
1. Introduction

The Enterprise Resource Planner (ERP) is a

software system that integrates internal and

external management information across an

entire organization, automating and facilitating

the flow of data between critical back-office

functions. Having its name first coined by

Gartner in 1990, its evolution witnessed various

phases, from the birth development of its

ancestors in the 60s and 70s, to its expansion

and consolidation stages in the 90s and 2000s

[2,8,9,17]. Both redesigns and perspective

adjustments were required due to the numerous

technical challenges that emerged throughout

its lifecycle, but also because of the

standardization efforts to align industry

processes and business workflows [7,14,18].

Among the numerous trends we have seen

consolidating around this colossus, mobility is

by far the most important one, because of the

empowerment it provides for employees and

executives alike, accelerating the exchange of

critical information via innovative applications

and enabling real-time collaboration between

business customers, partners and staff [15].

The cloud is also an important ERP trend,

especially today. The industry has shown itself

sceptical about adopting this delivery model at

first, refusing to place sensitive data outside the

company firewall [1]. However, as the

advantages of this delivery model became

obvious, hesitations have been evaporating

either naturally or by migrating through

intermediate solutions, as a private cloud

deployed inside the company environment

[11,15,21].

A large number of integration solutions have

been emerging lately for most of enterprise

software types [4,10]. Small to big, proprietary

to open source, on premise to on demand, these

solutions try to integrate aspects of the modern

technology, usually being delivered hand in

hand with buzzwords like: process automation,

machine learning or big data analytics.

Despite the interest shown in this area and the

number of solution already productive, there is

not yet a concept capable of generically scaling

and adapting from one ERP requirements set to

the other, shaping once more application

integration as one of the most complex

enterprise aspects in the distributed cloud world.

2. Coresuite.com

Considering the financial potential of the

enterprise segment and evaluating the cloud

and mobility trends as appealing and adoptable,

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 375

A Practical Strategy for ERP to Cloud Integration

Sorin POPA1, 2*, Mircea-Florin VAIDA1

1 Technical University of Cluj-Napoca,

26-28 George Baritiu Street, Cluj-Napoca, 400027, Romania,

Mircea.Vaida@com.utcluj.ro

2 Coresystems AG,

Dorfstrasse 69, Windisch, 5210, Switzerland,

Sorin.Popa@coresystems.ch. (*corresponding author)

Abstract: The Enterprise Resource Planner is a half-centenary giant that gained popularity in the industry-software

market segment throughout the years. Influenced by the latest technology trends, such as mobility and cloud, it keeps

software integration as one of its greatest challenges. The present article introduces a cloud-based Field Service

Management solution, meant to empower mobility, manage workflows and enhance process automation for ERP enabled

companies. Motivated by ERP vendor dependence and a limited adoption rate, the solution’s objective is to design and

implement optimized cloud generic integration capabilities. Using a commercial, world-wide-distributed environment as a

continuous feedback and validation method, the results of our implementations show good application performance and

feature offering, but rather low usability metrics and sub-optimal commercial adoption. Based on a post-implementation

critical analysis of the existing integration applications and the legacy solution infrastructure, the paper proposes an

improved integration strategy, zooming in from business requirements and API constraints, to application architecture and

data flows that would overcome technical limitations, reduce prototyping and integration time and decrease maintenance

efforts. The implementations and improvement model represent specific practical contributions to a productive, enterprise-

oriented solution, proven both successful and highly competitive in respect to its market competitors.

Keywords: ERP, cloud, integration, framework, strategy, connectivity.

Coresystems AG [6] seized the opportunity to

introduce to the ERP integration market a cloud

based FSM (Field Service Management)

Solution, Coresute.com, offering integrated

tools and workflows meant so serve the field

workforce, the service centre and management

alike in field service oriented companies.

Coresuite started a little over half a decade ago,

as a pure mobility solution, meant to provide fast

access to critical data for companies working

with SAP B1 (SAP Business One) in their back

office. Commercial opportunity arose from the

licensing model, but also from fortunately

random design decisions like offline capabilities

for the mobile apps, useful to service technicians

working in screened environments.

