
1. Introduction

Buildings  are  responsible  for  40%  of  energy
consumption and 36% of CO2 emissions in the
EU.  The  European  Performance  of  Building
Directive has set a target for all new buildings
to be near zero-energy consumption by 2020.
In France thermal standards RT2012 have been
set to reach these directives.  The RT2012  [14]
aims to decrease the level of CO2 emission for
new  buildings  while  the  RT2015  aims  to
optimise and to reduce the energy consumption.
The  reduction  of  energy  consumption  in
buildings, called the EE (Energetic Efficiency),
depends  on  a  set  of  elements  such  as  the
building’s  orientation,  the  geometry,  the
insulation, the thermal mass and also of AEE
(Active Energetic Efficiency) elements, such as
intelligent lighting and of course the conception
of  a  better  performing  HVAC  (Heating,
Ventilating,  and  Air  Conditioning)  regulation
and  management.  In  Northern  Europe,
developing  high  performance  and  intelligent
heating systems has become crucial in order to
reduce  energy  consumption  [2].  In  France,
electric heating is the main energy consumer in
buildings with 70% represented by residential
housing [16]; which justifies the development
and the integration of smart-heating regulators.

Many researchers try to find the most adapted
solutions for energy management in buildings.
Some  are  focused  on  energy  consumption

reduction in  public  buildings [3,  8  & 12].  In
[13] the authors deal with reducing the daily
energy costs in household management without
affecting the user’s comfort; they consider the
occupant’s expectations as well as the physical
constraints,  such  as  energy  prices  and
limitations  of  the  renewable  energy  power.
Other projects [4, 15] have been conducted in
this  context  to  evaluate  the  performance  of
existing  control  systems,  to  test  new
approaches  and  their  influence  on  energy
consumption as well as on the daily lives of the
occupants.  In  [6,  7]  the  Artificial  Neural
Networks (ANN) are used to analyse data from
different sensors in order to maintain a stable
and comfortable temperature in the building. In
[11]  the  researchers  have  adapted  a  neural–
fuzzy system for the HVAC system in order to
collect  internal  data  dynamically  and
automatically  and regulate  the  temperature  to
reach an optimal level of thermal comfort.

A building is a dynamic system; it is in permanent
interaction  with  its  internal  and  external
environment.  Its  modelling depends on internal
factors, such as occupation,  thermal convection
between the different rooms and thermal transfer
due to the lighting and electrical appliances, and
external ones such as the exterior temperature, the
wind speed and direction and the orientation of
the  room  with  respect  to  the  sun.  These
considerations  lead  us  to  incorporate  the
meteorological impact on the building in order to
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propose a model that is as complete as possible.
Weather  forecasts  have  been  integrated  in  the
regulation  of  heating  systems  based  on  a
predictive control strategy [17] for an automated
room (IRA: Integrated Room Automation). The
different simulations show that the integration of
data  from  weather  forecasts  with  a  stochastic
MPC  approach  provides  interesting  results  in
terms of energy savings.

Another significant aspect is the presence of the
occupant and the nature of his activity in the
building.  These  are  essential  factors  as  they
contribute directly to the energy efficiency of
the  building.  The  authors  in  [15]  have
presented the occupation of the building as a
dynamic vector  that  will  be integrated  in  the
cost function of the predictive system. In [21]
the  authors  have  presented  an  interesting
method to handle the occupancy of housing. It
integrates  the fact  that  the  occupancy can  be
perturbed and deviate from any given planning.

In this paper the reader will see how we tackled
and succeeded in reducing a heating system’s
energy consumption by processing and fusing
heterogeneous numerical data in order to take
predictive  and  sensible  decisions  whilst
maintaining the user’s desired comfort level.

The paper  is  organized as  follows:  Section 2
rapidly  outlines  our  contribution.  Section  3
briefly  introduces  the  belief  theory  and  the
TBM  model.  In  section  4  our  approach  is
detailed.  Several  simulation  case  studies  are
presented and discussed in section 5. Finally in
section  6  we  discuss  the  reliability  of  the
proposed system by comparing it to a weighted
mean method. Then we conclude the paper.

2. Contributions and Objectives

The main objective of the proposed method is
the  reduction  of  energy  consumption  by
maintaining  the  occupant’s  desired  comfort
level. We will focus on smart homes equipped
with several sensors. For simplicity and without
loss of generality we will limit our study to the
case of only one occupant in one room. We will
use the belief functions to propose a data fusion
system  that  integrates  data  from  weather
forecasts, occupant’s activity, clothing as well as
the room’s occupancy.  The fusion of the cited
data  will  be  translated  into  contextual
consignments, which will  be introduced into a
control system that regulates the heating system.

