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Abstract: This paper presents a novel decentralized scheme for actuator fault detection and isolation of a class of large-
scale interconnected nonlinear systems. For each of the interconnected subsystems, a local nonlinear unknown input
observer (UIO) is designed without the need to communicate with other agents. The interconnected terms are treated as
unknown inputs, hence all subsystems are decoupled completely and the information of other subsystems is not needed for
fault detection and isolation. In addition to the interconnections, an exogenous disturbance which contains both system
and measurement noise is approximately decoupled. To facilitate the observer design, sufficient condition for existence of
the designed observer is formulated in terms of a set of linear matrix inequalities (LMIs) and optimal gain matrices are
obtained. A simulation example of an automated highway system demonstrates the effectiveness of the proposed

methodology.
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1. Introduction

With the advancement of last decades’
technology, large-scale systems have been
developed in many fields such as
telecommunication, industrial processes, power
generation, space structures, and transportation.
To ensure safe and reliable operations of such
systems, the design of fault detection and
isolation (FDI) schemes is crucial. Due to the
special structure of large-scale interconnected
systems such as uncertainty, complexity,
interconnection among subsystems, and high
dimensionality, non-centralized FDI schemes
have been developed for these systems. In these
schemes, local diagnosers can be designed
using local modes of subsystems; however,
choosing a scheme depends on tasks of local
diagnosers and the type of information
exchange [25].

In decentralized schemes, a local diagnoser can
detect and isolate faults only in its underlying
subsystem. Nonetheless, communication with
other local diagnosers is not always needed.

It should also be considered that the need for
exchanging  information  among  local
diagnosers may cause an increase in costs and
moreover, appropriate mechanisms should be
considered such as transmission delays and
network access [4]. To diagnose other

subsystems, distributed schemes are much
more practical [13].

As each fault can influence several subsystems,
the interconnections among subsystems is a
challenge for FDI of interconnected systems.
To decouple subsystems completely, abilities
of unknown input observers (UIOs) for dealing
with the effect of interdependencies among
subsystems has been considered for
decentralized state estimation; see for example
[8-9,19]. In [6], a bank of decentralized
observers was designed so that each observer
includes the model of the entire system. A
distributed FDI scheme based on the UlOs for
networks of interconnected second-order linear
time-invariant systems was proposed in [18]. In
[22], a distributed FDI for large networked
systems with uncertainties based on UIOs was
designed such that is resilient to network model
uncertainties but cannot relax all limitations on
interconnections. FDI of singular delayed LPV
systems using UIOs was considered in [7].

As most systems can be described as a class of
Lipschitz nonlinear systems [10], this paper
focuses on a class of large-scale interconnected
systems which satisfy the Lipschitz condition
and investigates abilities of UIOs in these
systems. In [24], a scheme for decentralized
actuator fault diagnosis was proposed based on a
sliding mode unknown input observer for an
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automated highway system. Despite having the
ability to estimate the fault, the need for the
knowledge of the interconnections and fault
range, computing numerous constants and
coordinate transformation are the drawbacks of
aforementioned method. A  decentralized
actuator fault detection scheme was proposed in
[25] where interconnection terms are not
assumed unknown and the Lipschitz condition
should be satisfied. Moreover, some information
of other subsystems is needed. In [26], for an
automated highway system a distributed FDI
scheme was proposed with the assumption of
satisfying the Lipschitz condition and exact
knowledge of interconnection terms. For a local
diagnoser, If FDI of other subsystems is not
needed, choosing a decentralized scheme would
be more proper. As a result, without the
knowledge of interconnection terms, FDI can be
performed. A distributed fault detection method
for second-order multi-agent systems was
considered in [20] under the assumption that the
system has zero mean white noise sequences and
faults were treated as unknown inputs using
UlOs. In [11], a distributed formation control of
networked  Euler—Lagrange systems was
designed in which the dynamic of each agent
was described by Euler-Lagrange equation and
fault diagnosis was performed. Fault detection
for high-order nonlinear multi-agent systems
was proposed in [12], which the unknown
nonlinear functions are treated as unknown
input. Here interdependencies are considered as
unknown inputs and all subsystems are
decoupled completely. This makes easier the
fault detection and isolation and there is not any
limitation on interconnections. However, there
may be the noise and disturbance in the system
and a special structure of UIO is needed to
decouple the disturbance and interconnections
simultaneously. In this regard, inspired by the
UIO designed in [18] and an LMI approach in
[2], a decentralized UIO is designed with the
ability of decoupling the interconnections and
attenuating the exogenous disturbance. The
structure of UIO was defined in [3] is similar to
later works (for example [5,14-16]) despite the
adding abilities of fault estimation and noise
filtration. Compared to [5,14-16], here we
design UIO in decentralized form and all
variables are obtained using LMI technique
without the need to compute or try any constant.

