
1. Introduction

The detection of the trajectories in a system is
important for several purposes. For example, in
Discrete-Event  Systems  (DES)  some  control
schemes and observer designs use the sequence
of events as feedback, while several techniques
for  the  failure  detection  employ  the  system
trajectories  to  establish  a  suitable  recovery
point [13], [16], [18], [19], [22].

Several  approaches  reported  in  the  literature
dealing with the formal analysis of DES have
studied the system trajectories as part of other
problems.  For  instance,  the  design  of
controllers,  observers,  trackers  and  detectors
for  DES  have  all  been  studied  within  the
automaton field [10], [15], [19], [20], [21].

Petri  nets (PN’s) have also been used for the
analysis of almost the same problems as in the
automaton  framework.  For  example,  the
modeling  of  manufacturing  systems,  the
supervisory  control,  state  feedback  schemes,
sequence  detection  and  the  observability  of
PN’s  and  the  design  of  controllers  and
observers, have been reported in [1],  [5],  [6],
[7], [9], [11], [16].

Previous  related  work  of  the  authors  of  this
paper is also reported in the literature. In [2], a
technique that allows controlling a DES using a
supervisor  with  the  feedback  provided  by  an
observer  of  sequences  is  developed.  In  [3],
preliminary results for addressing the sequence
detection  of  a  subclass  of  PN,  called  Free-
Choice nets, are provided.

This paper extends the previous research of the
authors and provides novel results and efficient
algorithms  addressing  the  problem  of  the
sequence detection in DES that are modelled by
S-Systems, a subclass of PN with well-defined
structure, where efficient solutions are derived.
Firstly, safe nets are considered. For this case,
the construction of the Sequence-Detectability
table  provides  a  necessary  and  sufficient
condition  for  the  testing  of  the  sequence-
detectability.  Secondly,  the  safeness
requirement  is  relaxed and its  implication  on
the Sequence-Detectability is analyzed. For the
non-safe  case,  the  construction  of  the  Event-
Detectability  table  provides  a  necessary  and
sufficient  condition for the verification of the
property.  Finally,  the  relationship  among  the
sequence-detectability and the observability of
S-Systems is outlined.

The rest of this paper is organized as follows.
Section 2 introduces some basic PN’s notions
used  in  this  work.  Section  3  presents  the
Sequence-Detectability  property  and  its
characterization  in  well-formed  S-Systems.
Section  4  outlines  how  the  sequence-
detectability supports solving the observability
of the net. Section 5 provides the conclusions
of  this  work  and  a  final  section  shows  the
bibliographical references.

2. Petri Nets Preliminaries

This work uses Output Petri nets (OPN’s) for
representing a  DES.  An OPN is  similar  to  a
PN  [13]  but  it  is  equipped  with  an  output
function  that  produces  vectors  of  output
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signals.  For  more  details  of  OPN’s  see  [3].
Formally, an OPN is a tuple (B , M 0 , φ)  with
the following properties:

– B  stands  for  a  standard  Petri  Net
Structure (PNS)  {P ,T , I ,O } , where  P

is  a  set  of  places,  T  is  a  set  of
transitions;  I⊆P×T  and  O⊆P×T  are
the flow relations;

– M 0∈(ℕ
+)m  is  a  special  vector  known as

the initial marking, where m=|P| ;

– The  linear  function  φ :(ℕ+)m→(ℕ+)q  that
relates a marking vector to output signals,
where q  is the number of sensors.

The  output  function  is  represented  a  matrix
φ[q×m] ,  where  the  i−th  row  vector  φ(i , :)

represents  the  places  associated  to  the  i−th

output signal. That is,  if  p
j
∈P  is associated

with  the  i−th  sensor,  then  φ(i , j )=1 ,
otherwise  φ(i , j )=0 . An external observer is
restricted to detect the output of the function φ
rather than the event itself executed in the net.
Pictorially,  circles  represent  the  places  and
rectangles the transitions, while capital letters,
written close to the places, represent the output
signals  of  the  net.  With  a  slight  abuse  of
notation, let I ( p

i
, t

j
)  denotes the arc from the

place p
i  to the transition t

j . Thus, if this arc
exists in a model, then I ( p

i
, t

j
)=1 , otherwise

I ( p
i
, t

j
)=0 . Similarly, let  O( p

i
, t

j
)  denotes

the arc from the transition t
j  to the place p

i .
Then,  O( p

i
, t

j
)=1  means that the arc exists,

and  O( p
i
, t

j
)=0  otherwise.  The  matrices

B
−(i , j)≔ I (p

i
, t

j
)  and B

+ (i , j)≔O( p
i
, t

j
)

capture  the  structure  of  these  flow functions.
Thus,  B

−(i , j)  is  the flow relation from the
place p

i  to the transition t
i  while B

+ (i , j)  is
the flow relation from the transition  t

j  to the
place  p

i .  Based  on  these  matrices,  the
incidence matrix is  B≔B

+−B
− .  Notice that

B(i , j )=0  is possible while B
−(i , j)≠0  and

B
+ (i , j)≠0 .  Thus,  B

−(i , j)=B
+ (i , j) .  This

is called a self-loop. The detection of self-loops
is useless in the context of DES. Accordingly,
this  work  considers  no  self-loops  in  the
analyzed OPN.

The  pre-set and  post-set of  t
j
∈T ,  are

⋄ t
j
≔ { p

i
∈P : B

−(i , j)>0}  and,  respectively
t

j
⋄≔ {p

i
∈P : B

+(i , j)>0} .  Likewise,  for
p

i
∈P  are  ⋄ p

i
≔{t

j
∈T : B

+(i , j )>0 }  and

p
i
⋄≔{t

j
∈T : B

−(i , j)>0} .  The  ⋄  operator
is extended in a natural way for both sets,  of
places or of transitions. An OPN is said to be
connected if,  ∀ u , v∈P∪T ,  exists  a  path
from u  to v  and from v  to u , in the sense
of the automata theory [7], where the arcs are
defined by B

−  and B
+ .

