
1. Introduction

For more than four decades, the issues of the

reliability  and  vulnerability  to  attacks  were

studied  for  computer  and  communication

networks (CCN),  mainly using graph models

and tools  [4],  [5],  [25],  [29].  More  recently,

similar  tools  have  been  applied  to

transportation systems in relation with several

infamous attacks in various countries [8], [19].

A large number of studies have been recently

devoted to the vulnerability of  transportation

networks [19], especially of subways [7], [9-

11], [32], [33] due to several attacks on them.

Many  of  these  studies  focused  on  the

vulnerability  of  nodes  and  edges  of  the

networks,  in  relation  with  the  network

topology,  and  proposed  indexes  of

vulnerability, sometimes weighted by flows; in

this  way,  the  models  for  computer  networks

were  directly  transposed  to  transportation

ones, without discussing the foundation of the

model extension from one type of networks to

another.  These  studies  have  no  evidence

support and remain largely disconnected from

the  real  life  situations;  moreover,  many  of

these studies use intuitive yet  qualitative and

vague  meanings  for  features  such  as

vulnerability, robustness, and resilience.

We critically revisit some of the concepts and

issues related to ‘vulnerability’ and concerning

specifically  transportation  networks;  new

network  indexes  are  proposed  that  have  the

potential  of  being  more  suitable  (Section  4).

Next, probabilistic models are suggested for the

attacks  and  for  computing  the  outcome  in

probabilistic  terms  for  attacks,  depending  on

the node properties (Sections 3-5).

The first set of contributions of this study is

theoretical;  in  obtaining  them,  the  method

applied  is  based  on  graph  analysis  and

probabilistic  approach;  tentative  speculative

models are proposed (Sections 3-5). A second

core contribution consists in binging evidence

for  the  derivation  of  models  for  key

probabilities  involved  in  the  analysis;

examples  are  presented  and  references  to

actual  transportation  networks  are  made  in

Section  6.  The  remaining  part  of  this

introductory  section  is  devoted  to  the

terminology related  to  graph  features  and  to

the general concept of vulnerability.

The organization of the paper is largely linear;

Section 2 reviews some graph models related to

vulnerability of networks, while Section 3 and 4

clarify aspects related to chains of effects and

the  related  probabilities.  Section  5  details  the

role of nodes and edges in the attack probability

of  networks.  A  model  based  on  seemingly

natural assumption is built in Section 6 and its

predictions are contrasted in Section 7 with the

evidence-based  models  for  attack  probability.

The last section contains conclusions.

2.  Graph Models and

Vulnerability Indices

There is  a large number of graph “measures”

usable for assessing the complexity of and for

characterizing the structure of networks, see a

subset of them explained in [3], [13], [14], [16],
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[18],  [21],  [23],  [30],  [31].  Many  of  these

parameters relate to the connectivity degree of

graphs, or on the centrality of the nodes; others

are  based  on  statistical  foundations,  such  as

entropy  and  Fisher  information  [1].  In  this

paper we avoid the name of “measure” because

some  of  the  definitions  of  the  involved

parameters do not  satisfy the requirements  of

the  definition  of  distance  (thus,  they are  not

metrics)  and  do  not  satisfy  the  defining

conditions for (sub-) additive measures. Recall

that a distance  d  is a two variable, positive-

valued real function; the distance between two

object x  and y  is defined by the properties (i)
d ( x, x)=0 ;  (ii)  d (x, y)=d ( y , x) ;  (iii)
d ( x, z)≤d ( x, y )+d ( y ,z)  (Archimedean

distance).  Also,  a  measure  is  a  set-variable,

positive  real  valued  function  μ  that  has  the

properties: (i)  μ (∅ )=0 ; (ii) is (sub-)additive,

that  is,  for  any countable  set  of  disjoint  sets,

Ak ,  μ (∪ k Ak)≤∑
k

μ (Ak) ;  (iii)  it  is  defined

on a  σ -algebra,  meaning that  the measure is

defined  on  complements  of  sets  and  on  any

countable  union  or  joint  of  measurable  sets.