It continued to grow by adding process

automation, workflow management and self-

servicing client applications to its portfolio, but

also by providing new ERP integration options,

like the “Microsoft CRM Connector” or “Excel

Importer”, visible in Figure 1 [13].

3. Motivation and Objective

The solution started offering mobility features

against SAP B1 and was thus limited to only a

slice of the entire ERP market segment. In

addition, SAP was trying already to provide

built-in mobile application for B1.

Motivated by ERP vendor independence and

envisioning an accelerated commercial

adoption by including partners and customers

themselves in developing new integration

projects, the solution’s objective was to design

and implement optimized cloud generic

integration capabilities for the cloud solution.

4. Existing Solutions and Strategy

There are already wide ranges of integration

solutions available, on premise or cloud based,

proprietary or open source, targeting large or

small enterprises. Table 1 puts them side by

side against some of the most important

solution KPIs (Key Performance Indicators).

Table 1. Comparison of existing solution types

KPI

Integration Solution Types

On

Premise

ESB

Cloud

Based

ESB

Cloud

Based

ERP

Built-in

ERP

Mobility

ERP Vendor

Independence
✔ ✔ ✖ ✖

Integration

Know-How

Independence

✖ ✖ ✔ ✔

Additional

Infrastructure

Free

✖ ? ? ✔

Fast and Simple

Prototyping
✖ ✖ ? ✔

Meta-Service

Support
✔ ✔ ✖ ✖

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 3, September 2016376

Figure 1. Coresuite Solution Overview

The first and most important is ERP vendor

independence. Coresuite aims for global

commercial adoption and thus it needs to

easily scale across customer environments,

regardless of their backend ERP type and

technology. In respect to this, cloud-based

ERPs and built-in mobility can already be

excluded from the equation, as they relate to a

specific ERP technology.

Integration know-how independence describes

technological and business knowledge (not)

required by internal or third party developers

that integrate against the solution. This is

usually a significant drawback for ESBs, as

their overall complexity typically exceeds the

required functionality of a single integration

scenario by orders of magnitude.

Traditionally, on premise solutions require

additional infrastructure and costs compared to

cloud based offerings, from IT employees and

specific technical skill, to deployment and

maintenance overhead. Nevertheless, usually

caused by privacy concerns towards having

their data system outside the company firewall

[1], a lot of modern organizations choose the

private cloud as a stepping stone,

compromising responsibility externalization in

favour of increased control and security

metrics. Cloud-based integration options do not

always imply not needing additional

infrastructure, but rather provide the option.

Adopting an integration solution for mobility or

added functionality, at both the business and

technical level implicitly, often boils down to

proof-of-concept and prototyping time and

complexity. While this is provided implicitly in

the built-in ERP mobility case, it can or cannot

be well supported in an ERP, but it is definitely

not a walk in the park at the ESB level.

Finally, transporting data from one place to

another is the core of an integration project, but

only a fraction of the overall functionality. This

typically implies meta-services managing

aspects like: configuration, messaging, security,

commands or logging. While ESBs most often

provide support for these requirements, ERPs

do not usually put out more than data

synchronization plugin endpoints.

Since none of the existing solution types are

able to accomplish an integration framework

that is ERP vendor independent, requires no or

little additional know-how and infrastructure

overhead, provides fast and simple prototyping

and supports meta-services, the solution was

required to design its own strategy.

In parallel with developing in-house ERP-

specialized connectors, for: Microsoft CRM

(Customer Relationship Management) and

Navision, SAP B1 (Business One) and ECC,

(Enterprise Central Component), salesfore.com,

QuickBooks, etc., Coresystems designed and

implemented two generic integration tools: the

“Transporter” library and the “File Connector”,

to support customer and partner self-integration

efforts, detailed as follows.

5. The Transporter Library

The “Transporter” is a .NET library that

simplifies the communication protocol with the

Cloud, abstracting a REST/HTTP based cloud

API into communication object data queues. It

connects to the implementing application using

a couple of interfaces that allow bi-directional

control and provides a handful of micro

services enabling synchronization and meta-

capabilities (configuration, security, commands

and logging).

5.1 Download service

An example of Transporter service can be seen

in the download flow diagram in Figure 2. In

order to optimize performance, the handshake

requires a confirmation step, as transferring and

processing data happens asynchronously.