The  main  contribution  of  this  article  is  to
propose  a  solution  to  process  and  to  fuse
heterogeneous  numerical  data  issued  from
sensors. The decision making that we propose
is  also  semantic  (not  numerical)  so  that  the
appropriate uncertainty is calculated contrarily
to the case of probabilistic or Fuzzy methods.
This  is  also  an  interesting  part  of  our
contribution  as  the  quality  of  the  decision
making has to be taken into account to make an
appropriate  regulation  of  the  Smart  and
Predictive Heating System SPHS.

3. Preliminary Notions

3.1 Dempster-Shafer Theory

The  Dempster-Shafer  Theory  known  as  the
evidence theory was introduced by Dempster in
1967 and improved by Shafer in 1976 [19]. It is
a powerful mathematical tool to model and fuse
uncertain  and  inaccurate  data.  The  evidence
theory is widely applied in different fields such
as word sense disambiguation, postal addresses
recognition and deficiency detection in sensors
[9,  10  & 12].  The  asset  of  this  theory  is  its
flexibility  to  model  the  information  and  its
ability to represent the ignorance with a clearer
and  more  efficient  method  than  the
probabilistic functions. We define the Frame of
Discernment (FoD) Ω as a set of N hypotheses
that  represent  the  exhaustive  and  exclusive
solutions to the problem.

Ω={H 1 , H 2 ,…, H N }
with H i∩H j=∅ ; ∀ i , j∈N and i≠ j (1)

We define the power set 2Ω = {A/AΩ} which
presents  the  hypothesis  and  all  their
disjunctions 2Ω= {Ø, H1,…, HN, H1∪H2,…, Ω}.
Thus we present the element that characterises
the theory of evidence i.e. the mass function or
the  Basic  Belief  Assignment  (BBA)  of  each
element of 2Ω by:

m : 2Ω→[0,1 ]
A→m( A)

with∑A⊆Ω
m( A)=1

(2)

3.2 The Transferable Belief Model

In  this  article  we  will  consider  a  particular
aspect of the evidence theory; the Transferable
Belief  Model  (TBM)  which  is  a  model  for
quantifying  our  degree  of  belief  that  some
propositions of  the power  set  2Ω  are true and
that only one of the elementary propositions of
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Ω is true [20]. The mass of conflict in the TBM
can be m (Ø) > 0 unlike the theory of belief that
supposes that m(Ø) = 0. The TBM is based on a
two-level  model:  the  first  level  is  the  credal
level where the beliefs are modelled, combined
and updated,  whereas  the second level  is  the
pignistic  level  where  the  beliefs  are
transformed to pignistic probability (BetP) and
used to make a decision [20]. To fuse different
sources  of  information,  we  combine  beliefs
linked  to  each  expert  with  a  conjunctive
combination  known  as  the  TBM  conjunctive
rule .We associate the mass m1 to the source1
of information (i.e. expert 1) and the m2 to the
source 2, the combination is as follows:

∀ H i∈2
Ω

;
(3)

m1,2(H i )=∑A∩B=H i

M 1(A). m2 (B)

And the mass of conflict is defined as:

(4)

The pignistic probability is given by [21]:

BetP (Y )= ∑
A⊆Ω ,Y ∈A

m(A)
|A|(1−m(∅))

(5)

In  our  current  study,  we  will  consider  the
maximum  of  pignistic  probability  to  make  a
decision  [33],  as  it  is  the  best  compromise
between  the  maximum  of  belief  and  the
maximum of plausibility.

3.3 Discounting

The  information  given  by  each  source  has  a
degree of reliability, therefore we introduce the

reliability  index  α∈[0,1]  [20].  This
discounting technique allows us to determine the
credibility of the masses provided by an expert:

{m(A)=(1−α)m( A)
m(Ω)=α+m(Ω)(1−α)

(6)

4. Description of the Method

The  objective  of  this  study  is  to  ensure  the
thermal  comfort  of  the  occupant  and  reduce
energy consumption. To do so, we need to find
the  best  compromise  to  manage  these  two
paradoxical criteria. The theory of evidence is
used  to  analyse  and  merge  different  data  in
order to propose a decision (temperature trend)
that  will  be  a  contextual  reference.  The
contextual  temperature  trend  is  sent  to  the
(SPHS). The Control aspect is not discussed in
this paper.