The  state,  or  marking,  of  an  OPN  is
M (k )∈(ℕ+)m ,  with  m=|P| .  The  marking

represents the number of tokens on each place
at  time  k .  For  convenience,  this  paper
represents  M (k )  by  M

k ,  and  it  uses  the
notation  M

k
( p

i
) , p

i
∈P ,  for  representing the

number of tokens in p
i  at time k . Moreover,

given a marking  M
k
( p

i
)=x ,  for  p

i
∈P  and

x∈ℕ+ , it is represented as  M
k
{x p

i
} . Thus,

M
k
{2 p

i
, p

j
}  means  two  tokens  in  p

i  and
one in  p

j . Notice that curly brackets replace
parentheses. The initial marking M 0∈(ℕ

+)m  is
a primary distribution of tokens in each place,
and is used for representing the initial condition
of a DES. Thus, M 0 ( p

i
)  is the initial number

of tokens in p
i . The marking M 0  may enable

the firing of transitions. A transition  t
i
∈T  is

enabled at  M 0 , denoted  [ M 0 ⟩ t i ,  if
M 0 ( p

j
)≥B

−(i , j) ,∀ p
j
∈P . Given  M

k ,  the

notation  [ M k ⟩  represents  the  set  of  all  its
enabled  transitions.  The  state  equation  of  an
OPN is as follows:

M
k+1=M

k
+B u⃗

k
, y

k
=φ (M k ) (1)

where M
k  represents the net’s state at time k;

the  Parikh vector u⃗
k  represents the firing of

one or more transitions enabled at M
k , and B

is the incidence matrix, as defined before. The
vector  M

k+1  is  the  state  reached by  the  net
and,  y

k  is  the  k−th  system output.  Notice
that  φ (M k )≔φ M

k  since  φ  is  linear.  This
fact  is  used  interchangeably  where  no
confusion  arises.  As  with  the  markings,
y

k
{2 A ,G }  means  that  the  sensor  A  is

measuring two tokens and G one token, at the
time k .

If  [ M k ⟩ t j  and  t
j  is fired, then by using (1)

M
k+1=M

k
+B t⃗

j
=M

k
+B (: , t

j
) .  In  this

computation,  u⃗
k
= t⃗

j  is the Parikh vector with
a one in the j−th  position and zero anywhere

else. This evolution is denoted as M k→
t j

M k+1
,

to  emphasize  the  fact  that  from  M
k ,  t

j  is
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fired  reaching  M
k+1 .  The  reachability  set,

denoted by  R(B , M 0 ) , is recursively defined
as  the  union  of  all  markings  reached  by  the
firing  of  enabled  transitions,  where  by
definition  M 0∈R(B , M 0) .  A net  is  safe if
∀M

k
∈R( B , M 0 ) ,  it  holds  that

M
k
( p

i
)≤1 ,∀ p

i
∈P , and non-safe otherwise.

The  compact  representation  of  any  marking
M

k  in  a  safe  net  is  always  of  the  form
M

k
{ p

i
,… , p

j
}  for  the set  of  places marked

with a token at M
k .

A transitions sequence is a string σ=t
i
t

j
t

k
⋯t

l

such  that  M 0→
t i

M 1→
t j

M 2→
tk

⋯M l→
t l

M s
.  The

length of σ , denoted |σ| , is the number of its
transitions. An infinite number of transitions is
possible  in  σ ,  in  such  a  case  |σ|=∞ .  This
trajectory,  or  sequence,  is  denoted  by

M 0→
σ

M s
. If M k→

σ

M s
 for some M

k  and σ ,

then  the  notation  [ M k ⟩ σ  means  that  M
k

enables  the firing of  the whole  sequence  σ .
Formally,  the  Parikh  vector σ⃗∈(ℕ+)n ,  is  a
map for  every  transition  in  the  set  T  to  its
number  of  occurrences  in  σ .  Thus,  if
σ=t

i
t

j
t

i , then σ⃗  is a n-vector, n=|T| , with
σ⃗ ( i )=2 , σ⃗ ( j )=1 , and zero anywhere else. As

in the automata theory [7], given a sequence σ

, σ
*  denotes its Kleen closure that extends in a

natural  way  for  sets.  The  firing  language  of
(B , M 0 , φ)  is

L( B , M 0 )≔(σ∈T
* : σ= t

i
t

j
t

k
…t

l
)

such  that  M 0→
t i

M 1→
t j

M 2→
tk

⋯M r→
t l

M s
.

Similarly,  the  middle-language  is
L( B , M 0 )≔( β∈T

*|∃α ,γ : α β γ∈L (B , M 0 )) ,
where  α  and  γ  could  be  empty.  Clearly,
L( B , M 0 )⊆L( B , M 0 ) .

The output word associated to σ∈L (B , M 0 )  is

φ(σ )≔φ(M
k
)φ (M

k+1)…φ(M
k+r
)φ (M

k+s
)

whit  M k→
t i

M k+1→
t j

M k+2→
t k

⋯M k +r→
t l

M k+s
 and

σ=t
i
t

j
t

k
⋯t

l ,  where  k≥0  and  |σ|=s .
Usually, a real DES has a reduced number of
sensors,  so  it  is  possible  that  markings
M

k
≠M

k

'  appear  alike,  i.e.  φ M
k
=φ M

k

' ,  to
an  external  observer.  Therefore,
(M

k
−M

k

' )∈ker  φ . Thus, it is possible that for
an initial marking  M 0 ,  there may be another
one,  say  M 0

' ,  with  φ M 0=φ M 0
' .  Thus,  by

using  the  output  information,  it  may  not  be
direct  to  determine  the  initial  state,  the  final
state,  or  even  the  sequence  of  transitions
executed  by  a  DES.  Indeed,  by  (1),
M

k+1=M
k
+B u⃗

k . Then,  φ M k +1=φ M k+φ B u⃗k .
The  vector  φ B u⃗

k ,  denoted  by  φ
B ( u⃗k ) ,  is

interpreted as the change, or increment, in the
system sensors due to u

k , whose Parikh vector
is  u⃗

k .  For  example,  if  φ
B
( u⃗

k
)={−A , B } ,  it

means that the firing of u⃗
k  turns off the sensor

A, while it turns on the sensor B.

Figure 1. A well-formed OSS.

However,  if  ker  φ≠∅  then  it  may  exist
another sequence exists, say  u

s , with  u⃗
s
≠ u⃗

k ,
such  that  φ

B
( u⃗

s
)=φ

B
(u⃗

k
) .  Notice  that  it  is

possible that φ
B
( t⃗

i
)=0 , while B t⃗

i
≠0 . Such a

transition  t
i  is  known  as  silent.  The  silent

transitions lead to a resilience in the detection of
the trajectories as in [14]. However, this work is
focused  on  a  constant  detection  of  the
trajectories  and  does  not  consider  silent
transitions. More notions of PN’s are in [4], [13].

3. Sequence Detection Analysis

Roughly  speaking,  the  Sequence  Detection
problem  deals  with  the  determination  of  the
transition sequence executed by an OPN model.

Definition 1. An OPN (B , M 0 , φ) , where M 0

may be unknown, is Sequence-Detectable (SD)

if there exists an integer, k
S
<∞ , such that for

any  σ∈L (B , M 0 )  with  |σ|≥k
S ,  where

σ=t
i
t

j
t

k
…t

l  and  M 0→
σ

M s
, the information

of the output word  φ(σ )  and the structure  of
(B , M 0 , φ)  allows to uniquely determine σ .
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Testing the SD is a complex task in the general
case, since it may require the examination of all
L( B , M 0 ) . Fortunately, efficient algorithms are

derived for a set of OPN’s called S-Systems [4].