Some  of  the  “graph  measures”  used  in  the

literature refer strictly to a single node or edge,

but reflect its relation with the rest of the graph,

and are thus far from any type of measure or

metric currently accepted.

For example, the degree of a vertex v∈ V  in

a  graph  G=(V ,E)  is  not  a  measure  or  a

metric  at  it  refers  to  a  single  vertex,  it  is  a

topological  feature  representing  the  vertex

vicinity  and  connectedness;  however,  the

absolute  value of  the difference  between the

degrees  of  two  nodes  is  a  distance.  On  the

other hand, the diameter of a graph is based on

the  distance  between  nodes,  defined  as  the

minimum number of edges from one node to

the  other,  when  all  paths  and  all  couples  of

nodes  are  considered  .  When  joining  two

graphs, the diameter of the new graph is less

or equal to the sum of the diameters of two of

its  subgraphs  (plus  1  for  the  joining  edge),

thus  satisfying  (sub-)additivity.  Yet,  the

diameter  of  the  graph  is  not  a  distance,  as

there is no such thing as the diameter of the

couple (G ,G )  to determine if the property (i)

above  holds.  The  use  of  the  confusing  term

“measure”  in  relation  to  graphs  probably

comes  from  the  use  of  the  parameters  in

assessing (quantifying)  the vulnerability of  a

network,  or  just  its  connectedness.  For

avoiding  confusions  and  improper  use  of

terms, we will use “index”, following [25] and

others,  in  connection  with  the  reliability  of

computer  and  transportation  networks;  this

term is better suited.

Another  misleading  issue  is  that  virtually  all

studies  relate  the  ‘vulnerability’ of  networks

solely  to  the  connectivity  properties  of  the

corresponding  graphs.  The  resilience,

vulnerability etc.,  cannot  depend  only on  the

topology of the network; it also depends on the

duration of recovery and the type of the attacks

and on their probabilities. The destruction of a

bomb attack  followed  by fire  is  much  larger

and requires much longer time of investigation

plus recovery, than an attack with a gun. Also,

several types of attacks have to be taken into

account,  each  with  its  own  probability.

Moreover,  the  architecture  and  structural

elements of the stations and their vulnerabilities

affect  the  overall  vulnerability  and  must  be

taken into account.

Compared to previous approaches, this one ours

is  essentially  statistical.  In  the  first  place,  a

distinctive  feature  of  the  approach  is  that  the

probability  of  the  attack  at  a  specified  node

depends  on  the  structural  (topological)

properties of the network. Next, several types of

attacks are considered. Fourth, the damage and

recovery times for various nodes is assigned as a

function  of  the  node  structural  and  material

(physical)  realization.  The  probability  of  the

propagation  of  the  attack  is  also  considered.

Next, probabilistic models are proposed for the

attacks and their consequences.

One of the limits of previous graph models of

transportation  networks  such  as  railway  and

bus networks is that they do not fully account

for the terminal  stations;  in fact,  each „final“

node has the possibility to turn the trains the

other  way around;  therefore,  these  nodes  are

defined by self-loops. Notice that, according to

this  definition,  final  nodes do not  necessarily

correspond  to  the  final  (end)  stations  in  a

transportation network; stations along the path

may have self-loops. Also notice that in case of

transportation networks where trains can travel

in  both senses  (either  having engines  at  both

ends, or having the ability to drive backwards),

the concept of self-loop is not required – all the

stations  may  be  considered  as  having  self-

loops.  Self-loops  on  the  ‘internal’  nodes,

standing  for  the  ability  to  drive  in  both

directions, significantly increase the reliability

of the system, compared to the case of trains
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with a single driving direction ability,  as they

allow  for  independent  operation  on  isolated

subgraphs, provided that any isolated path has a

self-loop  –  again,  an  issue  not  clarified  by

previous studies.