4.1 Proposed model

As discussed in section 2, our habitat model is
equipped  with  several  sensors  which  inform
about the occupancy prediction, the activity and
the thermal comfort state in the house, as well
as the weather forecast. This information has a
direct influence on the “Comfort Mode” switch
of the SPHS. When the “Comfort Mode” is off,
this  signifies  that  the system will,  a  priori,  if
nothing  changes,  reach  the  “Eco  Mode”
(usually  “Comfort  Mode”  minus  3°C).  We
propose a multilevel fusion system of previous
data presented in the structural diagram given
by Figure 1. Our design is in two fusion levels;
the first one has for objective to associate the
different sources of information, and the second
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Figure 1. Structural diagram of fusion (see Table 3 for abbreviations)

C*: A condition for the expert’s activity and clothing that will only be considered in the fusion system if the habitation is occupied; i.e.
E=1 given by the Presence sensor (Ps)



one aims to  generate  the  “temperature  trend”
that will  be inserted into the SPHS.  The first
level  is  subdivided into three blocks (B1,  B2
and B3).  We proceed to agglomerate data for
each  block  independently.  Each  block  is
subdivided  into  three  parts:  the  sources,  the
fusion, and the decision part. Every source of
information  gives  an  exhaustive  and  an
exclusive set of masses (BBA §3). We fuse the
different  masses  with  the  conjunctive
combination  rule  (equation  5).  Then,  the
decision  will  be  made  according  to  the
maximum  of  pignistic  probability  criteria
(equation 7). In section 4.2, we will present the
details  of  each fusion block B1, B2,  and B3.
Moreover,  each  block  Bi gives  a  decision  Di

with  i∈{1,2,3 } ,  so these three decisions will
give us the essential information to model the
new  sets  of  masses  for  each  expert  in  the
second level. All this information represents the
pignistic  probabilities  of  each  singleton
associated  with  its  respective  FoD.  The  final
decision (FD) results from the fusion with the
TBM of the sets of masses of the three sources
(the occupancy expert, the comfort expert and
the  weather  expert).  The  FD  produces  a
contextual and predictive trend (i.e. reference)
that will be the input of the SPHS.

4.2 First fusion level

Every fusion block in the first level (see Figure
1)  is  composed  of  several  sources  of
information that represent the experts for each
block  (i.e.  gives  its  opinion  on  the  data  and
defines the BBA). The input of the first fusion
level is  the masses linked to each element of
their FoD (i.e: Ω1, Ω2 and Ω3, see in Table 1).
We define  these  masses  arbitrarily  and  we
respect  the  intervals  and  logical  values
specified in the scientific literature in regards to
each expert.

4.2.1 Block B1: Occupancy

B1 is the occupancy fusion block; it has three
independent  information  sources  or  experts:
the in/out sensor, the weekly schedule and the
activity of occupant sensors known as expert
occupancy 1, 2 and 3 respectively. The fusion
of  the  three  experts  gives  a  decision  on  the
occupancy state of the room. This information
will be used later in the second fusion Level
section. We will detail each expert of the block
B1  with  FoD,  Ω1=  {O,  Un,  So,  Su}  that
means  {Occupied,  Unoccupied,  Soon
occupied, Soon unoccupied}.

Expert  occupancy  1:  The  information  is
provided  by  a  passive  infrared  sensor  (PIR
sensor). This expert gives its opinion based on
the output (E) of the presence sensor (Ps): (E=1
if the room is occupied and E=0 if not)

Expert occupancy 2: presents its opinion based
on the variation of habits revealed in the fixed
weekly  schedule.  This  schedule  is  sampled
every 30 minutes throughout the week and the
masses  are  assigned  depending  on  the  prior
presence of the occupant in the house.

The Monday’s BBAs according to the weekly
schedule are presented in Figure 2.  The mass
distribution between 7 and 8.30 a.m undergoes
several  variations.  The  mass  distributions  are
adapted  to  the  different  unexpected  events
(schedule changes). In addition, the room must
be preheated if the occupant is  coming home
soon and we need to turn down the heat slowly
if  he’s  leaving  the  room  soon.  This  will  be
treated  in  a  further  work  with  a  machine
learning  system.  Meanwhile,  if  we  have
unexpected  events  (i.e.  the  occupant  comes
home earlier or later than expected…) that we
obviously didn’t plan in the schedule; this will
generate a disturbance when we fuse the three
experts  which will  be modelled by a  conflict
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Table 1. Abbreviations used in the Figure1

Blocks
Sources

B1: Occupancy B2: Thermal comfort B3: Weather forecast Heat management 

The inputs: 
Sources of 
the fusion 
system

Sc: Schedule
Ac: the occupant’s 

activity
Ps :Presence sensor: 

In/Out (E)