Definition 2. An Output S-System (OSS) is an

OPN where ∀ t
i
∈T :(⋄t

i
)=1=(t

i
⋄) .

The  transitions  of  an  OSS  have  only  one
input  and  one  output.  The  simplicity  of  the
structure  confers  to  the  matrix  B  useful
properties  for  an efficient  testing of  the  SD
property.  A  well-formed OSS  is  strongly
connected (see Pag. 28, Theorem 2.25 in [4]).
Additionally,  these  nets  are  conservative,  in
the  sense  that  its  total  number  of  tokens
remains the same for any evolution (see Pag.
43, Theorem 3.6 in [4]). Where no confusion
arises, the analyzed OSS are considered to be
well-formed, as in Figure 1.

3.1 Sequence detectability in safe OSS

The following example illustrates the concepts
developed  in  this  paper,  providing  intuitive
ideas about the sequence detection in an OSS.

Example 1. Consider the well-formed OSS in

Figure  1.  The  net  is  live  and  safe  since  the

initial marking puts exactly one token on  p1 .

Thus  ∑ M k ( pi)=1 ,∀ pi∈P  for  every

marking M
k
∈R(B , M 0 ) . The sensor of p5  is

considered  to  be  D  and the  initial  marking
M { p1} .  The  F  signal  for  p5  and  the

dashed  tokens  in  p1 ,  p3  and  p7 ,  are

considered  in  further  examples.  Notice  that
φ M { p1}=φ M { p3}=φ M { p7} ,  since p1,  p3,

p7 have  the  same  sensor. Thus,  an  external

observer  is  unable  to  decide  the  initial

condition  of  the  OSS  by  only  using
Y 0=φ M { p1} .  Moreover,  M { p1}  enables

the firing of both,  t1  and  t6 .  If  t6  is fired,

then  an  external  observer  can  immediately

detect its execution since φ
B
( t⃗ 6)={−A , D }  is

different from any other firing. However, if  t1

is fired then its execution is confused with that

of  t8 ,  i.e.  φ
B
( t⃗ 1)=φ

B
( t⃗ 8) .  Moreover,  notice

that  t8  is indeed enabled at  M { p7 } . So, by

the  solely  information  provided  by  a  single

firing, it  is impossible to decide which of the

transitions,  either  t1  or  t8 ,  have  fired.

Besides, it is simple to verify that the firing of
t2  is confused with that of  t12 ,  and  t3  with

t9 ,  as  well.  Indeed,  σ 1=t1 t 2 t3 t4 t5  and

σ 2=t8 t12t9 t 10 t11  are confusing to each other.

This is a pair of transition circuits whose firing

is confusing, i.e.,

φ(t1 t2 t3 t 4 t5)=φ(t8 t12 t 9 t10t11) .

The circuits analyzed in the previous example,
are closely related to the SD of a safe OSS. In
[3], the authors showed that an intersection of
vector spaces suffices for testing the property.
This work extends this idea and proposes a full
condition for testing the property.

Definition 3. Let  (B , M 0 , φ)  be a safe OSS,

with  T={t1 ,…, t
n
}  is  its  set  of  transitions.

The Event-Detectability table  E
B  (Table 1) is

a  square  arrangement  of  size  [n−1×n−1] ,

with columns representing the transitions from
t1  to  t

n−1  and  rows  representing  the

transitions from t2  to  t
n . The entries of  E

B

are as follows. For 2≤i≤n ;1≤ j≤n−1 ; j< i :
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Table 1. The Event-Detectability table E B .

t2 { }

t3 { } { }

t4 { } { } { }

t5 { } { } { } { }

t6 { } { } { } { } { }

t7 { } { } { } { } { } { }

t8

{t12,t2} 

{t7,t2}
{ } { } { } { } { } { }

t9 { } { } {t10,t4} { } { } { } { } { }

t10 { } { } { } {t11,t5} { } { } { } { } { }

t11 { } { } { } { }

{t12,t1} 

{t12,t6} 

{t8,t1} 

{t8,t6}

{ } { } { } { } { }

t12 { }
{t9,t3}, 

{t8,t3}
{ } { } { } { } { } { } { } { } { }

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

366



if φ
B
( t⃗

i
)≠φ

B
( t⃗

j
) ,

then EB (t i , t j )=∅ , otherwise ,

E
B
(t

i
, t

j
)=∪{t

u
, t

v
}

∀ tu∈(t i⋄)⋄ ,∀ t v∈(t j⋄)⋄

(2)

The elements of  E
B  are pairs in  T×T . It is

easily noticed that the shape of E
B  is a kind of

lower-triangular. If the firing of  t
i  is different

from  that  of  t
j ,  then  E

B
(t

i
, t

j
)=∅ .

Otherwise, it is filled with the union of pairs in
the  Cartesian  product  ((t i

⋄)⋄ )×((t j
⋄)⋄) .

Notice  that  if  the  column  and  row  in  E
B

corresponding  to  t
i  are  empty,  i.e.

E
B
(: , t

i
)=∅  and  E

B
(t

i
, :)=∅ ,  then  the

firing of t
i  is different from any other in the net.

Example 2. Consider the Table 1, showing E
B

of the OSS in Figure 1. Since φ
B
( t⃗ 1)=φ

B
( t⃗ 8) ,

the  corresponding  entry  E
B
(t8 , t1)  includes

the  pairs  (t 12 , t2)  and  (t 7 , t2) .  Similarly,

E
B
(t9 , t3) ,  E

B
(t10 , t 4) ,  E

B
(t11 , t5)  and

E
B
(t12 , t 2)  are  non-empty,  meaning  that  its

firing is confused to some others. Notice that

the  entry  E
B
(t11 , t5)  includes  four  pairs,

(t8 , t1) ,  (t8 , t6) ,  (t12 , t1)  and  (t 12 , t6) , since

(t 11⋄)⋄={t8 , t 12}  and  (t 5⋄)⋄={t1 , t 6} .  On

the  other  hand,  the  rows  and  columns

corresponding  to  t6  and  t7  are  empty.  It

means that the firing of any of those transitions

could be detected by examining E
B .

If a column or row in E
B  is nonempty, then an

external observer cannot detect the firing of the
corresponding transition by solely considering
the  information  in  E

B .  However,  the
information  of  more  firings  of  transitions

contained  in  the  Sequence-Detectability  table
could be used.

Definition  4. Let E
B be  the  Event-

Detectability  table  of  the  OSS  (B , M 0 , φ) .