We will differentiate, along with Hernandez, and

Mieghem [18] between the class of topological

(structural)  metrics  and  the  class  of  service

metrics. On the other hand, we depart from their

definition  of  resilience,  which  is  in  fact  a

(inexplicit)  definition  of  robustness,  “The

project ([34]) defines resilience as the ability of

a  network  to  provide  and  maintain  an

acceptable level of service in the face of faults to

normal operation.”  These authors also tend to

make  no  distinction  between  robustness  and

reliability, “reliability has been the classical way

to quantify network robustness” (p. 10, [34]).

Most studies in the field have been preoccupied

with the refinement of the so-called “measures”

or “metrics” related to the connectivity of nodes

in graphs, with few dealing with elements of the

cause-effect relationship. Moreover, we were not

able  to  find  studies  relating  evidence  to  the

significance of the connectivity indexes, which

is a curious situation. The approach in this study

starts with the analysis of the causal chains and

next deal with evidence related to elements of

the causal chains.

3. Cause-Effect Chains of Attacks

The  discussion  in  this  study  follows  the

diagram in Figure 1, which presents the general

frame  of  the  cause-effect  chains  in  an  event.

The  attacked  target  may  be  a  transportation

network,  indiscriminate  choice  of  human

groups,  etc.  In  a  specified  transportation

network, the target can be a station, a line, or a

train. We assume that a transportation system is

the target; then, in Figure 1, the attack target is

restricted to stations, lines, and trains.

Example.  For  computer  and  communication

networks  (CCNs),  the  attack  target  can  be  a

data  center,  or  a  communication  line,  or  the

system(s) of a specific (group of) user(s), e.g.,

users  of  fitness  or  health  devices.  When  the

target is a server or a datacenter, the choice can

be made based on the centrality degree of it, for

example its data flow level, or its degree as a

vertex in the network. Once the minimal degree

is  chosen,  the  attacker  will  make  a  specific

choice  of  the  network  element  randomly  or

based  on  other  considerations.  Next,  the

attacker makes a choice of the type of attack,

for example among using spam to lure a user in

giving access, using malware infected sticks, or

monitoring and finding patterns in the traffic,

or searching faults in the encoding etc.

4. Probabilities

The  probability  that  an  attack  occurs  on  a

network,  pa ,  has to be estimated by experts,

based  on  the  overall  political  and  social

situation in the respective country and on the

regional or global contexts. This probability is

known to be highly dependent on time, as the

above  mentioned  contexts  may  fast  change.

The  conditional  probability  that,  if  an  attack

happens,  it  is  of  type
t∈ {vertex ,edge(line),carrier }  is denoted by

pt= p (t|a ) .  This  probability  should  be

estimated  based  on  evidence;  the  topic  is

discussed in Section 6.
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The probability pt  depends on several factors,

such as  time (epoch) and country.  The epoch

determines  what  kind  of  hacker  or  other

attacker  groups  are  active  and  on  their

representations and tactics.

The probability of the attack of type t  being

successful  is  denoted  by

pats=p (a=success|t ) p ( t|a) p(a) .  Next,  the

probability  that  the  attacked  element  of  the

network of  the specified type  (vertex,  edge,

or carrier) belongs to a specified subclass is

to be estimated based on evidence and on the

knowledge  of  the  tactics  of  the  potential

attackers.  Here,  the  subclass  may  be

characterized  by the  degree  of  the  vertices,

by their centrality, or by the flow on the edge.

This topic is  discussed in Sections  4 and 5.

The  probability  that  a  specified  element  of

the network is attacked is then determined on

the structure of the network; for example, if

the  network  includes  m  elements  in  the

given class  (e.g.,  m  vertices  with the same

degree d), the probability of choosing any of

those elements is  1/m .  Further, the resulted

degree  of  damage  to  the  network  and

consequently  the  time  of  recovery  differ

according  to  a  probability  distribution  that

depends  on  the  class  of  elements  as  above

discussed  and  on  the  characteristics  of  the

specified element, for example the structural

characteristics of the attacked station and its

capacity to withstand explosions.

The  overall  risk  of  the  network  at  a  given

moment is finally computed as the sum of the

risks  of  its  elements,  where  the  risk  of  an

element of being attacked and the average time

of recovery of the network are determined as

explained above.