Tc: comfort Temperature(°C)
Rv: Relative air velocity(m/s)
Rh:   Relative humidity (%)
Clo: Clothing (clo)
Ac: the occupant’s activity

T: Temperature (°C)
W: W (Km/h)
N: Nebulosity (%)
P: Precipitation(mm) 

Expert1: Occupancy expert
Expert2: Thermal comfort 

expert 
Expert3: Weather expert 

The outputs:
Frame of 
Discernment

Ω1= {O, Un, So,Su}
O: Occupied
Un: Unoccupied 
So: Soon occupied
Su: Soon unoccupied

Ω2= {TC, Comf, TH}
TC: Too cold
Comf: Comfortable
TH: Too hot

Ω3= {H, C, N}
H: Hot
C: Cold
N: Nice

Ω= {Inc, Dec, St}
Inc: Increase
Dec: Decrease
St: Stable



mass. Despite this disruption, we will succeed
in obtaining a satisfactory decision on the state
of  occupancy  of  the  room,  as  the  Dempster-
Shafer  theory,  and  specifically  the  TBM,  has
the adequacy to solve this problem. (Simulation
examples are in section 5).

Expert occupancy 3: We have different sensors
installed in the house that provide the required
information to identify the occupant’s activity.
These sensors  will  give us  an idea about  the
activity of the occupant when he’s at home, it
can inform us if he’s getting ready to leave or if
he’s staying home for a long time.

4.2.2 Block B2: Thermal comfort

The thermal comfort is defined in [1] as “a state
of  satisfaction  of  the  body against  the thermal
environment”.  The  concept  of  comfort  varies
from one person to another and different statistic
studies  were  carried  out  on  representative
samples  of  people  to  establish  the  different
aspects of the thermal comfort criteria. Thus, in
ISO  7730-2005  «Ergonomics  of  the  thermal
Environment  --Analytical  determination  and
interpretation  of  thermal  comfort  using  the
Predicted Mean Vote (PMV) and the Predicted
Percentage  of  Dissatisfied  (PPD)  indices  and
local thermal comfort criteria» we can distinguish
the intervals of different environmental features
that define the state of comfort or discomfort of a
person  in  a  given  ambience.  We  use  different
sensors to gather the information for each source.

The  room  temperature  is  measured  by  a
thermometer. The relative velocity and humidity
is given by the controlled mechanical ventilation
(CMV) installed in the room. The clothing expert,
however,  is  provided  by  ISO  7730  -  2005,
according  to  the  season  and  the  activity
information.  In  our  study,  the  following inputs
(experts) of B2 are: -- The temperature of comfort
(Tc) in Celsius --The relative humidity (Rh) in
percentage --The relative air velocity (Rv) in m/s
--The  clothing  (Clo)  in  Clo  index  from
clothingand the activity (Ac) in met index from
human metabolic activity (ISO 7730-2005).  The
FoD for B2 is Ω2= {TC, Comf, TH}, meaning
{Too-Cold, Comfortable, Too-Hot}. Considering
the  values  revealed  in  ISO  7730-2005  we
transform  the  numeric  data  of  the  different
parameters  of  comfort  into  a  set  of  masses
assigned to our FoD as shown in Figure 3.

4.2.3 Block B3: Weather forecast

We will  use  the  data,  provided  by  the  latest
version of the weather model AROME [18] for
the  fusion  of  block  B3.  The  nebulosity
influences the temperature in the building  and
outdoors  during the day and the  night.  Thus,
our  «temperature  expert»  will  depend  on  the
variation  of  the  nebulosity.  We  specify  an
interval  for  each  temperature  value  and  we
attribute a function to define the masses in that
interval.  Since AROME gives  new prediction
values every 3 hours, the fusion for block B3
will be repeated every 3 hours.
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Figure 2. The Monday schedule

Figure 3. Masses assigned to the temperature of comfort expert



4.3 Second Fusion Level

The second fusion level consists of the fusion
of  the occupancy expert,  the  thermal  comfort
expert  and the weather  expert,  resulting from
the fusion blocks (B1, B2 and B3). We present
the data processing to  define the new sets of
masses  (BBA)  as  follows:  we  assign  each
previous  result  to  the  FoD  of  the  heating
system: Ω = {Inc, Dec, St}, means {‘Increase
the  heating’,  ‘Decrease  the  heating’,  ‘stay
Stable’}. A mass function is defined based on
the  previous  pignistic  probabilities  and  the
mass  of  ignorance  m(Ωi),  i∈{1,2,3}  resulting
from the first fusion. The second level of fusion
does not  produce a temperature reference but
only a predictive trend on the temperature (next
sampling time). In other words, the data fusion
system  prepares  the  SPHS  to  the  next  event
according to the indoor temperature reference,
e.g.  pre-heating,  soft  transition  from  “Eco-
Mode”  to  “Comfort-Mode”,  temperature
reference  modulation  according  to  the
occupant’s activity.