Figure 2. Transporter Download Protocol

Due to the master-to-master replication pattern,

a persist step is also required to associate the

ERP id to cloud id. Finally, since the business

rules remain on the ERP side, an upload step is

required to close the loop, ensuring the cloud

possesses the latest version of data.

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 377

5.2 Upload and failed imports service

Another example, this time at the component

level, is visible in Figure 3, showing the Upload

and associated Failed Imports workflows.

Transporter queue processing time is non-

deterministic, so “ERP Connector” will have to

continuously poll for data processing results. A

transaction identifier will be used throughout

the process to uniquely identify any transaction.

Based on an ERP notice (1), the Connector will

place the data in a queue (2), it will be

transferred to the cloud (3) and confirmed (4).

The connector will read the confirmation (4)

and delete the original transaction.

Nevertheless, the confirmation only means a

successful upload. In case the data processing

fails (a), the data object will be queue (b) and

downloaded by the Transporter (c), read (d) and

persisted (e) by the Connector for human

analysis and confirmed back to the Transporter

(f) and the cloud (g), completing the cycle.

6. The File Connector

The “File Connector” (FC) is a full connector

implementation, developed on top of the

Transporter library, with an open-ended XML

file interface. It implies the existence of an

“XML Generator” (XG) on the ERP side,

which can be implemented at any level of

complexity, from an Extract Transform Load

(ETL) tool to an Object Relational Mapper

(ORM) system[12].

The application provides complex services,

from cloud database management, security,

metadata and remote logging to full duplex,

priority-managed synchronization, some of

which will be presented further in this article.

The protocol abstraction is therefore moved

from code-level queues to Operating System

(OS) level folders, to/from where the xml files

will be produced/consumed.

The application also provides configuration and

monitoring capabilities, both at the UI (User

Interface) level, visible in Figure 4, and the file

(advanced user) level.

Figure 4. File Connector User Interface

6.1 Download service

A representative example of service for the FC

is the download service as well, being

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 3, September 2016378

Figure 3. Transporter Data Download and Failed Imports Service Workflows

responsible for generating the persist (ERP id

to cloud id mapping) mechanism. Its diagram

can be analysed in Figure 5.

When a new object is produced by a client

application, it gets downloaded by the FC (0)

and stored into the incoming folder (1), from

where the XG will parse it (2) and persist it into

its ERP Table (3), saving the ERP identity into

a temporary “Identifier Table” location (4).

Based on an ERP notification (5), the XG will

assemble the data (6), leveraging the identity

information it saved in the “Identifier Table”

(7) and generate an xml file into the outgoing

directory (8, 8b), that will be read by the FC (9)

and uploaded to the cloud (10).

6.2 Architecture

In tone with the API and Transporter, the FC

provides a “compact database” component

(Figure 6), that enables persisting intermediate

states of all processed transactions, allowing it

to recover from complex failure scenarios

(application crash, network fault, etc.).

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 379

Figure 5. File Connector Download Protocol

Figure 6. FC Component Architecture

7. Implementation Results

In order to provide a relevant quantification of

the implemented options, we benchmarked

them against some of the other in-house

connector implementations to outline both the

technical and business impacts.

7.1 Performance

Based on an optimistic approach, the FC brings

improvements at the Cloud protocol level, by

processing data asynchronous from the upload

step. Choosing a random, constant-size

business object (BO) and a random object batch

number to synchronize, the FC outruns the SAP

B1 Connector by a factor of 9, as visible in

Table 2.

Table 2. Upload performance benchmarking

Integration

Application

SAP B1

Connector

File

Connector

Object Count 1580 1580

Sync Time [sec] 94.74 10.53

Throughput [sec] 16.68 150.05

Throughput [min] 1000.63 9002.85

In terms of application load time, the total time

is composed of the initialization and start of the

Transporter library, connector business layer

and ERP interface. Since the File Connector

does not implement an ERP data interface and

it is based on an improved Transporter version

– but even if we exclude the Transporter library

differences, its load time is significantly

smaller than that of the SAP B1 Connector, as

shown in Table 3.

