends  on  the  temperature  parameter  t

k

which  usually  varies  over  the  algorithm
execution. As the  temp  variable  cools down,
worst solutions are no longer accepted, which
provokes  that  the  algorithm  converges  to  a

locally  optimal  solution.  The  variable  temp

cools  down  according  to  an  annealing

schedule.  In  this  paper  we  use  the  following
annealing schedule 

temp
k
=αtemp

k−1 (2)

with  α  in the range  [0,1 ] .  Other annealing
schedules  can  be  found  in  [20,  26,  38].  The
algorithm  ends  when  either  no  further
improvements  can  be  made  or  the  maximum
number  of  iterations  maxIter  is  reached.
Algorithm  1  shows  the  Simulated  Annealing
algorithm that is implemented in this paper.

Algorithm 1: Simulated Annealing

Input: maxIter , t0 , t
max ;

Output: s
best

1 begin 

2  s
current

=  initSol(); 

3  s
best

=s
current  ; 

4  k =0  ; 

5  whiie k <maxIter do 

6   s
k = selectSol( ℜ( s

current
) ); 

7   Δ E=cost ( s
k
)−cost ( s

current
) ; 

8   if Δ E<0  then 

9    s
current

=s
k  ;

10  if cost (s
k
)<cost( s

best
)  then 

11   s
best

=s
k  ;

12  eise 

13   t
k =  calcTemp( k , t , t 0 ,α ); 

14     P (Δ E)=e
−Δ E/ tk ;

16   if P (Δ E)>rand ()  then
17    s

current
=s

k  ;

18     End

19    end

20    k =k +1 ;

21   End

22  end

23 end

2.2 Tabu search

Tabu Search is a heuristic local search algorithm
that  implements  adaptive  memory  structures
[15].  Since  Tabu  Search  algorithm  is  a  local
search,  neighbourhood  movements  must  be
performed  to  explore  the  search  space.  Also,
Tabu Search needs a set of parameters to work.
The  divThreshold  parameter  is  the
diversification threshold. This parameter allows
Tabu Search to move out  from regions where
solutions’  quality  is  low  and  “jump”  to  new
regions  where  high  quality  solutions  are
expected  to  be  found.  In  this  paper  a  restart
method  is  used  to  diversify  the  search.  This
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restart method keeps the best solution found by
the algorithm before the restart. The  tabuSize

parameter is the length of the list of movements
that are banned by the algorithm that is called
tabu list. The tabu list, is a short-term memory
where the last  tabuSize  neighbourhood moves
done by the algorithm are stored. Once the tabu
list is full, every time a new movement is added
to the list, another movement is removed from
the list, so the number of movements labelled as
tabu is always equal to tabuSize . Although the
tabu list is very useful to avoid getting trapped
into a loop of movements, some strategies must
be  considered  to  avoid  missing  good  quality
solutions. One strategy Tabu Search implements
is  the  aspiration  criterion.  The  aspiration
criterion allows that a movement from the tabu
list  can  be  considered  only  if  the  objective
function value of the resulting solution is better
than the best solution value found so far by the
Tabu Search algorithm. The aspiration criterion
ensures  that  no  good  quality  solutions  are
missed because of applying the tabu list. Further,
Tabu Search implements a frequency list which
tracks  how  often  a  neighbourhood  move  has
been  used.  Knowing  which  movements  have
been  applied  in  previous  iterations  helps  the
algorithm  to  move  into  not-well-explored
regions of the search space.

The TS algorithm begins with a solution s
current

that can be either randomly generated or user-
provided. This initial solution  s

current  is set as
the  best  solution  ( s

best ).  A  list  of  candidate
solutions  from the  neighbourhood  of  s

current ,

ℜ( s
current

) , is then generated. Size of the list

of  candidates  is  equal  to  listOfCandidates

parameter. The best solution from ℜ( s
current

) ,

is then selected and set as the new  s
current . If

the new  s
current  is in the tabu list, then it will

not be considered unless its cost is less than the
cost  of  s

best  (aspiration criterion).  Each time
s

current  is updated, the associated movement is
added to the tabu list  and the movement  that
has been in the tabu list for tabuSize  iterations
is  removed  from  the  list.  If
cost (s

current
)<cost (s

best
)  then  s

best  is updated
and  the  noImprovement  counter  is  reset.
Otherwise,  noImprovement  counter  is
updated. The Tabu Search algorithm ends after
the number of iterations is equal to  maxIter .
Algorithm  2  presents  the  Tabu  Search
algorithm that is implemented in this paper.