For  example,  we  present  the  set  of  masses
(mweather)  generated  from  the  weather  forecast
expert which gives its opinion on the state of
occupancy in the first fusion level:

{
mweather( Inc)=BetP(C )−

m (Ω3)
3

mweather(Dec)=BetP (H )−
m (Ω3)

3

mweather(St )=BetP (N )−
m(Ω3)

3
mweather(Ω)=1−(mw ( Inc)+mw (Dec)+mw (St))

(7)

5. Case studies–Simulation Results

In this section, we will show the efficiency and
reliability of the approach we proposed to fuse
heterogeneous,  erroneous  and  uncertain  data.
The  final  decision  provides  a  contextual
temperature trend which is a kind of predictive
temperature reference, in order to manage the
SPHS.  The  main  idea  is  to  perform different
simulations  in  a  one  day  period  to  test  the
performance  of  our  fusion  system.  We  will
consider “Monday” as a regular workday of the
week during which unexpected events could of
course occur. In addition, we will consider the
schedule presented in fig 2 as our data base for
the occupancy planning given by the occupant,
and we will vary the other parameters such as
the weather and the thermal comfort parameter

to test their influence on the fusion system. For
each  scenario,  we  will  define  the  different
parameters’ values for each fusion block (B1,
B2  and  B3)  to  obtain  the  results  of  the  first
fusion level.  Then, the masses for the second
fusion level will be automatically generated for
each expert as stated in section 4.3.

5.1 Scenario no. 1

In this scenario the occupant is getting ready to
go outside.  The  data  of  different  sources  are
presented in Table 4.

Table 4. First scenario’s parameters

B1:Occupancy B2: Thermal 
comfort

B3: Weather 
forecast

Day: Monday
Time: 8–8:30 
am
Ps: E=1
Ac= 1.2 met

Tc=22°C,
Rh=34 %
Rv= 0.26 ms-1

Clo= 0.7 clo
Ac=1.2 met

T=5 °C
W= 40Km/h
N= 62 %
P= 4.5 mm

After  we  implement  the  different  data  in  the
fusion algorithm based on the belief theory, we
have the pignistic probabilities of each block as
presented in Table 5.

Table 5. First fusion level of the scenario No.1

B1: BetP(O) = 0.0768 BetP(Un) = 0.1953
BetP(Su)= 0.7173 BetP(So) = 0.0105
m(Ø) = 0.3359

B2: BetP(TC)=0.0222 BetP(Comf)=0.972
BetP(TH) = 0.0051 m(Ø) = 0.3686

B3: BetP(H) = 0.0146 BetP(C) = 0.9003
BetP(N) =0.0852 m(Ø) = 0.2688

According  to  the  pignistic  probabilities
obtained after the first fusion level, we assume
that  the  room  will  be  soon  unoccupied
(BetP(Su)=  0.7173).  The  weather  is  cold
outside  (BetP(C)=  0.9003)  but  the  thermal
comfort  is  reached  indoor  (BetP(Comf)  =
0.9727).  The  conflict  mass  for  each  block  is
less  than  40%,  so  we  can  conclude  that  our
system provides a satisfactory data fusion. The
second fusion level of these results yields the
pignistic probabilities presented in Table 6.

Table 6. Second fusion level of the scenario No.1

BetP(Inc) = 
0.0095

BetP(Dec) = 
0.7036

BetP(St) = 
0.2868

m(Ø) = 
0.8344

The  results  in  Table  6  reveal  that  the
temperature  needs  to  be  decreased  as
BetP(Dec)= 0.7036.  At  first  sight,  this  makes
sense because the room will be unoccupied in
less  than  30  minutes  according  to  the
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occupancy  planning  (BetP(Su)  =  0.7173).
However,  the  conflict  mass  is  relatively
significant which is normal because the system
tries to maintain the best comfort ambience for
the occupant since he has not left the house yet
and  because  the  outside  temperature  is
relatively  cold  (BetP(C)  =  0.9).  This  is
translated in the system as BetP(St) = 0.2868
and  hence  increases  the  conflict  mass.  One
means to decrease the conflict would be to set,
for  example,  energy  saving  as  a  priority,
thereby  diminishing  the  influence  of  the
comfort  parameter  (discounting  �)  in
accordance with the given context.