The rest of the paper is organized as follows.
Section 2 introduces the problem formulation
and some definitions and assumptions are given

in this section. Section 3 proposes a design
procedure of a decentralized observer and
related lemmas and theorem. A new
decentralized FDI scheme based on UIOs is
presented in Section 4. In Section 5, the
simulation results of an automated highway
system investigate the performance of the
proposed scheme.

2. Problem Formulation

Consider a large-scale system composed of N
subsystems described by

xi(t):Aixi+Biui+q)i(xi)+

+Eihi(x’ u)+GiWi (1
y=C,x+D;,w, i=12,...,N
Where x,€R", u,€R™ and y,ER" are

respectively the states, known inputs and
outputs of the i-th subsystem. The vector

i .
xi,] €R" is the state vector of the

uﬂreRm,

T
x:[x1

whole system with u:[ulT

N N
mzz m; and nZZni.Here h(x,u)ER"
i=1 i=1
represents the interconnection of the i-th
subsystem with other subsystems and w,€R”
is an exogenous disturbance which contains
both system and measurement noise. Matrices
A, B, C, D, E; and G; are real and have
suitable dimensions.

The following assumptions are considered in
designing the observer:

a. The function q),-(x,-) satisfies the Lipschitz
condition, i.e.,

|@,(x)—®,(%)l<allx,— ?)

Where @,€R is a Lipschitz constant and is
independent of X; .

b. The matrix C; is of full row rank and the
matrix E; is of full column rank;

C. Rank (C,E,) = Rank (E,)

Assumptions (b) and (c) imply that the
number of unknown inputs that can be
decoupled are at most as many as the outputs.
We can result that for an interconnected
system if we want to decouple subsystems
using UIOs, the number of interactions with
other subsystems should be less than or equal
to the locally measured outputs.
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3. Decentralized Observer Design

We propose the observer for each subsystem
with the following form
z=Nz+Ju+Ly+M®o(%)

x=z,—H,y, ®

Where X, and ), are estimated state and
output of the i-th subsystem. The matrices N,
Ji, M; and L, are defined as

N=M,4=K,C,

J=M.B,

Li:Ki(Ii+CiHi)_MiAiHi “)
M=1,+H,C,

H; and K; are chosen by the designer. The state
estimation error is defined as

ei:xi_sci:Mixi_Zi_HiDiwi )

Hence the error dynamic is written as

éi:Niei"'(MiAi_LiCi_NiMi)xi"'
+M,Eh+M, ((I)i(xi)_q)i(fci))-'-

6
+(M,B—~J,)u+(M,G—K,D,)w,— ©
—H D,w,

In the light of (4), it is easy to derive
M,A—L,C,—N,M,=0
MiBi_‘]i:() (7)

We should have M,E,=0 to decouple each
subsystem completely and based on (4) it becomes

H,C.E=-E, 3

According to the (b) and (c) assumptions, (8)
is satisfied and all possible solutions of it are
as follows

Hi:_Ei(CiEi)++ Yi(lpf_(CiEi)(CiEi)+) ©)

Where (C.E)" is generalized inverse of C.E,
I, is an identity matrix and Y; is an arbitrary
matrix of suitable dimension [18]. For
notational briefing U,=—FE,(C,E,)" and
Vi:(fp,—(c,- E)(C,E,)") are defined, hence
(9) becomes

Hi:Ui+YiVi (10)
Now (6) is converted to:
e=N,e+M, ((Di(xi)_q)i(fci))"'

+(MiGi_KiDi)wi_HiDiwi (h

The following lemmas are useful for proof of
the Theorems 1 and 2.