5. Dissecting the Role of Nodes and

Edges from the Point of View of

the Attacks

The application domain and goal of the analysis

dictate the choice of measures of the network

that should be used. A communication network

and a spreading of infections are applications

that  significantly  differ;  in  addition,  the

interests  in  robustness  and  in  reliability  are

significantly  different  as  aims  of  the

calculations.  Therefore,  for  every  application

and  targeted  property,  another  choice  of

measures  is  probably  recommended.  As

explained by Piraveenan et al. [23], “it is not

always likely that contagion will spread along

shortest  paths  in  networks.  Indeed,

pathological infection is more likely to spread

randomly, where a person who is a ‘contact’ to

an  infected  person  is  vulnerable  to  infection

with a certain probability.”

An  irrational  attacker  may  choose  the  target

randomly,  attacking  with  uniform  (i.e.,  the

same)  probability  any  node  or  edge  of  the

network. In that case, the (statistical) structural

properties and flow properties of the graph are

applicable  for  determining  what  the  effect  of

the attack may be. For example, in this case, we

should be concerned about the probability that

a  node  or  edge  breaks  the  network  into

subnetworks,  about  how  many  such

disconnected graphs appear, and about what is

the  decrease  in  the  flux  through the  network

and what costs produces that decrease. Notice

that rational attackers may also act in this way,

when  trying  to  avoid  countermeasures  likely

protecting the most critical nodes and edges, or

when  trying  to  confuse  the  attacked  and  to

create  most  panic  and  psychological  effects

(disbelief, uncertainty). Also, the attacker may

wish to produce the maximal structural,  flow,

or cost damage. In this case, a rational attacker

would  strike  in  the  nodes  that  produce  most

structural  disconnection  in  the  network,

respectively the highest financial loss.

If  only structural  (topological)  damage  is  the

concern,  indices  of  damage  must  be  first

chosen.  Such  indices  may  be  the  number  of

disconnected graphs produced and the number

of  nodes  disconnected  from  the  remaining

largest  subgraph.  Subsequently,  we  will  use

these indicators.

The topology of the graph may be regarded as

composed of three main “elementary” blocks:

“stars”, “loops” (rings) and “whiskers”, the last

being  strings  of  at  least  two  vertices,  all  2-

degree, except the terminal ones, connected one

to the other.

Stars are simply nodes with at least two edges;

they  are  important  because  of  their

interconnection role. Nodes connected only to a

star become detached by cutting a single edge.

When  two  stars  are  connected,  they  form

multiple  paths  between  their  neighbors,  see

Figure  2.  Loops  are  important  because  they

may bind together stars and whiskers and create

alternative paths between non-adjacent  nodes.
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At least two edges must be broken or two nodes

deleted to disconnect the loop. When there are

multiple imbricate loops, the structure is more

difficult  to  disconnect.  Smaller  are  the loops,

smaller is the probability that one of their edges

or nodes is damaged by a random attack on the

graph. Loops improve the connectivity stability

between distant nodes allowing for more paths

between them.

‘Whiskers’,  which  will  be  named  isolated

paths,  are  strings  of  nodes  and  edges  that

connect  only between  themselves,  each  node

having  at  most  two  neighbors.  They  are

‘vulnerable’  because  a  single  node  removed

produces a disconnected graph.

The ratio ρ1=
nstar

|V|
, where nstar  is the number

of stars in the graph, may be a good indicator of

the connectedness strength of the graph. Also,

the  ratio  ρ2=
nloop

|V|
 is  an  indicator  of  the

connectivity  of  the  graph.  Therefore,  ratios

such as  
ρ
1
+ρ

2

2
=

nstar+nloop

2|V|
 and  √ ρ1

2
+ ρ2

2  can

be  used  as  compact  connectedness  strength

indicators. Instead,  ρ3=
nwhisker

|V|
, where nwhisker

is the number of nodes in whiskers, shows the

level  of  weakness  in  connection.  Again,  one

may  wish  to  compress  the  three  in  a  single

index,  for  example  as  ρ4=
ρ
1
+ ρ

2

2
−ρ3 ,  with

networks  with  negative  values  of  ρ
4  being

highly sensitive to disconnection by attacks.