Table 3. Load time comparison

App. SAP B1 Connector File Connector

Comp.
Transp.

v1

ERP

Interface

Business

Layer

Trans

p. v2

Business

Layer

Load

Time

[sec]

3.688 21.509 12.087 0.655 5.495

37.284 6.15

7.2 Code metrics

Regarding cyclomatic complexity, both FC and

Transporter scored similarly with the other

applications in terms of “per-method average”,

with a value of 5.76, as visible in Table 4.

Being below the literature threshold of 10 [19],

this appears as a good indicator for this metric.

The “per-project” value, in return, is more

relevant in respect to the project size.

Depth of inheritance, as a metric, conflicts with

itself as a higher number infers behaviour

unpredictability and greater design complexity,

but at the same time a higher potential of code

reuse. [16]. Although there is no established

metric in the literature, we see the FC at the top

of the chart in Figure 7.

Figure 7. Depth of Inheritance Comparison

Good software design dictates that types and

methods should have high cohesion and low

coupling. Class coupling, proposes a value of 9

for a single member as a good reference [3],

but the aggregated per-project value, with

respect to the average project size, is again a

more pertinent metric.

Table 5. Class coupling comparison

Application

Per-Project Class

Coupling
Average Lines of

Code Per-Project
Average Max

Transporter v1 182 182 2175

Transporter v2 286 286 4201

SAP B1

Connector
201.73 834 1864.18

File Connector 201.2 292 1777.6

MS CRM

Connector
107.14 512 730.68

Excel Importer 130 180 661.5

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 3, September 2016380

Table 4. Cyclomatic complexity comparison

Application

Cyclomatic Complexity
Project Avg.

Lines of

Code

Per-

Method

Average

Per-

Method

Max

Per-

Project

Transporter

v1
6.5 15 1069 2175

Transporter

v2
5.65 34 2040 4201

SAP B1

Connector
5.39 90 10808 1864.18

File

Connector
5.76 34 4140 1777.60

MS CRM

Connector
5.62 49 6808 730.68

Excel

Importer
4.13 15 754 661.50

Finally, computing the #aintainability Index of

the implemented applications, reveals again a

striking similarity not only between the FC and

the SAP B1 Connector, but all the other

applications as well, as visible in Table 6.

Table 6. Maintainability index comparison

Application
Maintainability

Index

of Projects

Per Solution

Lines of

Code

Transporter

v1
83 1 2175

Transporter

v2
84 1 4201

SAP B1

Connector
83.94 11 20506

File

Connector
82.95 5 8888

MS CRM

Connector
82.36 22 16075

Excel

Importer
84.92 2 1323

7.3 Features and functionality

The features that discriminate between the

integration options belong to the enhancements

done in the second version of the Cloud ERP

API, and propagate to the Transporter libraries

and implementing connectors. However, the

critical functionality of synchronization is

homogeneously provided for all of them, in a

manner more or less user friendly, specific to

every application. A functionality offering

comparison is visible in Table 7.

Table 7. Feature comparison of

existing solution types

Functionality
Tran.

v1

SAP B1

Conn.

Tran.

v2

File

Conn.

MS

CRM

Conn

Company

Management
✔ ✔ ✔ ✔ ✔

Security

Service
✔ ✔ ✔ ✔ ✔

Metadata

Service
✔ ✔ ✔ ✔ ✔

Log Service ✔ ✔ ✔ ✔ ✔

Download

Service
✔ ✔ ✔ ✔ ✔

Upload

Service
✔ ✔ ✔ ✔ ✔

Backend

Request

Service

✖ ✖ ✔ ✔ ✔

Notification

Service
✖ ✖ ✔ ✔ ✔

Database

Profile Service
✖ ✖ ✔ ✔ ✔

UI

Configuration
✖ ✔ ✖ ✔ ✔

7.4 Integration usability

Although not always a quantifiable metric, the

FC provides an improvement in terms of

prototyping and developing speed compared to

the existing options (Table 8).

Table 8. Table styles

Integration

Option

Cloud ERP

API

Transporter

Library

File

Connector

Implementation

Time

Months

(Assumed)

Weeks-

Months

Days-

Weeks

Between 2012 and 2016 there were a total of

ten ERP integration attempts by solution

partners, more than Transporter based attempts

in the same period, demonstrated by Table 9.