5.2 Scenario no. 2

This scenario presents a specific configuration
in which we preheat the house progressively for
half an hour before the occupant arrives for his
lunch break. We process this way to smoothly
prepare  a  comfortable  ambience  for  the
occupant  and  save  energy  at  the  same  time.
Table 7 presents the different parameters of the
second  scenario.  It  should  be  noted  that  the
activity and the clothing of the occupant are no
longer  taken  into  account  in  this  simulation
because the occupant is not in the house (E=0).

Table 7. Parameters of the second scenario

B1: Occupancy B2: Thermal 
comfort

B3: Weather 
forecast

Day: Monday
Time: 12:30-13:00 am
Ps: E=0,
Ac=0 met

Tc=16 °C
Rh=55 %
Rv= 0.5 ms-1

Clo=0 clo
Ac=0 met

T=6°C
W=37 km/h
N=65 %
P= 4.5 mm

We will  present  the  masses  (Table  8)  of  the
heating  system  assigned  by  the  expert
occupancy  which  depends  on  the  schedule
given by Figure 2 because we cannot fuse the
information on the block B1 (Ac=0).

Table 8. First fusion level of the scenario No.2

B1: m(In) = 0.67 m(Dec) = 0.07

(St)= 0.16 m(Ø) = 0.3359

B2: BetP(TC)=0.7669 BetP(Comf)=0.224

BetP(TH) = 0.0087 m(Ø) = 0.4760

B3: BetP(H) = 0.0145 BetP(C) = 0.9003

BetP(N) =0. 1325 m(Ø) = 0.2647

The  house  is  empty  since  (E=0)  but  will  be
soon  occupied  (m(So)  =  0.6).  The  pignistic
probabilities  show  that  the  weather  is  cold
(BetP(C)=0.853)  which  is  obvious  as  it  is
winter  (Northern  Europe).  The  internal
environment  is  cold  because  the  SPHS

maintains the heating at the minimum (16° C,
“Eco  Mode”)  when  the  house  is  empty.  The
second fusion level results are given in Table 9.

Table 9. 2ndfusion level of the scenario No.2

BetP(Inc)=
0.9574

BetP(Dec)=
0.0089

BetP(St)=
0.0337

m(Ø)=
0.4059

The decision for this scenario is to increase the
temperature to have a comfortable environment
for the occupant’s arrival. The aim of this is to
progressively launch the heating half  an hour
before an occupancy period to avoid a sudden
launch of the system when the occupant arrives
thus  avoiding  an  additional  loss  in  energy
(temperature overshoot).

This scenario will  be split  into three parts; in
each one we will present a different scenario at
the time slot of the same day. The aim of this
scenario  is  to  observe  the  impact  of  an
unexpected  event  on  our  data  fusion  system.
That’s why we assume that the occupant will be
an hour and a half late for what is planned in
the schedule (Figure 2).

5.3.1  Scenario  no  3.1  -  Without  any
unforeseen events

In  this  scenario,  we  will  preheat  the  room
progressively,  half  an  hour  before  the
occupant’s  arrival  to  prepare  a  comfortable
atmosphere in the house.  This scenario’s data
are  presented  in  Table  10  and  the  pignistic
probabilities of each fusion block in Table 11.

Table 10. Parameters of the scenario No.3.1

B1: Occupancy B2: Thermal 
comfort

B3: Weather 
forecast

Day : Monday
Time: 06:30-
07:00 pm
Ps: E=0
Ac=0 met

Tc=16 °C
Rv= 0.4 ms-1

Rh=55 %
Clo=0 clo
Ac=0 met

T=11 °C
W=13 km/h
N=13 %
P= 2.5 mm

Table 11. First fusion level of the scenario No.3.0.1

B1: m(Inc) = 0.6900
m(St) = 0.1200

m(Dec) = 0.0900
m(Ω) = 0.1

B2: BetP(TC) = 0.5927
BetP(TH) = 0.0090

BetP(Conf) = 0.3983
m(Ø) = 0.4928

B3: BetP(H) = 0.1507
BetP(N) = 0.6385

BetP(C) = 0.2107
m(Ø) = 0.2709

We notice that  the weather is nice (BetP(N)=
0.6385). The house is cold (BetP(TC)= 0.5927)
because it was unoccupied since 1:30 pm but it
will  be  soon  occupied  (So)  according  to  the
schedule in Figure 2 (m(So)=0.7)
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Table 12. 2nd fusion level of the scenario No.3.1

BetP(Inc)
= 0.8072

BetP(Dec)
= 0.0439

BetP(St) =
0.1489

m(Ø)  =
0.6673

After the simulation of the second fusion level,
the results confirm our expectations so that we
should  increase  the  heating  temperature
(BetP(Inc)=0.8072)  to  achieve  a  comfortable
environment.  However,  we  notice  that  the
conflict  mass  is  relatively  important  because
we are in a transition state, where the room is
not  occupied  yet,  but  will  be  very  soon  and
preheating is essential to achieve the comfort.