Example.  Bucharest  metro  has  six  stars

(Basarab,  Piata  Victoriei,  N.  Grigorescu,

Dristor, P. Unirii, and Eroilor) and the largest

vertex degree is 4. It has a single loop and six

whiskers. The number of vertices is 4 on the

green line (stations on two lines are counted

once; here Gara de Nord and Basarab are not

counted),  one  on  the  black  line  (Republica-

Pantelimon), 12 (exclusively) on the blue line,

8 (exclusively) on the red line, and 20 on the

yellow line that also forms a loop. Therefore,

|V|=45 ,  ρ1=
6

45
,  ρ2=

1

45
,  and  ρ3=

6

45
.

Notice  that  ρ
4  has  a  negative  value,

ρ4=−
2

15
.

As  shown  in  Section  6,  evidence  indicates

that  stars  are  the  main  attack  targets;

empirical  data  do  not  indicate  a  specific

interest  for  the  loops.  As  a  final  remark,

whiskers  are  frequent  on  transportation

networks and were frequent on old telephony

networks,  but  they are  almost  missing  from

current  computer networks;  therefore,  ρ
3  is

not significant for the latter ones.

6.  Models for Attack, Costs

and Resilience

Subsequently,  we  refine  the  relation  of  the

connectivity  indexes  with  the  attack

probability calculations. First, we need to state

the problem, namely, to decide if the interest

is in the computation of the robustness, of the

resilience,  or  of  whatever  feature  of  the

network  is  of  interest.  Next,  we  have  to

specify the assumed strategy that the attacker

will  adopt.  We  assume  that  the  strategy  is

“attack  the  node  that  is  the  most  important

topologically”.  We  need  to  adopt  one  of

several reasonable models for the parameters

of  the  robustness  or  resilience;  there  are

several definitions and approaches for that, for

example [2], [15], [20], [22], [26-28], [34], to

name  but  a  few.  The  model  should  be

completed  by  including  definitions  of  the

involved  probabilities,  of  the  factors  the

parameters depend on, on the losses, and the

models  that  connect  the  probabilities  and

losses to various factors.

The  probability  of  attack  of  a  node  n  may

increase  (for  example,  linearly  or

exponentially)  with  the  γ  power  of  the

connectivity degree of a node, up to a constant

that is network-specific:

pa (n=ν )=AN e
−
1

aN
( 1

c (ν )
−μ)

γ

where N  stands for the graph of the respective

network,  ν  for  the  specified  node,  c  is  a

measure  of  connectivity  or  a  measure  of
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centrality  of  the  nodes,  and  aN  is  another

parameter of the network. The model is based

on  the  unverified  assumption  that  the  more

connected  or  central  nodes  are,  the  more

compelling they are for attack, because the gain

to cost ratio is the highest for them. In addition,

another  assumption  specific  to  this  model  is

that  the  attack  likeliness  (attractiveness)

increases  exponentially  with  the  centrality

index. Both hypotheses remain to be proved or

rejected.  This  general  exponential  model

includes the Gauss distribution with average μ

and  other  exponential  distributions,  including

the typical exponential one, p (x)=A e
−

x

a .

Notice  that  the  cost  of  the  attacker  is

multidimensional and consists of the number of

lives lost and the cost for training, equipment

used and lost, etc. Also, one may assume that

the cost is roughly proportional to the number

of attackers. The gain of the attackers is equal

to the loss of the attacked entity and includes

loss of lives, damage or loss of facilities, costs

of the subsequent investigation, cost of rescue

operation  (for  law  enforcing  forces,  rescue

entities,  medical  system),  operational  losses

until  the  attacked  system  fully  resumes

operation,  loss  of  prestige  and  related  future

customers, etc.  The essence of the success of

hacker terrorist group is due to the high ratios

gain  vs.  costs,  both  in  monetary  and  in  life

costs, whenever the attacked is ill prepared.