Lemma 1 [23]. The matrices D, F and S are
real with appropriate dimensions and F
satisfying F' F <1 . Then for any scalars £>0

and vectors x, yeR", we have

2x"DFSy<e'x"DD" x+ey" S” Sy (12)
Lemma 2 (Schur complement) [1]. Assume
S= Su S is a symmetric matrix. S<0 is
SO '
equivalent to $,,<0 and S,,—S,,5, S1,<0.
Theorem 1: Consider the system (1) with the

assumptions (a), (b), (c) and w,=0, there
exists an unknown input observer in the form

of (3) if there exists matrices K,, Y, and P,
such that

X, X,
1 1 <0
A )

i2

Where the matrix elements are defined as

Xi:Pi(1+UiCi)Ai+((1i+Ui Ci)Ai)TPi+
+7i(ViCiAi) +( Vi CiAi)T ?IT_ (14)
—-K,C,—C/K[+a,1,

X, =va(P(1+U,C)+Y (V,C)) (15)
K,=P.K, (16)
Y=P,Y, (17)
Proof. Consider the following Lyapunov

function of V.(t)=e] (t)Pe,t),
differentiating this function with respect to time
and following from (11) and (2) one has

Vi:e?NfPi+PiNi ei+
+2e; P.M (@, (x,)-D,(%,))<
<e! N/ P+P,N,e+ (18)
+2||eiTPiMI'”“(I)i(xi)_(Di(fCi)”S
Se?N?Pi"'PiNiei"'z”ez‘TPiMi”aiHei”
We can continue the inequality in (18) using
Lemma 1 as follows
V,.SefN,TP,.+P,.N,.e,.+a,.( e,.TP,.MiH2+HeiH2)
:e[T NiTP["'PiNi"'O‘iPiMiMiTPi"'ailn,)ei

(19)

The following inequality relation should hold
to satisfy the Lyapunov stability criteria

N;P+P,N+c P, M,M]P+a,1,<0  (20)

If (20) 1is satisfied, e(t) tends to zero
asymptotically for any initial value of e(0). To
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convert (20) into a linear matrix inequality, we
substitute (4) and (10) in to (20) to get

Pi(1i+UiCi) Ai+ ((11‘+ Ui Cz) Ai)T Pi+

+P, Y, V,CA+VICl AT Y P
—~P,K,C—C] K| P+ 1)
+a,|P,(I,+U,C,)+PY,V,C,)

(P(1+U,C)+P, YV .C|+al, <0

For converting to an LMI contains Y;, K; and
P;, the terms P,;Y; and P.K; are nonlinear, so

we substitute K,=P,K, and Y,=P,Y, in
(21) to get

((Ii+ Ui Cz) Ai)T Pi+ Pi(1i+UiCi) Ai+

+( Vi CiAl)T YIT+ Yi(ViCiAl)_CiEzr_

KCralp(1puc Y v,c)) PP

i

(Pi(Ii+UiCi)+7i(ViCi>)T+ai]n,<0

Based on Lemma 2, (22) is convertible to an
LMI by the following form

X, Xp
XU —1

i2 n,

<0 (23)

where the matrix elements are as Theorem 1
and this completes the proof.

The following theorem gives a sufficient
condition for (11) to be stable for w,=0 and
lell<elwll, for w#0.

Theorem 2. Consider the system (1) under
assumptions (a), (b), (c) together with the
nonlinear observer (3). There exist matrices
K., Y., P, and disturbance tuning parameter
>0 such that the state estimation error (11)
produced by the observer (3) tends to zero
asymptotically for v =0 and |le ||, < z|lw,|,

for w,;#0 if the following LMI optimization
problem has a feasible solution:

mln(ﬂl) bl S-t.
Xi Xi2 £21’1 Qi2
X,—-1, 0 0 0

' < 24
Q, 0 —wlI, 0 @4
QL 0 0 -l

where the matrix elements are defined as
X.=P,(I,+U,C,)4,+
+(1,+U,C)A) P+Y (V,C,4)+ (25)
+(V,C,4) Y -K,C,—C/ K +a,1,+I,

[ ]

X, =ve(P(1,+U,C)+Y,(V,C))) (26)

YI:PI. Yi @7
QH:PiGi+PiUiCiGi+?iViCiGi_EiDi (28)
QiZZ_PiUiDi_?i ViDi (29)

Proof. From Theorem 1, we know that the
state estimation error is asymptotically stable
if w,=0. For w,#0 consider the following
Lyapunov function of Vi(t)ze{(t)Piei(t),
differentiating this function with respect to
time and following from (11), (2) and Lemma
1 one has
V,=el N/ P+P,N,e+
+2e; P, M (D (x,,1)-D, (%, 1))+
+2 eZ-Pi(MiGi_KiDi)Wi_
—2e! P,H,D,w,<
<e; N/ P+P,N e+
+2e] P, M [0, (x,, 1), (3. )1+
+2 eiTPi(MiGi_KiDi)Wi_
—2e! P,H,D,w,<
Se[TNiTPl.+P,.Nl.eI,+
+2le] P, M [les]le I+
+2 eiTPi(MiGi_KiDi)Wi_
—2e; P,H,D,w,