3. The VRPSPDTW

In this section we first present a brief overview
on the VRPSPDTW problem we address in this
paper.  Then,  the  mathematical  model  of  the
VRPSPDTW is introduced.

Many  research  articles  addressing  different
vehicle routing problems can be found in the
literature (see [6] for a recent survey on VRP).
Since the first  academic  paper addressing the
VRP  in  late  50’s  [11],  many  optimisation
problems based on the simplest version of the
VRP have  been  proposed [32].  One  of  these
problems is  the VRPSPD.  The VRPSPD was
firstly introduced by Min in [28]. Since then,
many authors have proposed different strategies
to (approximately) solve the VRPSPD problem
[1, 4, 8, 9, 13, 22, 31].  Tabu search as well as
simulated annealing have also been considered
to solve the VRPSPD [35, 39]. 

One optimisation problem that result of adding
time  windows  constraints  to  the  VRPSPD
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Algorithm 2: Tabu Search

Input: maxIter , divLim , tabuSize ;

Output: s
best

1 Begin

2  k=0;

3  s
current =initSol();

4  s
best

=s
current ;

5  whiie k <maxIter  do

6   s
k
=best (ℜ(s

current
)) ;

7   whiie s
k
∈tabuList  do

8    if cost (s
k
)<cost( s

best
)  then  

9     remove s
k  from tabuList ;

10    Eise

11     remove s
k  from ℜ( s

current
) ;

12     s
k
=best (ℜ(s

current
)) ;

13    end

14   end

15   updateTabuList (s
current

, s
k
, tabuSize) ;

16   s
current

=s
k ;

17   k =k +1 ;

18   if cost (s
current

)<cost (s
best

)  then
19    s

best
=s

current ;

20    noImprovement=0 ;

21   end

22   noImprovement=noImprovement +1 ;

23   if (noImprovement>divLim)  then
24     s

current =initSol();

25   end

26  End

27 End



problem is the VRPSPDTW we address in this
paper. Although less studied than the VRPSPD
problem,  this  problem  is  very  important  in
reverse  logistics.  Swarm intelligence  [14,  16,
18] as well as local search algorithms [19, 25,
29, 37] have been used to approximately solve
this problem. Exact algorithms have also been
presented  to  solve  the  VRPSPDTW.  For
instance,  a  branch-and-price  algorithm  is
presented in  [2]. The authors claim that this is
the  first  exact  algorithm  to  solve  the
VRPSPDTW.  Only  small  instances  can  be
solved using this technique though.

Authors in [12], [30] and [35] proposed three
different models for the VRPSDP. Particularly,
the  author  in  [12]  modelled  the  VRPSPD as
part  of  the  reverse  logistics  process.  In  this
paper we extend the VRPSPD model presented
in  [12]  and  present  a  model  for  the
VRPSPDTW we solve in this paper. 

Table 1 shows the parameters we consider in
this paper.

Table 1. Parameters of the VRPSPDTW

Parameter Value

Max number of vehicles (m) 10;25

Vehicles capacity (L) [100,350]

Number of customers (n) 25;50;100

v x y d p t
min

t
max

t
s

0 x0 y0 -- -- -- -- --

1 x1 y1 d 1 p1 t
min

1
t

max

1
t

s

1

2 x2 y2 d 2 p2 t
min

2
t

max

2
t

s

2

… … … … …

N x
n

y
n

d
n

p
n t

min

n
t

max

n
t

s

n

In the VRPSPDTW a set of customers C  must
be served for a fleet of vehicles we denote by
V . Each customer i∈C  has its own delivery

and pick-up demands, denoted by d
i  and p

i ,
respectively,  with  i=1 ,… ,n ;  indexing
customers  in  C .  We  assume  that  both,
delivery and pick-up demands are served by the
same  vehicle  v=1 ,… ,m  and  at  the  same
time. A vehicle  v∈V  can serve one or more
customers  and it  always  starts  and  ends  in  a
central  depot we call  O .  Thus,  the problem
consists  on  finding  a  set  of  routes  for  the
vehicles  in  the  fleet  that  minimises  the  total
distance covered by the vehicles while ensuring
that  all  customers’  demands  are  served
considering time windows constraints.  Routes
are  represented  by a  binary decision  variable

x
ijv  such that  x

ijv
=1  if  the customer  j  is

visited  immediately  after  customer  i  by
vehicle v ; x

ijv
=0  otherwise.