An  alternative  speculative  model  is  that  the

node  is  more  probable  of  being  attacked

according to a linear law,

pa (n=ν )=AN c( ν

aN
)

where the factor  A N  includes a normalization

factor.  One can further speculate that  another

model is based on the traffic through the nodes;

specifically, the probability of attack of a node

n  increases with the traffic  Θn in that node;

specifically, the increase is with the power θ of

the traffic,  pa (n )=Ae

Θn
θ

b
.  With this model, the

cost of the attack of type ai  is

⟨C (n , ai)⟩=⟨∑
n

❑

pa i
(n) pai=s (ai) pai

(ai , Λ)⟩
⟨C (n, ai )⟩=⟨ Ae

Θ
n

θ

b AN e
−
1

a
N
( 1

c (ν )
−μ)

γ

pa i=s (ai , n) pa i
(ai , Λ )× Λ ⟩

The  product  pa i=s(ai)pa i

(ai , Λ)  can  be

estimated  by  attack  prevention  exercises  and

tests  on  scaled down models  of  the  network.

Assuming that the attacks are of small, discrete

number  of  categories,  for  a  specified  couple

(n ,ai) ,  A e

Θn

θ

b AN e
−
1

aN
( 1

c (ν )
−μ)

γ

and  the

probability  of  success  in  the  node  n ,
pa i=s(ai ,n) ,  are  constants.  Therefore,  the

average cost for the node n  is

⟨C (n, ai)⟩=A e

Θn

θ

b AN e
−
1

aN
( 1

c (ν)
−μ)

γ

pai=s (ai ,n)×

×∫
0

Λ

Λ∙ pai
(ai , Λ)d Λ .

Notice that the cost  Λ  represents the overall

cost for the network (and the entity at large),

not the cost of destruction at the node site.

However,  the  above  tentative  models,  which

look  reasonable  for  both  transportation  and

communication  networks,  are  only  a  guess,

which  proves  to  be  only  partly  correct,  as

shown in the next section.

7. Evidence-based  models  for  the

probability of attack of vertices

as a function of graph indexes

Attacks  on  computer  networks  and

transportation  systems  are  not  new  and  not

restricted to a specific country or continent. A

compilation of data in 2010 (at [35]) indicates

that most attacks occur in Pakistan, India, Iraq,

Turkey and Israel, Columbia. Interestingly, the

evidence comes mainly from non-official  and

non-scientific  sources,  such  as  media  and

public  compilations  of  the  data  from  media,

such as Wikipedia. This is due to the lack of

technical  details  publication  by  the  local  or

national  authorities  that  investigated  the

respective attacks and to the lack of reporting

scientists during the time and at the scene of the

investigations.  The  data  show  that  Europe,

particularly Italy, France and UK in the 1970s

and 1980s, Russia and France in the 1990s, the

2000s,  and  the  2010s  have  seen  frequent

attacks on trains and subways.

For  providing  a  minimum  insight  on  the

probabilities,  based on evidence, we collected

the data since 1960 on the attacks on the rail

and subway transportation systems around the

world. The fortunately few data do not offer a

sound statistical basis for deriving conclusions;
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therefore, the results in this Section should be

used with high reservations.

The statistics compiled leads to the distribution

of attacked stations in relation with the vertex

degree as  shown in Figure 3.  Notice  that  we

used  only  the  degree  of  nodes  attacked  as

parameter of the probability, but after dividing

the vertex degree to the maximal degree in the

graph; in this way, we obtained a single range
[0,1]  for  the  relative  degrees,  making  them

comparable across different  graphs.  To fit  the

data,  several  models  have  been  attempted,

including  linear,  polynomial,  and  logarithmic

ones,  but  with  limited  success.  The  model

based on polynomial regression is

p (d )≈−0.5d2+3.5 d−2

with  R
2=1  (the  third  power  of  d  was

neglected, as it has a very small multiplicative

constant).  The  obtained  logarithmic  model

(based  on  log  regression,  using  log  link

function) is

p (d )≈2.292 lnd+1.179

with  R
2=9.49 . The logarithmic model seems

better justified than the polynomial one. At this

level of rough analysis, there is little reason to

use more intricate vertex indexes, because the

vertex  degree  index  already  provides  a  high

R
2  value ( R

2=0.95  for the logarithmic model

and  R
2=1  for  the  polynomial  model).  In

consequence, we are justified to argue that the

extant statistic data makes futile the theorizing

on  complicated  and  computationally  time-

consuming  indexes  such  as  centrality,

betweeness, and aggregated indexes.