5.3.2  Scenario  no.  3.2  -  The  occupant’s
arrival has been delayed

The occupant did not come home as planned in
the  schedule  at  7:00  p.m.,  so  we  have  an
unexpected case scenario. We preheat the house
between 06:30-07:00 pm but since the occupant
is  late,  we  will  observe  the  results  of  the
algorithm  in  this  case.  The  data  for  this
scenario are presented in Table 13.

Table 13. Parameters of the scenario No. 3.2

B1: Occupancy B2:Thermalcomf
ort

B3: Weather 
forecast

Day:Monday
time:8-8:30 pm 
exactly at 8:18 pm
Ps : E=0
Ac=0 met

Tc=17 °C Rv= 
0.4 ms-1

Rh=55 %
Clo= 0 clo
Ac= 0 met

T=9 °C
 W=13 km/h
 N=13 %
 P= 2.5 mm

After  we  implement  the  different  data  in  the
fusion algorithm based on the belief theory, we
obtain the pignistic probabilities of each fusion
block as in Table 14. The house is unoccupied
(E = 0) and the pignistic probabilities indicate
that the weather is  relatively cold (BetP(C) =
0.4299 and BetP(N) = 0.4043) and the internal
ambience  is  quite  cold  (BetP(TC)  =  0.5002).
Indeed  the  internal  environment  is  cooling
down  (BetP(Comf)=  0.4906)  because  we
preheated the room between 6:30 and 7:00 pm
but since the occupant did not come home yet,
the  internal  temperature  begins  to  decrease,
hence the conflict mass of the thermal comfort

expert is relatively high and it is a consequence
of this unexpected event (delay) that implies an
unplanned transition state.

Table 15. 2nd fusion level of the scenario No.3.2

BetP(Inc)
= 0.2940

BetP(Dec)
= 0.1803

BetP(St) =
0.5257

m(Ø)  =
0.7599

The final decision will be to “maintain stable”
the temperature (BetP(St)=0.5257) at the lower
value of 16°C, because the house is still empty
and we do not have further information about
the occupant’s  estimated time of arrival.  This
explains the important conflict mass generated
in this scenario. This tells us that the decision is
tremendously  risky.  The  pignistic  probability
BetP(Inc)=30% is not  considered whereas the
occupant could arrive at any moment and the
temperature  won’t  be  comfortable.  Figure  4
shows the result window of Matlab simulation
program  (DST  library).  It  is  extremely
important to deal with this type of scenario as it
requires  a  decision  on  the  temperature
regulation  strategy.  So  should  the  priority  be
placed  on  the  occupant’s  comfort  or  on  the
energy savings? It  would be recommended to
give  the  user  the  control  over  the  choice  of
strategy  as  a  feeling  of  discomfort  could
compromise the use of the system.

Figure 4. Results window of scenario No.3.2

5.3.3 Scenario no 3.3 - Occupant arrival

This scenario is the continuity of the previous
one  presented,  when  the  occupant  arrives  at
8:28 pm.

The fusion of the data in Table 16 yields the
pignistic probabilities which confirms that the
occupant has arrived home (BetP (O)= 0.979).
However,  the  internal  environment  is  cold
(BetP(TC) = 0.7170) so he is in a “discomfort”
situation.  This is  a normal consequence since
the  occupant  is  late  and  the  preheat  period
ended  at  7:00  pm  so  the  heating  system
maintains  the  minimum  value  16°C  as  we
concluded in section 5.3.2. This also explains
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Table 14. First fusion level of the scenario No. 3.2

B1:
m(Inc) = 0.1

m(St) = 0.45

m(Dec) = 0.35

m(Ω) = 0.1

B2:
BetP(TC) = 0.5002

BetP(TH) = 0.0092

BetP(Conf) = 0.4906

m(Ø) = 0.5022

B3:
BetP(H) = 0.1658

BetP(N) = 0.4043

BetP(C) = 0.4299

m(Ø) = 3373



the  latent  conflict  mass  since  the  occupant
expected  a  comfortable  environment  at  home
but it was too cold.