Consider the Sequence-Detectability table E
B

s

(Table  2) obtained  from  E
B  by  removing

(t
u
, t

v
)  if and only if E

B
(t

u
, t

v
)=∅ , from any

other  entry where it  appears,  say  E
B
(t

i
, t

j
) ,

whenever  t
i  and t

j  share no place, no input

nor output, and recursively removing the new

entries that become empty. Formally,

EB

s (t i , t j)=E B(t i , t j )∖ (t u , t v)  iff  EB( tu ,t v )=∅

and  both,  ⋄ t
i
∩⋄ t

j
=∅  and  t

i
⋄∩t

j
⋄=∅ ,

and recursively, repeat the procedure with the

new empty entries that may appear.

As a first step, the definition of E
B

s  removes a
pair,  from  any  entry  where  it  appears,  if  its
corresponding  entry  is  already  empty.
Moreover,  if  new  empty  entries  appear,  the
recursive  step  allows  its  propagation  to  the
entire  table  E

B

s .  Notice  the  restrictions
⋄ t

i
∩⋄ t

j
=∅  and  t

i
⋄∩t

j
⋄=∅  at  the  first

point in the Definition 4. By the one hand, if
⋄t

i
= p

i
=⋄t

j ,  then trivially  t
i  is  enabled in

an OSS if and only if  t
j  is enabled as well.

Thus, every time that either  t
i  or  t

j  is fired,
the  executed  sequence,  say  σ t

i  or  σ t
j

becomes  ambiguous,  since  φ
B
( t⃗

i
)=φ

B
( t⃗

j
) .

Moreover,  since  the  net  is  a  connected  OSS,
such sequence σ  always exists (see Pag. 182,
Theorem 8.11 in [4]). This directly leads to the
non-sequence-detectability of the OSS. On the
other  hand,  if  t

i
⋄= p

j
=t

j
⋄  then  any

transitions  sequence,  say  t
i
σ ,  enabled by an
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Table 2. The Sequence-Detectability table EB

S .

t2 { }

t3 { } { }

t4 { } { } { }

t5 { } { } { } { }

t6 { } { } { } { } { }

t7 { } { } { } { } { } { }

t8 {t12,t2} { } { } { } { } { } { }

t9 { } { } {t10,t4} { } { } { } { } { }

t10 { } { } { } {t11,t5} { } { } { } { } { }

t11 { } { } { } { } {t8,t1} { } { } { } { } { }

t12 { } {t9,t3} { } { } { } { } { } { } { } { } { }

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11



initial  marking  M 0{ p
i
}  for  p

i
=⋄ t

i ,  could
never be distinguished from t

j
σ .

At a first glance, it looks like there is a similarity
between  the  construction  method  of  E

B

s  and
minimization of automata method in the Myhill–
Nerode theorem (see Chapter 3 in [7]). A further
analysis is planned as future work.

Example 3. Table 2 shows E
B

s
 for the OSS in

Figure  1.  Notice  that  (t7 , t2)  has  been

removed from E
B

s (t8 , t1) , since E
B

s (t7 , t2)=∅

.  Similarly,  (t 8 , t 3)  from  E
B

s (t12 , t 2) ,  as well

as  (t 12 , t1) ,  (t 12 , t6)  and  (t 8 , t 6)  from

E
B

s (t11 , t5) .  However,  (t 12 , t2)  cannot  be

removed from E
B

s (t8 , t1)  since E
B

s (t12 , t 2)≠∅

. But, for removing (t 9 , t3)  from E
B

s (t12 , t 2)  it

is required removing (t 10 , t 4 )  from E B
s ( t9 ,t 3 ) .

Though,  for removing  (t 10 , t4 ) ,  it  is  required

take away  (t 11 , t5)  from  E
B

s (t10 , t 4) .  Finally,

for  removing  (t 11 , t5)  from  E
B

s (t10 , t 4)  it  is

required  take  out  (t 8 , t1 )  from  E B
s ( t11 , t5 ) ,

which is the cyclic dependency discussed in the

Example 1.

Let  Φ={t
i
, t

j
},{t

k
, t

l
},⋯ ,{t

u
, t

v
}  be  the

sequence of entries as in the previous example.

Based  on  Φ ,  it  is  easily  constructed
σ=(σ 1 , σ 2)  where  σ 1=t

i
t

k
⋯t

u  and
σ 2=t

k
t

l
⋯t

v  are  the  concatenation  of
consecutive transitions in the pairs of  Φ . By
the definition of E

B

s ,  σ 1  and σ 2  are allowed
to fire since  t

i
⋄=⋄t

k ,  t
j
⋄=⋄t

l ,  t
u
⋄=⋄t

v ,
etc. Clearly φ(σ 1)=φ (σ 2) . Moreover, σ 1  and
σ 2  are T-invariants (see Pag. 45, Lemma 3.9 in

[4]). Let Δ E
B

s  denote the set of circuits, as Φ

, in E
B

s . Then, the next theorem holds.

Theorem 1. A safe OSS  (B , M 0 , φ)  is SD if

and only if Δ E
B

s=∅ .

Proof: (Necessity) Supposes that  (B , M 0 , φ)

is  SD but  Δ E
B

s≠∅ . Let Φ∈Δ E
B

s
.  Without

loss of  generality,  let say that  σ=(σ 1 , σ2)  is

constructed  from  Φ  as  before,  and  that
σ 1=t

i
t

k
t

u
⋯t

w
t

y  and  σ 2=t
j
t

l
t

v
⋯t

x
t

z . Thus,

in  E
B

s
must  exist  E

B

s (t
i
, t

j
) ,  E

B

s (t
k
, t

l
) ,

E
B

s (t
u
, t

v
) ,  …  ,  E

B

s (t
w

, t
x
) ,  E

B

s (t
y
, t

z
) ,

E
B

s (t
i
, t

j
)  such  that (t

k
, t

l
)∈E

B

s (t
i
, t

j
) ,

(t
u
, t

v
)∈E

B

s (t
k
, t

l
) ,  …  ,  (t y

, t
z
)∈E

B

s (t
w

, t
x
) ,

and  (t i
, t

j
)∈E

B

s (t
y
, t

z
) .  By  Definition  4,  it

holds  that  φ
B
( t⃗

i
)=φ

B
( t⃗

j
) ,  φ

B
( t⃗

k
)=φ

B
( t⃗

l
) ,

φ
B
( t⃗

u
)=φ

B
( t⃗

v
) ,  …  , φ

B
( t⃗

w
)=φ

B
( t⃗

x
) ,

φ
B
( t⃗

y
)=φ

B
( t⃗

z
) . Moreover, t

i
⋄=⋄t

k ,

t
j
⋄=⋄t

l , t
k
⋄=⋄ t

u , t
l
⋄=⋄ t

v ,  …  ,

t
w
⋄=⋄ t

y , t
x
⋄=⋄ t

z , t
y
⋄=⋄ t

i ,  and

t
z
⋄=⋄ t

j .  Let  { p
i
}=⋄t

i  and  { p
j
}=⋄ t

j .