Figure 3. Empirical probability distribution and

approximations

On the other hand, running a regression on the

cumulative function, one obtains

p
C

(d )≈0.0208d 2+0.2042d−0.1458

with the value of the coefficient of goodness of

fit  (coefficient of determination)  R
2=0.9993 ,

which  makes  the  second  or  third  order

approximation of p (d )  less credible.

The finer grained histogram in Figure 4 shows

that  the  linear  and  logarithmic  models  are

wrong;  a  high  order  polynomial  (6th degree)

performs acceptably ( R
2=0.88 ),  but  this  has

little meaning.

The approximation of the distribution of vertex

degrees  for  attacked  stations,  with  histogram

forced  to  six  intervals  (fine  grained)  was

attempted with polynomials of various orders.

The best  fit  was obtained with  R
2=0.84  for

the fifth degree polynomial

p (d)=0.0212d5−0.3876 d
4+2.6129d3−

−8.059d2+11.329d−4.8058 .

Figure 4. Relative frequencies of the vertex degree

of the stations related to attacks (1970-2016), in a

forced finer grain histogram. The horizontal axis is

the relative degree of the node, that is, the degree of

the attacked node vs. the maximum degree of a node

in the respective network.

For  avoiding  approximation  errors  and

rechecking  the  logarithmic  model  (which

may  have  some  intuitive  support),  the

absolute  frequencies  have  been  added  to  1

(for evading  log 0 )  and then the logarithms

were  computed.  The  results  were  tested  for

linear regression, which is obtained as having

the slope 0, in agreement with a possible log

model,  but  the  value  of  R
2  is  almost  0.

Again,  the  closest  approximation  is  a

polynomial  with large degree (four),  but the

value of  R
2  is  poor.  This  result  is  justified

by the shape of the histogram in Figure 4; in

fact, Figure 4 point toward a mixture of two

distributions,  with  an  easy  to  find

interpretation.  Further  details  and  a  viable
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model  can  be obtained  from the  author,  see

the  ending  note.  Interestingly,  we  found  no

case  when  whiskers  are  attacked;  instead,

stars of degree 3-8 have been attacked in all

cases. Based on this remark, we believe that

the index ρ
1  is worth studying in the future;

also,  the  above  observation  indicate  that

networks  with  a  large  number  of  stars  are

more  difficult  to  protect,  although  they  are

also more difficult to disable.

8. Conclusions

This  paper  argued  in  the  first  place  for  a

consistent  use  of  the  concept  of  attack

probability  and  risk,  based  on  sound

probabilistic  approaches.  A  causal  analysis

produced the splitting of the overall probability

determination process into a number of causal

steps and the related conditional probabilities.

The estimation of some of these probabilities,

such as the one of the attack and the conditional

probability of type of attack remain based in on

estimation by experts. Some other probabilities,

such  as  the  one  that  the  attack  produces  a

certain level of damage to the building (station)

or equipment (e.g., lines) can be determined by

specialized computations and experiments.

Many  remarks  exposed  in  Sections  2-5  are

valid  for  both  transportation  and

communication  networks.  The  fortunate  lack

of  statistics  makes  difficult  to  check

theoretical models of specific types of attack,

or in relation to the type of vertex and edges.

Consequently,  playing  with  sophisticated

models  and  vertex  indexes  remains  an

instructive, but of little use academic exercise.

An  interesting  future  research  topic  is  to

determine  attack  probabilities  for  large

sections  of  the  networks,  after  it  was

decomposed  into  key parts  using  one  of  the

known  effective  algorithms,  such  as  [17].  A

more complex analysis than the one reported

here  is  possible,  but  we  feel  that  it  is

undesirable  to  publish  it.  Complete

information on this study is kept available for

interested parties.
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