As  mentioned  before,  in  this  paper  we  also
consider  time  windows.  Time  windows
constraints ensure that the service for customer
i  starts  within  a  pre-defined  period  of  time
[t

min

i
, t

max

i ] .  Each service (delivery + pick up)
takes  t

s

i  time units and it does not depend on
the  vehicle  that  provides  the  service.  We
assume that a service can finish after t

max

i .
Another distinctive feature of the VRPSPDTW
is that we have to make sure that the vehicle
capacity  is  never  violated  during  the  entire
route. To do this, we need, first, to define the
initial load a vehicle  v  has after  leaving the
depot. This initial load is defined as follows

l0
v=∑

i=0

n

∑
j=1

n

xijv d j (3)

We then define the vehicle load after visiting a
customer in its route as

l j

v≥{l0
v−d

j
+ p

j
∀ j∈C , v∈V ;if x0 jv

=1

l i

v
−d j+ p j ∀ i , j∈C ,v∈V ;if x ijv=1

(4)

Equation (4) says that in route load of a vehicle
v∈V  is equal to the load of the vehicle after

serving  the  previous  customer  i  (or  after
leaving the depot  in  case  customer j  is  the
first customer in the route of vehicle v ) minus
the items that are left to customer j  ( d

j ) plus
the  items  that  are  picked  up  from  the  same
customer ( p

j ). It is clear that if

l
j

v >L (5)

the  route  becomes  infeasible.  To  ensure  that
each customer is served exactly once, we make

∑
i=0

n

∑
v=1

m

xijv=1 ∀ j∈C (6)

Also, we need to make sure that a customer is
served by the same vehicle.

∑
i=0

n

xihv=∑
j=0

n

x hjv ∀ h∈C ,v∈V (7)

Moreover,  we need to make sure all  vehicles
start from the depot

∑
j=1

n

x0 jv=1 ∀ v∈V (8)
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Regarding time windows, three constraints are
considered in this paper

st
j≥{st

i+t
s

i+T
ij
∀ i , j∈C , v∈V ;if x

ijv
=1

0 Otherwise
(9)

st
j≤tmax

j ∀ j∈C (10)

st
j≥tmin

j ∀ j ∈C, (11)

where  st
j  is  the  starting  time  for  serving

customer  j ,  and  T
ij  is  the  travel  time

between  customers  i  and  j .  Equation  (9)
ensures  that  there  is  enough  time  to  serve  a
customer  i  and to travel to the next customer
j  before serving it. Equation (10) ensures that

service of customer j  will not start after t
max

j .
Similarly, Equation (11) ensures that service of
customer j  will not begin before t

min

j .

The  VRPSPDTW  problem  we  solve  in  this
paper is then

min∑
i=0

n

∑
j=0

n

∑
v=1

m

Dij xijv (12)

subject to Equations (3) to (11).

As mentioned in the introductory section of this
paper, two local search algorithms are used to
solve  the  VRPSPDTW,  namely  Tabu  Search
and Simulated Annealing. One issue that local
search  algorithms  face  when  solving  this
problem  is  that  resulting  neighbours  are  not
always  feasible  making  the  search  in  the
solutions space less effective. For this reason,
in this paper we propose a restoration technique
that  helps  to  fix  neighbours  that  are  not
feasible.  We explain the restoration technique
in the next section. 

4. Restoration Technique

After all  customers  are assigned to a vehicle,
we need to make sure that feasible routes can
be  constructed  using  the  current  assignation.
Finding the optimal route for each vehicle is a
simple  task  that  can  be  done  by  using
mathematical programming methods, as long as
not  many customers  are  involved.  In  spite  of
that,  we  observe  that  routes  in  the
neighbourhood  of  a  feasible  route  are,
sometimes,  not  feasible.  Thus,  we  can  either
look  for  a  feasible  neighbour  or  repair  the
infeasible neighbour. In this paper we choose to
repair  those  neighbours  that  are  not  feasible.
The restoration phase we propose in this paper

consists  on  a  sequence  of  2-opt  movements
between  those  customers  that  violate  time
windows  constraints  and/or  load  capacity
constraints.  We  exchange  those  conflicting
customers  among  infeasible  routes  until  a
feasible  route  is  found.  Figure  1  shows  an
example the restoration phase proposed here.

(a) Vehicle route example. Two infeasible routes are
considered. Conflicting customers are identified

(customers 2 and 5). 

(b) Vehicle route example – restoration phase. A 2-
opt like movement is performed between conflicting

customers 2 and 5. One of the obtained routes
becomes feasible. We then focus on the “new”

infeasible route and optimise it.

Nigure 1. An example of the restoration phase.
Using 2-opt like movements among customers from
infeasible routes we obtain routes that are feasible.