Since  (B , M 0 , φ)  is  live,  it  is  place live,  as

well  (see  Pag.  26,  Proposition  2.17 in  [4]).

Then, clearly M { p
i
}  and M ' { p

j
}  are valid

markings  of  the  net.  Thus, σ 1 , σ2∈L(B , M 0)
where σ 1=t

i
t

k
t

u
…t

w
t

y  and σ 2=t
j
t

l
t

v
…t

x
t

z ,

since [ M { pi }⟩ σ 1  and [ M ' { p j }⟩ σ 2 . Let

M { pi}→
t i

M { pk }→
tk

M { pu}→
tu

⋯

⋯M { pw }→
tw

M { py }→
t y

M { pi}

and

M ' { p j}→
t j

M ' { pl}→
t l

M ' { pv }→
tv

⋯

⋯M ' { px }→
t x

M ' { pz }→
t z

M ' { p j }

be the two sequences of markings due to  σ 1

and  σ 2 ,  respectively.  Clearly

φ M { p
i
}=φ M ' { p

j
} ,  φ M { p

k
}=φ M ' { p

l
} ,

φ M {p u}=φ M ' {pv } , … , φ M { p w }=φ M ' { px } ,
φ M { p

y
}=φ M ' { p

z
} ,  Thus,  φ(σ 1)=φ (σ 2) .

Moreover,  since  σ 1  and  σ 2  are circuits, then

σ 1
*
, σ2

*∈L(B , M 0)  (see Pag. 45, Lemma 3.9 in

[4]). Thus,

φ(σ 1
*)=φ (σ 1)φ(σ1)⋯=φ(σ2)φ(σ2)⋯=φ (σ2

*)

which contradicts the net is SD.

(Sufficiency) Suppose that  Δ E
B

s=∅  but  on

the  contrary,  the  net  is  non-SD.  Then,  there

exist at least two sequences of infinite length,

say τ 1=t i⋯t k t u⋯t w t y⋯  and τ 2=t j t l t v⋯t x t z⋯

where  τ 1 , τ2∈L(B , M 0) ,  such  that  τ 1≠τ2 ,

and  φ(τ 1)=φ (τ 2) . Since  (B , M 0 , φ)  is safe,

then any initial marking that puts one token on

any place of the net,  is a home marking (see

Pag.  169,  Proposition 8.2 in [4]).  This turns

the selection of τ 1  and τ 2  independent of any

initial  marking.  It  immediately  follows  that
φ

B
( t⃗

i
)=φ

B
( t⃗

j
) , … , φ

B
( t⃗

k
)=φ

B
( t⃗

l
) ,

φ
B
( t⃗

u
)=φ

B
( t⃗

v
) , … , φ

B
( t⃗

w
)=φ

B
( t⃗

x
) ,

φ
B
( t⃗

y
)=φ

B
( t⃗

z
) ,  …  ,  and  so  on,  since

φ(τ 1)=φ (τ2) .  Now,  consider  the  sequence

Φ=(t
i
, t

j
) , … , (t k

, t
l
) , (t u

, t
v
) , … , (t w

, t
x
)

,  (t y
, t

z
) ,  (t k

, t
l
)  … , etc., formed by pairing

the transitions that are confused to each other
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in τ 1  and τ 2 , correspondingly. Since Φ  is of

infinite length, then at least one of its elements

must  appear  twice,  as  |T×T|<∞ .  Let  say,

without loss of generality, that the first element

repeating in Φ  is {tk
, t

l
} . Notice that, in τ 1 ,

the firing of  t
k  enables that of  t

u , since the

net is safe. Also, in τ 2 , the firing of t
l  enables

that  of  t
v .  Indeed,  this  holds  for  any  two

consecutive  transitions  in  τ 1  and  in  τ 2 .

Therefore, in τ 1  it holds that t
u
∈(t

k
⋄)⋄ , … ,

t
y
∈(t

w
⋄)⋄ ,  t

k
∈(t

y
⋄)⋄ ,  and  so  on.

Similarly, in  τ 2  it holds that  t
v
∈(t

l
⋄)⋄ , … ,

t z∈(t x⋄ )⋄ ,  t l∈(t z⋄ )⋄ ,  and so on. Thus,

in  the  construction  of  E
B ,  it  immediately

follows that,  at  least  (t u
, t

v
)∈E

B
(t

k
, t

l
) ,  … ,

(t
y
, t

z
)∈E

B
(t

w
, t

x
) ,  (t k

, t
l
)∈E

B
(t

y
, t

z
) ,  …  ,

and so on. Notice that the last element in this

sequence  emphasizes  the  fact  that  the  pair
(t

k
, t

l
)  belongs to the entry E

B
(t

y
, t

z
) . This is

consistent with the previous assumption in the

sense that (t k
, t

l
)  is the first element appeared

twice in Φ . Now, consider the construction of

E
B

s
. Clearly, the recursion step cannot remove

(t
u
, t

v
)  from  E

B

s (t
k
, t

l
)  nor  (t y

, t
z
)  from

E
B

s (t
w

, t
x
) . Moreover, the same apply to any of

the  intermediate  elements  in  the  above

sequence of elements of  E
B . Indeed, it finally

holds  that  (t k
, t

l
)  cannot  be  removed  from

E
B

s (t
y
, t

z
) . But, (t

y
, t

z
)∈E

B

s (t
w

, t
x
) .  This

conforms a cyclic dependency, and Δ E
B

s≠∅ .

The next proposition goes further and shows that
any non-empty entry in E

B

s  leads to a circuit.

Proposition 1. Let  E
B

s
 be the SD table of the

OSS  (B , M 0 , φ) .  Then,  for  any  nonempty

entry  E
B

s (t
g
, t

h
)  there exist a pair of circuits,

say σ g  and σ
h , such that φ(σ

g
)=φ(σ

h
) .

Proof: Let  E
B

s (t
g
, t

h
)≠∅  be  any  non-empty

entry  in  E B

s
.  Then,  by construction,  at  least

E
B

s (t
g
, t

h
)⊇(t

i
, t

j
)  for  some  t

i
, t

j  that  fulfil

φ
B
( t⃗

g
)=φ

B
( t⃗

h
)  and  φ

B
( t⃗

i
)=φ

B
( t⃗

j
) .  By

supposition  both,  ⋄ t
g
≠⋄t

h  and  t
g
⋄≠t

h
⋄ .