Table 16. Parameters of the scenario No.3.3

B1: Occupancy B2:Thermal
comfort

B3:Weather 
forecast

Day: Monday
Time:8-8:30 pm 
Occupant arrives at 
8:28 pm
Ps: E=1, Ac=1.2 met

Tc=17 °C
Rv= 0.4 ms-1

Rh=55 %
Clo=1 clo
Ac=1.2 met

T=9 °C
W=13 km/h
N=13 %
P= 2.5 mm

The second fusion level results (Table 17) show
that we should increase the heating temperature
(BetP(Inc) = 0.7931) to rectify this discomfort
situation (BetP(TC) = 0.7170).

Table 17. 2nd fusion level of the scenario No.3.3

BetP(Inc)  =
0.7931

BetP(Dec)  =
0.0045

BetP(St)  =
0.2024

m(Ø)  =
0.6757

6. Comparison with Probabilities

In this section we briefly compare and discuss
the example from §5.1 to the weighted mean of
probabilities. A decision based on the weighted
mean  of  probabilities  and  the  belief  function
decision  are  similar  methods,  albeit  that  the
probability  combinations  are  very  different.
Moreover,  the  belief  function  allows  dealing
with  uncertain  and  conflicting  data.  In  the
example  below,  we  use  a  weighted  mean  to
compare the results presented in Table 6. A key
consideration  is  that  probabilities  are
“committed  data”;  this  means  that  the
probability  will  tend  towards  the  strongest
hypothesis, even when it  is questionable (51%
versus 49%). With belief functions the decision
is more a compromise, “less committed”, as we
measure  the ignorance and the conflict  in  the
decision.  We  propose  to  focus  on  the  data
example in §5.1. To apply probabilities, we need
to  transform  the  different  FoDs  into  a  single
FoD (Increase, Stable, Decrease) to be able to
calculate  a  weighted  mean.  For  the  weather
forecast  we  apply  the  equations  system  in
equation  9.  The  other  probabilities  are  read
directly from the respective BBA. The weights

are  distributed  arbitrarily  but  still  respect  the
data  importance  stated  in  the  architecture
proposed  in  Figure  1.  The  most  important
information is the “Comfort Temperature” and
the “Occupation Schedule”, which is translated
into a heavier weight. In the results presented in
the table below, we can notice that the decision
moves to “Stable” (55%) instead of “Decrease”.
“Stable”  is  not  a  proper  decision  because  the
inhabitants leave 30 minutes later. In the section
§5.1,  we  see  that  the  hypothesis  “Stable”  has
importance but the hypothesis “Decrease” is the
highest.  This  contradictory  statement  is
highlighted  by  the  level  of  the  conflict
measurement.  If  we  reproduce  the  previous
calculation  (weighted  mean)  on  the  different
study  cases  presented  in  this  article,  we  will
probably observe the same “bad” decision when
the scenarios present unexpected events.

7. Conclusion

In  this  paper  we  presented  a  fusion  method
based  on  the  TBM  in  order  to  produce  a
“temperature trend” that controls a “Smart and
Predictive Heating Controller”. This trend is a
result of a multilevel fusion strategy based on
the TBM that analyses and fuses heterogeneous
and uncertain data, provided by three sources
“Occupancy”,  “Thermal  comfort”  and
“Weather  forecast”.  We  proposed  the  main
“real-life”  scenarios  and  the  simulation  of
which  provided  encouraging  and  coherent
decisions, despite the significant conflict mass
and the complexity of the data. Moreover, we
introduced a more important number of sources
than  in  the  classical  studies.  As  the  real-life
data obtained from laboratory tests are highly
erroneous  and  uncertain,  the  conflict  masses
will rise, especially in the cases of unexpected
events. However, the diverse results also show
the  potential  of  including  a  predictive
temperature trend in a heating system in order
to  reduce  electricity  consumption.  This  first
study  demonstrates  the  reliability  and  the
potential  efficiency  of  our  fusion  strategy.  In
our  upcoming  project,  we  aim to  reduce  the
conflict masses.
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Table 19. Weighted mean of probabilities, data from Table 4.

weights 0,20 0,13 0,05 0,04 0,05 0,13 0,36 0,05 1,00

Temp Trend
Conf Temp

(Tc=22)
Acrivity
(Ac=1,2)

Clothing
(Clo=0,8)

Air velocity
(Rv=0,18)

Air Humidity
(Rh=35)

Occupat°
( Ac)

Schedule
(Sc)

Weather Mean

Increase 0,050 0,050 0,050 0,390 0,100 0,150 0,025 0,900 0,112
Decrease 0,050 0,050 0,050 0,000 0,100 0,075 0,850 0,015 0,340

Stable 0,900 0,900 0,900 0,610 0,800 0,775 0,125 0,085 0,548
3
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