As we can see in Figure 1, two vehicle routes are
infeasible.  Then,  we  first  exchange  those
“conflicting” customers from each route. For the
example in Figure 1, we exchange customers 2
(from route 1) and 5 (from route 2). After doing
this, we optimise the route using mathematical
programming methods and see if  the resulting
routes are feasible. For the example in Figure 1,
both routes result in feasible routes and no more
changes are needed.
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Algorithm 4 describes the restoration technique
proposed in this paper.

Algorithm 4: Restoration Techniqre

  Inprt: A set of infeasible rortes Ρ
1 Begin

2  For each ρ∈Ρ
3   Θ

ρ
Identify Conflicting Crstohers( ρ );

4   Θ=Θ≥Θ _ ρ
5  End

6  While ( Ρ  is not ehpty)

7   For each ρ∈P  

8    If ρ  is not feasible then

9     θ=  Randoh (Θ _ ρ)
10     θ '=  Randoh (Θ ∖ {{θ }≥{Θ _ ρ})
11     ρ=  UpdateRorte( ρ , θ , θ ' )

12     optihise( ρ )

13    Else

14     Ρ=Ρ∖ {ρ}
15    End

16   End

17  End

20 End

In  the  next  section  we  present  the  obtained
results  after  applying  both  Tabu  Search  and
Simulated Annealing to the VRPSPDTW.

5. Computational Experiments

As proposed in [2], the set of solutions used to
test our algorithms is based on the Solomon's
instances  for  the  VRPTW  [33].  Here,  we
assume  that  values  given  in  Solomon's
instances corresponds to the delivery demands
d

i ,  i=1 ,… ,n ;  and  pick-up  demands  p
i ,

i=1 ,… ,n , are as follows

pi≔ {(1−α)d
i

if i is even ;

(1+α)di if i isodd

where  0≤α≤1 . This new set of instances is
similar  to the one in [18]. Unlike in [18], in
this  study we  only consider  instances  where
customers  are  organised  in  clusters.
Parameters  for  both  Tabu  Search  and
Simulated  Annealing  are  as  in  Table  2.
Parameters  values  in  Table  2  were  obtained
after a trial and error process and, thus, might
not be the best values for other instances.

Table  3  shows  the  set  of  instances  that  are
considered  in  this  study.  The  number  of
vehicles ranges from 5 to 7 and the number of
customers  ranges  from  31  to  48.  The
maximum load capacity of a vehicle is set to
200 product units. 

For  each instance both algorithms  are  applied
and the obtained results are presented in Tables
4 and 5. In general, Tabu Search tends to find
solutions  that  are  better  in  terms  of  cost.
However, Tabu Search takes longer to converge.
This is because it  needs to call  the restoration
module more often, as more neighbours needs to
be generated at each iteration.

Table 4. Results obtained by Simulated Annealing
with restoration strategy

Instance

VRP

Opt SA II

Time

(sec)

SA II

%GAP

Spdtw1 672 682.39 1.156 1.54
Spdtw2 784 832.96 1.078 6.24
Spdtw3 669 685.14 1.031 2.41
Spdtw4 805 819.11 0.750 1.75
Spdtw5 742 770.87 1.062 3.89
Spdtw6 1073 1158.17 1.921 7.93

Table  4  shows  the  results  obtained  by  the
Simulated  Annealing  algorithm  with  the
restoration  strategy  (SA  II).  As  expected,
solutions for the VRPSPDTW has a cost higher
than  the  best  solution  of  the  corresponding
VRP. The cost of the solutions the Simulated
Annealing  algorithm  found  is,  in  average,
3.96% higher than the cost of optimal solutions
of the corresponding VRP problems.

Just as in Table 4, in Table 5 we present the
results obtained by the Tabu Search algorithm.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 4, December 2016416

Table 2. Parameters for the
Local Search Algorithms

Tabu Search

Parameter Value

maxIter 2000
tabuSize 6
diversLimit 35
listOfCandidates 5

Simulated Annealing

Parameter Value

maxIter 2000
α 0.85

intialTemp 50

Table 3. Set of Instances considered in this paper. 

Instance n m L
max

Spdtw1 31 5 200
Spdtw2 32 5 200
Spdtw3 37 5 200
Spdtw4 38 6 200
Spdtw5 43 6 200
Spdtw6 48 7 200



These results considers the restoration strategy
proposed in this paper.

On the one hand Tabu Search takes, in average,
almost  8  seconds  more  than  the  Simulated
Annealing algorithm to converge. On the other
hand, Tabu Search finds solutions that are more
than 50% cheaper than the ones found by the
Simulated Annealing algorithm. 