Then, necessarily E
B

s (t
i
, t

j
)≠∅ . Otherwise, if

E
B

s (t
i
, t

j
)=∅ ,  then  the  recursive  step  in

Definition  4  must  delete  (t i
, t

j
)  from

E
B

s (t
g
, t

h
) ,  which  contradicts  the  fact  that

E
B

s (t
g
, t

h
)≠∅ .  Thus,  let  E

B

s (t
i
, t

j
)⊇(t

k
, t

l
) ,

for  t
k
, t

l
∈T .  Then,  φ

B
( t⃗

k
)=φ

B
( t⃗

l
) .  Again,

since ⋄ t
i
≠⋄t

j  and t
i
⋄≠t

j
⋄ , then it requires

that E B
s ( t k , t l )≠∅ . Let say that

E
B

s (t
k
, t

l
)⊇(t

u
, t

v
) ,  with φ

B
( t⃗

u
)=φ

B
( t⃗

v
) .

Otherwise,  it  easily  leads  a  contradiction  as

before.  Moreover,  it  should  be  that

E
B

s (t
u
, t

v
)≠∅ .  By  using  this  reasoning,

without  loss  of  generality,  let  say  that  the

sequence of entries continues as E
B

s (t
u
, t

v
) , …

,  E
B

s (t
w

, t
x
) , E

B

s (t
y
, t

z
) ,  … , etc.

Furthermore,  since  the  net  is  connected,  for

every  t
i  there  is  always  other  t

j
∈(t

i
⋄)⋄ .

Thus,  this  sequence  of  entries  in  E
B

s
 shall

continue, and since the number of the entries in

this  table  is  finite,  then  at  least  one  of  its

elements  should  be  repeated.  Let  say  that
(t

k
, t

l
)  is  the first  pair  that  repeating twice,

i.e.,  E
B

s (t
y
, t

z
)⊇(t

k
, t

l
) . Clearly, this selection

does not cause loss of generality in the result.

Now,  let  σ
g
=t

k
t

u
⋯t

w
t

y  and  σ
h
=t

l
t

v
⋯t

x
t

z

be  two  transition  sequences  built  from  this

sequence  of  entries  in  E
B

s
.  Then,  clearly

φ
B
( t⃗

k
)=φ

B
( t⃗

l
) ,  φ

B
( t⃗

u
)=φ

B
( t⃗

v
) ,  … ,

φ
B
( t⃗

w
)=φ

B
( t⃗

x
) ,  and  φ

B
( t⃗

y
)=φ

B
( t⃗

z
) ,  i.e.,

φ(σ
g
)=φ(σ

h
) . Thus, the sequence E

B

s (t
k
, t

l
) ,

E
B

s (t
u
, t

v
) ,  …  , E B

s ( tw , t x ) ,  E B

s ( t y ,t z ) ,

E B
s ( t k , t l )  is a circular chain of entries in E

B

s

where, by Definition 4 it holds that t
k
⋄=⋄ t

u ,

t
l
⋄=⋄ t

v ,  …  ,  t
w
⋄=⋄ t

y  and  t
x
⋄=⋄ t

z .

Hence,  σ
g  and σ h  are circuits of transitions

in (B , M 0 , φ)  as required.

From  Theorem  3  and  Proposition  1,  the
following corollary holds.

Corollary 1. Let  (B , M 0 , φ)  be  a safe  OSS.

Then, Δ E
B

s=∅ iff every entry in E
B

s
 is empty.

3.2 Sequence detectability in non-safe OSS

Suppose that the net in Figure 1 is able to hold
more  than  one  token.  Thus,  the  marking
M 0{ p1 , p7}  is  a suitable initial  condition of

the  OSS.  It  is  easy  to  verify  that  [ M 0 ⟩ t1 ,

[ M 0 ⟩ t8  and,  as  discussed  earlier,
φ

B
( t⃗ 1)=φ

B
( t⃗ 8) . Now, suppose that the entire

sequence σ=t1 t2 t 3 t4 t5  is fired. Notice that σ

is  enabled  at  M 0{ p1 , p7 } .  Clearly,  the
marking reached by the firing of  σ  is  a  new

M 0{ p1 , p7} ,  since  B σ⃗=0⃗ .  Thus,  the  firing
of  σ t1  confuses  with  that  of  σ t8 ,  i.e.,

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 369



φ(σ t1)=φ(σ )φ
B
( t⃗ 1)=φ(σ )φ

B
( t⃗ 8)=φ(σ t8) .

Since σ  may execute forever, then

φ(σ⋯σ t1⋯)=φ(σ )⋯φ(σ )φ
B
( t⃗ 1)⋯=

=φ(σ )⋯φ(σ )φB ( t⃗ 8)⋯=φ(σ⋯σ t8⋯)
.

It directly implies that the net is not SD. Based
in  this  intuitive  idea,  the  next  theorem
characterizes the SD in a non-safe OSS.

Theorem 2. Let (B , M 0 , φ)  be a non-safe OSS.

Then, the net is SD if and only if E
B  is empty.

Proof: (Necessity) Supposes that  (B , M 0 , φ)

is SD but E
B  is non-empty. Then, there exist,

at  least,  a  pair  of  transitions,  say  t
i
, t

j
∈T ,

such  that  φ
B
( t⃗

i
)=φ

B
( t⃗

j
) .  Since  the  OSS  is

live,  then  it  is  also  place-live  (see  Pag.  26,

Proposition 2.17 in  [4]).  Moreover,  since the

net is non-safe, by using an enough number of

tokens, it  is possible to construct the marking
M

i j
≥M { p

i
}+M { p

j
} ,  for  p

i
∈⋄ t

i  and

p
j
∈⋄ t

j .  Notice  that  ∃σ∈L(B , M 0)  such

that  M 0→
σ

M i j
 and  accordingly

M
i j
∈R (B , M 0) . It is clear that [ M i j ⟩ t i , and

[ M i j ⟩ t j .  Thus, it  is impossible to distinguish

the  execution  of  σ t
i  from  σ t

j ,  since

φ(σ t
i
)=φ(σ )φ

B
( t⃗

i
)=φ(σ )φ

B
( t⃗

j
)=φ(σ t

j
) ,

as by assumption it holds that φ
B
( t⃗

i
)=φ

B
( t⃗

j
) .

Since every marking in a well-formed OSS is a

home marking (see Pag. 169, Proposition 8.2

in [4]), then for each σ t
i  and σ t

j , it should

exist  other  sequences,  say  γ1 , γ2∈L(B , M 0) ,

such that both  σ t
i
γ1  and  σ t

j
γ2  reach  M

i j

anew. Hence, there is a confusion again about

the firing of σ t
i
γ1 t

i  and σ t
j
γ2 t

j , i.e.,

φ(σ t
i
γ1 t

i
)=φ(σ t

i
γ1)φB

(t
i
)=

=φ(σ t i γ1)φB(t j)=φ(σ t j γ2 t j)
.