(30)

We can continue the inequality in (30) using
Lemma 1 as follows

V,<e N/ P+P N, e+

T 2 2
vatflof Pt [+ e )+
+2 eiTPi(MiGi_KiDi)Wi_
—2e! P,H.Dw,= (31)

=e](N]P+P,N+a, P,M,M] Pra,l, e+
+2 eiTPi(MiGi_KiDi)Wi_
—2e] P,H, D,W,

Letting

J.=

i (efTef—MfW;WdL"'Vi(e))df—
(32)

V,(e)dt

© a8 o =33

Where Wd,:[;i] and from (31) we can

conclude (33):
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V= —u; 1 0 (34)

—U; ]n,

S=N;P+PN+a,P,M M P+

+Ha+1)I, (35)

According to the Lemma 2 and substituting (4)
and (10) in to (34), the inequality (24) implies
¥.<0 . Under zero initial condition we have

J.vi(e)d:Vi(e)>0. Therefore, from (33),
0

one has J,<0, indicating |le|,<-llw,|ll,.

This completes the proof.

4. Decentralized Fault Detection
and Isolation

While the actuator fault occurs in the i-th input,
the system described in (1) changes as the
following form

i (1)=4, xi+Bi(ui+fi(ui))+(Di(xi)+
+E b (f (), x,ul+Gw, (36)
y=Cx+Dw, i=1,2,...N

The unknown function f i(u,-(t )) represents the
actuator fault in the i-th subsystem. The
residual for each subsystem is defined as

ri(t)=y,(t)=3,(1)=y,(1)-C,(1) (37)

Since an UIO can estimate the states without
considering of the unknown inputs, it is
obvious that the residual » ,-(t ) remains within
a small boundary, known as threshold value
(7), if there is no fault. Otherwise, the residual
crosses the threshold value. We can conclude
that for each subsystem, if the Euclidean norm
of the residual is higher than the threshold
value ( ||7,(¢)>T,), the fault has occurred. The
magnitude of the threshold value depends on
disturbances, uncertainties, noises and inputs.
In addition to the fault, the exogenous
disturbance can cause nonzero residual.
According to the Theorem 2, as state estimation
error  satisfies lel,<~mllwll,, so if
lle,>w,|lwll, we can conclude a fault has

occurred. Hence when w;#0 a threshold shall
be defined such that

T>umlwl, (38)

Occurrence of the fault changes (11) as the
following form

e=N,e+M, ((I)i(‘xi)_q)i()%i))-'-
+(MiGi_KiDi)Wi_ (39)
_HiDiWi+MiBifi(ui)

While the fault occurs, if M;B; is nonzero the
residual signal will be nonzero. It can be
concluded from (4) to satisfy this condition we
should have

H,C, B #-B, (40)
All possible solutions of (40) can be written as
H#-B(C.B) +Y,(I,~(C,B)(C,B)") (41)

Unfortunately the sufficient condition for
satisfying (41) cannot be specified exactly due
to lack of specific ways for calculating the
value of Y.. We can define Y; inside the LMI to
get a value that is very proper for the purpose
of state estimation; however (41) may not be
satisfied. Hence, in this case we can try other
methods to define Y; (for example [18]) which
lead to the satisfying results.

When the function hi( flu),x, u) is decoupled
completely, the observer of each subsystem is
influenced by its own actuator fault. On the
other hand, in (36) only the term f ,-(u,-) has
effect on the i-th subsystem. As all subsystems
are decoupled completely and interconnections
have not any effect, each actuator fault affects
only its corresponding subsystem and therefore
the fault of each subsystem is isolated.

5. Example

With the expansion of the traffic problem,
automated highway systems have attracted a
lot of attention. It can reduce the number of
driving accidents by decreasing human errors.
In designing such systems, reliability and
safety are most important, and therefore
designing FDI for the automated highway
system is necessary.