Figure 2 shows an instance from Table 5 that is
solved  in  this  paper.  Circles  represent  the
customers’  location  and  the  red  triangle
represents the depot position.

10 10 30 40 50 60 70 80 90 100
0

10

40

60

80

100

Customers Depot

Nigure 2. An example of customers and depot
position in the Euclidean space.

From Figure 2 we can note that the customers
are  distributed in  clusters.  In  particular,  there
are  four  clusters  in  the example  in  Figure  2.
Figure 3 shows the routes for all five vehicles
needed to solve the instance Spdtw1 using the
Simulated  Annealing  algorithm  and  the
restoration strategy proposed in Section 3.

It  is  interesting  to  note  that  vehicles  do  not
necessarily visit the closest customer from their
current position. This is because sometimes the

capacity  constraints  make  such  movements
infeasible.  Moreover,  when  we  compare  the
routes  generated  by  both  Tabu  Search  and
Simulated Annealing from Figures 3 and 4, we
can  see  that  the  algorithms  converge  to
different solutions, even though they start from
the same initial solution. This is because both
algorithms  explore  the  decision  space
differently. 
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Nigure 3. Vehicles routes for the instance Spdtw1
using the Tabu Search algorithm including

restoration phase.

Figure 4 shows the routes found by the Tabu
Search algorithm using the restoration strategy
proposed in Section 3.
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Nigure 4. Vehicles routes for the instance Spdtw1
with a vehicle capacity equal to 200. All five

available vehicles are used (v_1 to v_6). 
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Table 5. Results obtained by TS with
restoration strategy

Instance Opt TS II Time Save %

Spdtw1 672 680.96 3.578 1.33

Spdtw2 784 787.08 3.437 0.39

Spdtw3 669 672.74 10.125 0.55

Spdtw4 805 808.70 4.531 0.45

Spdtw5 742 751.75 12.453 1.31

Spdtw6 1073 1107.45 21.438 3.21



Finally,  Tables  6  and  7  shows  the
improvements  on  both  algorithm  after
including the restoration strategy.

While  for  the  Tabu  Search  including  the
restoration strategy proposed in this paper leads
to solutions that are, in average, 3.9% cheaper,
for the Simulated Annealing savings are equal
to  5.9%.  However,  the  restoration  strategy
makes  Tabu  Search  considerably  slower.  As
mentioned before, this is because Tabu Search
needs to generate many neighbours and often
they  are  not  feasible,  thus  the  restoration
strategy needs to be applied.

Table 6. Simulated Annealing before (SA) and after
(SA II) considering the restoration strategy proposed

in this paper.

Instance SA SA II Save %

Spdtw1 698.87 682.39 2.36%
Spdtw2 855.87 832.96 2.68%
Spdtw3 777.79 685.14 11.91%
Spdtw4 851.21 819.11 3.77%
Spdtw5 825.26 770.87 6.59%
Spdtw6 1251.60 1158.17 7.46%

Although  this  situation  also  occurs  in  the
Simulated  Annealing  algorithm,  since  this
algorithm  generates  fewer  neighbours  per
iteration the impact in the computational time
required to converge is marginal.

Table 7. Tabu Search before (TS) and after (TS II)
considering the restoration strategy

proposed in this paper.

Instance TS TS II Save %

Spdtw1 681.17 680.96 0.03%
Spdtw2 830.81 787.08 5.26%
Spdtw3 741.89 672.74 9.32%
Spdtw4 818.06 808.70 1.14%
Spdtw5 790.61 751.75 4.91%
Spdtw6 1144.48 1107.45 3.24%

5. Conclusions

In this paper we have presented a comparison
between  two  well-known  local  search
algorithms, namely Tabu Search and Simulated
Annealing. Results confirm the effectiveness of
these  two  heuristics  when  solving  the
VRPSPDTW.  Although  both  algorithms  find
solutions  that  are  quite  competitive  to  other
previously proposed strategies (such as the ant
colony  optimisation  in  [18])  within  an
acceptable time,  we noted that the algorithms

have  some  problems  when  dealing  with
infeasible  neighbours.  As  a  consequence,  the
algorithms sometimes took too long to find a
feasible neighbourhood. To solve this issue, a
generic restoration strategy is proposed in this
paper.  Results  show  that  local  search
algorithms considered in this paper consistently
obtain better results when they make use of the
restoration strategy.

As  a  future  work  we  expect  to  try  the
restoration strategy within heuristic algorithms
other  than  Tabu  Search  and  Simulated
Annealing.  For  instance,  variable
neighbourhood  search  as  well  as  population
based  algorithms  such  as  particle  swarm
optimisation and ant colony optimisation might
be considered.
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