Applying the same reasoning, it easily leads to

the  construction  of  a  pair  of  transition

sequences  of  infinite  length  that  confuses  to

each other, which directly contradicts the SD of

the net.

(Sufficiency) Suppose that E
B  is empty. Then,

φ
B
( t⃗

i
)≠φ

B
( t⃗

j
)  for  every  pair  of  transitions

t
i
, t

j
∈T :t

i
≠t

j .  Then,  the  firing  of  every

transition in  the system is distinguished from

each  other.  Accordingly,  the  transition

sequence executed by the net from any M 0 , is

determined  at  every  execution  step  by  an

inspection of E
B .

The  next  section  uses  the  results  of  the
sequence detectability for sketching a solution
of the observability problem in OSS models.

4. Observability Analysis

The  observability  is  a  property  that  allows
discovering the state of a DES. This work uses
a quite intuitive definition in the OPN field [3].

Definition 5. An OPN (B , M 0 , φ) , where M 0

may be unknown, is Observable if there exists

an  integer  k<∞ ,  such  that  for  any
σ∈L (B ,M 0)  with (σ )≥k , where σ=t i t j t k…t l

and  M 0→
t i

M 1→
t j

M 2→
tk

⋯M r→
t l

M s
,  the

information of the output word  φ(σ )  and  the

structure  of  (B , M 0 , φ) ,  allows  to  uniquely

determine the markings M 0  and M
s .

Based on  (1),  this  work  proposes  the  Firing-
Vector-Detectability and Marking-Detectability
properties for testing the observability.

Definition 6. An OPN (B , M 0 , φ) , where M 0

may  be  unknown,  is  Firing-Vector-Detectable

(FVD) if there exists an integer k
F
<∞  such that

∀ σ∈L (B , M 0):|σ|≥k
F ,  σ=t

i
t

j
t

k
…t

l  with

M 0→
t i

M 1→
t j

M 2→
tk

⋯M r→
t l

M s
,  the  output  word

φ(σ )  and the structure (B , M 0 ,φ) ,  allows to

uniquely determine the Parikh vector σ⃗ .

Definition 7. An OPN (B , M 0 , φ) , where M 0

may be unknown, is Marking-Detectable (MD)

if  there  exists  an  integer  k
M
<∞ ,  such  that

∀ σ∈L (B , M 0):(σ )≥k
M , σ=t

i
t

j
t

k
…t

l  with

M 0→
t i

M 1→
t j

M 2→
tk

⋯M r→
t l

M s
, the output word

φ(σ )  and the structure of (B , M 0 ,φ) , allows

to uniquely determine M
k  reached by σ .

By the FVD and MD, next proposition is direct.

Proposition  2. An  OPN  (B , M 0 , φ)  that  is

FVD and MD is Observable.

Proof: Let (B , M 0 , φ)  be FVD, with constant

k
F ,  and  MD,  with  constant  k

M .  Let

k=max {k
F

, k
M
}  and  let

σ∈L (B , M 0):|σ|≥k .  Thus,  σ⃗  and  M
k ,

reached by the firing of σ , are known, as well

as M
k , σ⃗  and B .

Hence,  the  initial  marking  is  computed  as
M 0=M

k
−B σ⃗  by using the state equation (1).

The next subsection uses the SD for testing the
FVD and MD of an OSS.
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4.1 Observability in safe OSS

Clearly, the determination of the Parikh vector
from the transition sequence is direct. The next
proposition shows that  the current  marking is
also computed easily when the OSS is safe.

Proposition  3. A  well-formed  and  safe  OSS
(B , M 0 , φ)  that is SD, is also MD.

Proof: Supposes that  (B , M 0 , φ)  is SD, with

convergence  constant  k
s  and  let

σ∈L (B , M 0)  such that  |σ|≥k
s .  Then  σ  is

known.  Let  say  that  σ=α t
j  for  some

α∈L(B , M 0)  and  t
j
∈T .  Without  loss  of

generality,  let  say that  t
j
⋄={ p

j
} .  Since the

net is safe, the marking reached by the firing of
σ=α t

i  is clearly M { p
j
} .

Thus,  the  following  corollary  is  direct  and
stablishes the observability of a safe OSS.

Corollary 2. If a well-formed and safe OSS  is

SD, then it is observable.

The following example illustrates the result.

Example 4. Consider again the OSS in Figure

1.  Suppose  that  the  sensor  of  p5  has  been

changed from  D  to  F . By this change, the

firings  of  t4  and  t5  are  now different  from

any other  firing in the net.  Thus,  E
B

s (t10 , t 4)

and E
B

s (t11 , t5)  in the Table 2 must be empty.

Therefore,  E
B

s (t9 , t3)  becomes  empty  and

hence E
B

s (t12 , t 2) , as well. Finally,  E
B

s (t8 , t1)

ends up empty and accordingly, Δ E
B

s=∅ . So,

the net is now SD.

Notice that the initial marking M { p1}  enables
the firing of t1  as well as that of t6 . Suppose
that  t1  is fired. Then, an external observer is
only  able  to  compute  σ 1=t1  and  σ 2=t8  as
possible  executed  sequences  at  k=1 ,  since
φ

B
(t1)=φ

B
(t8) .  Thus,  the  possible  reached

markings  are  M {t1⋄}=M { p2}  and
M {t8⋄}=M { p6} , respectively. Now, suppose

that  t2  is  fired.  Since  φ
B
(t2)=φ

B
(t 12) ,  then

the possible executed sequences, at  k=2 , are
σ 1=t1 t 2  and  σ 2=t8 t12 .  Accordingly,  the

probable  reached  markings  are
M {t2⋄ }=M { p3}  and  M {t12⋄ }=M { p7} ,

correspondingly.  It  is  easy  to  verify  that  for
k=3 ,  the  possible  executed  sequences  are
σ 1=t1 t 2 t3  and  σ 2=t8 t12t9 ,  by assuming that
t3  is fired. The probable reached markings are
M {t3⋄}=M { p4}  and  M {t9⋄}=M { p8} ,

respectively.  However,  at  k=4  once  t4  is
fired,  the  sequence  σ 1=t1 t 2 t3 t4  is
distinguished  from  σ 2=t8 t12t9 t 10 .  Thus,  the
observer knows that the sequence executed by
the  net  is  σ 1  and  it  is  able  to  compute  its
Parikh  vector  σ⃗ 1 .  Moreover,  the  marking
reached  by  the  firing  of  σ 1  is
M {t4⋄ }=M { p5} . Finally, the initial marking

is M 0=M { p5}−B σ⃗ 1=M { p1} .

4.2 Observability in non-safe OSS

The Theorem 2 states that  the detection of the
transition  sequence  in  a  safe  OSS  allows  for
detecting its marking. However, it is not the case
in non-safe OSS, as detailed in the next example.