According to [21], the longitudinal dynamics of
a vehicle-following system to maintain an
appropriate forward velocity and safe distance
is described by
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'I"l-ZV,-_V(H)
v, :mL (_Aip Vf_di+§i)

1

éi:‘[i(_éi-'-ui)

i

_|W.+p v
yl_ 1 c 1
"]

i

(42)

Where ¥ is the distance between the i-th
and the (i—1) -th vehicle, v; is the velocity of
i-th vehicle, & is the braking/driving force
applied to the longitudinal dynamics of the i-
th vehicle, m; is the mass of the i-th vehicle,
4,, is the aerodynamic drag, Pe is a positive
constant, d; is the constant frictional force and
T; is the engine/brake time constant. The
control input is u; where u,>0 describes a
throttle input and ;<0 describes a brake
input and y; is output of the i-th vehicle. As the
local diagnosers (UIOs) are decoupled
completely, the number of vehicles does not
matter. Here we assume there are three
vehicles and the values are as follows

m,=1300 kg,

A4,,=03Ns’Im’,

d,=100 N,

7.=02s (43)
0.=04,

v,2=10ml/ s

The system states are X, =%, x,=v, and
x;;=C, for i=1,2,3 . Based on the numerical
values of model parameters, the system is
described as follows:

0 0 1 0
. 1 1 0.3 >
x=/0 1 —|x+|——-—"= -
’ 1300 || 13 1300772
_0 0 -5 Su; (44)
-0 x(:—l)z
+o|/f(u.t)=| o
E 0
1 04 O .
,-—[0 0 l]xi i=1,2,3 (45)

In (44), X;_,), represents the second state
(velocity) of previous vehicle. The system
matrices in the form of (1) are as follows

0 0 1
TN I
A=l0 1 ——|, B=
=0 1300 | ° (5)
0 0 -5
1 0 (46)
E=[1300] | L 03 .
0 13 1300 '
0 0
hi:x([—l)z

The Lipschitz constant according to [10] is
a=0.0069 . Using Matlab LMI toolbox, the
minimum value of the disturbance tuning
parameter for each subsystem is obtained as
1, =0.0282 . The exogenous disturbance is
supposed to be w,=sin(107), hence in the
light of (38) the fixed threshold value is
calculated as 7,=.1679 . In addition, we
consider G,=I,,, and D,=1,, . After
solving the LMI defined in the Theorem 2, the
obtained gain matrices for UIO are as follows

—1 1
H=l0 0
[0 0
274 —2.14
K.=|0.74 0.25 (47)
2.54 —1.54
0 06
L=l0 1
0 1

As the fault only has the effect on the third
state and the value of this state is available,
here we  define the residual as
riy(t)=x,(¢t)=%,(¢) . Figure 1 shows the
effect of an actuator fault without any
disturbance on the first vehicle. In this figure,
the third state (braking/driving force) of three
vehicles on which the fault can affect it, have
been depicted. As expected the fault only
influences the first vehicle while for the other
vehicles the corresponding residual signals
are zero.

Figure 2 shows the effect of an actuator fault on
the second vehicle in the presence of the
exogenous disturbance. As indicated in this
figure, residual signals of first and third
vehicles do not show any fault and only a bit of
disturbance has been influenced.

Finally, three different actuator faults are
applied to the three vehicles, and the results are
depicted in Figure 3. As it is observed from this
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r23
o

33
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0 1 2 3 4 5 6 7 8 9 10
Time (sec)

Figure 1. Actuator fault on the first vehicle; solid:
fault signal, dashed: residual.

ri3
o

r23
o
e

33
o

Time (sec)

Figure 2. Actuator fault on the second vehicle in the
presence of the disturbance; solid: fault signal,
dashed: residual.

figure, three residual signals are good
representative of fault despite the presence of
disturbance.

ri3
o

23
o
/

r33
o
4

N ~ § X;*,///

Time (sec)

Figure 3. Simultaneous fault on the three cars in the
presence of the exogenous disturbance; solid: fault
signal, dashed: residual.

6. Conclusion

A novel decentralized approach for fault
detection and isolation of a class of nonlinear
large-scale systems is presented. Capabilities of
unknown input observers have been
investigated to decouple subsystems for
achieving FDI of large-scale interconnected
systems. A decentralized unknown input
observer using LMI technique has been
designed such that both the interconnection and
exogenous disturbance can be decoupled. A
simulation has been applied to an automated
highway system subject to the disturbance
shows the simplicity and effectiveness of the
proposed methodology for decentralized FDI.
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