Example  5. Consider  the  markings

M 0{ p1 , p3} , M 0
' { p1 , p7}  and M 0

'' {2 p1} , as

possible initial conditions of the OSS in Figure

1.  Those  markings  are  valid  since  the  net  is

supposed to be non-safe in this case. Clearly,

φ M 0{ p1 , p3}=φ M 0
' { p1 , p7}=φ M 0

'' {2 p1} .

Let  σ=t1 t2 t 3t 4 t5 .  It  is  easy  verified  that

[ M 0{ p1 , p3}⟩ σ  and  consequently

σ∈L (B , M 0) . Notice that  B σ⃗=0⃗ . Thus, the

marking  reached  at  every  firing  of

σ
*=(t1 t 2 t3 t4 t 5)(t1 t2 t3 t 4 t5)⋯ ,  is  ambiguous,

since always will  exist at least  three possible

reached  markings,  either  M 0{ p1 , p3} ,

M 0
' { p1 , p7}  or M 0

'' {2 p1} .
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Based on  the  previous  idea,  the next  theorem
provides characterizes the MD in non-safe OSS.

Theorem  3. A  non-safe  OSS  (B , M 0 , φ)  is

MD if and only if ker  φ=∅ .

Proof: (Necessity) Suppose that (B , M 0 , φ)  is

MD  but,  on  the  contrary,  ker φ≠∅ .  Then,

there exist at least, a linear combination of the

columns  in  φ  such  that
α

i
φ(: , i)+…+α

j
φ(: , j )+…

…+αk φ (: ,k )+…+αl φ (: , l )= 0⃗
,

where  not  all  the  α ' s  coefficients  are  zero.

Since by definition φ  is non-negative, it must

exist  a  re-arrangement  of  this  linear

combination where the elements at both sides

of the equality have positive signs. Without loss

of generality let

α
i
φ(: , i)+…+α

j
φ(: , j )=

=α k φ(: , k )+…+αl φ(: , l )

be  such  an  arrangement.  Then,  by  using  an

enough  number  of  tokens,  it  is  possible  the

construction of markings M 0{α i
p

i
+…+α

j
p

j
}

and M 0
' {α

k
p

k
+…+α

l
p

l
}  as initial conditions

of the net. It is easy to note that

φ (2 M 0{α i
p

i
+…+α

j
p

j
})=

=φ(M 0{αi
p

i
+…+α

j
p

j
}+

+M 0
' {αk pk+…+αl pl })

,

i.e., these markings are confusing to each other.

Because  the  net  is  well-formed  then,  it  is

connected  and  covered  by  circuits  (see  Pag.

106, Theorem 5.18 in [4]). Thus, it must exist a

circuit  of  minimum  size  including  the  set  of

places  { p
i
,… , p

j
}  which  are  marked  at

M 0{αi pi+…+α j p j } . Let  γ{p i… p j }
=γ pi ti⋯p j t j δ

be  such  a  circuit, where
⋄t

i
={ p

i
},⋯ ,⋄ t

j
={ p

j
}  for  the  transitions

t
i
,⋯, t

j  in  γ {p i… p j } .  Let  σ {p i… p j }
=t

i
⋯t

j  be

the ordered sequence formed by the transitions

in γ {p i… p j } . Clearly, σ {p i… p j }
∈L (B , M 0) , since

the marking  M 0{αi
p

i
+…+α

j
p

j
}  is enabling

its  firing.  Since  σ {p i… p j }  is  a T-invariant  (see

Pag.  45,  Lemma  3.9  in  [4])  then,

(σ {p i… p j })
*
∈L(B , M 0) .  By  monotonicity,  it  is

clear  that  both  markings,

M 0{αi
p

i
+…+α

j
p

j
}+M 0

' {α
k

p
k
+…+α

l
p

l
}

and  2 M 0{αi
p

i
+…+α

j
p

j
} ,  enables the firing

of σ {p i… p j } . Consequently, there is an ambiguity

about the marking reached by the firing of the

transition sequence σ {p i… p j } . That is,

φ ( (M 0{αi
p

i
+…+α

j
p

j
}+

+M 0
' {αk pk+…+αl pl})+B σ⃗{ p i… p j })=

=φ (2 M 0{αi pi+…+α j p j})+φ (B σ⃗ { pi… p j})=
=φ (2 M 0{αi

p
i
+…+α

j
p

j
}+B σ⃗{ p i… p j })

.

Moreover, since B σ⃗ {p i… p j }
=0⃗ , then, (σ {p i… p j })

*

is always enabled. A  contradiction to the MD

of the net. 

(Sufficiency) Suppose  that  ker  φ=∅ .  Then
φ  is invertible. Thus, for any initial output of

the system  y0  there exists  a unique marking

M 0  such  that  M 0=φ
−1

y0 .  Moreover,  for

every y
k  it is possible to compute M

k
=φ

−1
y

k

, as required.

Clearly, the Theorem 3 implies the Theorem 2.
Thus, the following corollary holds.

Corollary 3.  Let  (B , M 0 , φ)  be  a non-safe

OSS.  Then,  (B , M 0 , φ)  is  observable  iff

ker  φ=∅ .

The following example illustrates the result.

Example  6. Consider  the  Figure  2.  The

Theorem 2  requires  E B  to  be  empty.  Thus,

subscripts  have  been  added  to  B1 ,B2  and

C1 ,C2 . It is easy to note that  E B  is empty

now. Accordingly, an observer is able to track

any transitions sequence in the net.  However,

the extra token in  p1  is  yet  undiscoverable,

since an observer is unable to decide in which

of  the  places,  either,  p1 ,  p3  nor  p7 ,  the

extra token remains.  The Theorem 3 requires

that φ  be of full range. Thus, subscripts have

been added for sensor A , as well. It is easy to

verify  that  now  ker  φ=∅ .  Notice  that  the

Theorem  3  could  be  achieved  with  more

efficient solutions, however, the optimal sensor

placement is part of the future work.

If, for a particular problem the only interest is
the Sequence-Detectability of a DES then, the
Theorem  2  is  the  unique  requirement,  and
accordingly, the Theorem 3 could be avoided.

5. Conclusions

This  paper  addressed  the  analysis  of  the
sequence detection in DES modelled by PN’s.
The work is focused on well-formed OSS. The
characterization  of  the  property  was  firstly
developed  for  safe  OSS.  Then,  the  safeness
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requirement was relaxed, and its implications in
the sequence detection analyzed. The utility of
the Sequence-Detectability in the testing of the
observability  of  the  OSS  was  analyzed.  An
example developed through the paper was used
as an illustration of the main results. The future
work includes the analysis of  the relationship
between  the  Myhill–Nerode  theorem  and  the
method  for  obtaining  the  Sequence-
Detectability table proposed in this paper.
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