Table 9. Table styles

Integration

Option

Cloud

ERP API

Transporter

Library

File

Connector

Integration

Attempts
0 7 10

The FC does not collect data on the ERP type,

thus tracing a running connector back to an

ERP type is rather inaccurate. However, at the

time of writing this paper there were eighteen

accounts using the FC, which is actually less

than against the Transporter library (Table 10).

Table 10. Table styles

Integration

Option
Target ERP

Active

Accounts

Transporter v1 SAP ECC 25

Transporter v1
MS Dynamics

Navision
10

File Connector N/A 18

7.5 Business adoption

If we perform an ERP connector type count,

aggregated across Coresuite’s productive cloud

environment, the distribution overwhelmingly

inclines towards the SAP B1 Connector,

making the FC account for only 1.5% of the

active accounts, as presented in Figure 8.

Figure 8. Connector Type Distribution

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 381

Nevertheless, between 2009 and 2016 the

number of accounts (and cloud users) has been

continuously growing, at an almost exponential

rate, as visible in Figure 9.

Figure 9. Coresuite commercial adoption

8. Retro-Analysis

Based on the usability and adoption of the

externally exposed integration options, but also

on the existing applications and infrastructure,

we were able to outline a few of our solution’s

biggest, integration related limitations:

– The protocol lacks atomicity and isolation

in favour of consistency and durability;

– Integration does not easily scale to new

ERPs, as the infrastructure was designed

with a lot of baked-in ERP specifics;

– The applications lack flexibility, contrary to

the ERP world that is built on

customization;

– We lack application control, internally, as

most connectors are deployed behind the

customer firewall.

8.1 Protocol

Zooming in on the infrastructure, the protocol

provides the following positive aspects:

– Performant batch upload capabilities, very

useful because of the ERP’s typically large

objects counts;

– Object dependency support, implemented

via a weak referencing system;

– Object data versioning, that enables clean

encapsulation of data structure and

associated business logic.

From a constructive perspective, however, the

protocol contains the following drawbacks:

– ERP specificity, making it hard to scale to

different backend technologies;

– Poor authentication design;

– Other low-level design issues, like mixing

of concerns, god services, communication

data duplication or handshake complexity.

8.2 ERP interface

The ERP communication’s strongest points are:

– Database improved reading speed;

– Wrapping the interface to overcome ERP

limitations (i.e. mutable primary keys,

etc.);

– Auto-generated read queries, as a trade-off

between an ORM and statically typed

queries.

8.3 Application

Application wise, the most relevant aspects are:

– External, centralize configuration;

– Application (app domain) level isolation

between synchronizing companies or

between the connector application and the

ERP interface;

– As a drawback, a decent amount of over-

engineering, as previously seen in Figure 6.

8.4 Data Management

Data handling, nevertheless, brings out the

following constructive aspects:

– String programming, a common anti-

pattern found systematically in most

projects;

– Isolated data mapping, a requirement that

enables customizability and extensibility;

9. Proposed Improvement Model

Considering the application and business level

metrics in chapter and the analysis in chapter,

we propose an improvement model that would

overcome the present limitations, with the

following characteristics:

9.1 API requirements

Regarding the API implementation, the top two

most important requirements are:

– Synchronous operations, removing the

need for queues and simplifying handshake

at the (manageable) cost of a lower upload

performance;

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 3, September 2016382

– Atomicity and Consistency, removing the

“Identifier Map” complexity overhead;

9.2 Connector architecture

Figure 10 introduces and overview of the

proposed application architecture, promoting a

plug-in-able design with the following top

advantages:

– Modularity, keeping the ERP specifics (i.e.

“ERP Layer”, “ERP Configuration UI”) as

“thin” as possible and easily replaceable for

scaling to new ERP backend technology

– High (process level) isolation, between the

application and the ERP layer and between

the synchronizing companies themselves.

– Remote Controlling, through the external

“Connector Controller”, enabling

performant monitoring and maintenance.

9.3 Synchronization process

Finally, the data flows and the associated

infrastructure should be significantly

simplified. As opposed to the complexity

previously visible in Figure 3, the upload

process – as a relevant example – would look

like in Figure 11, completing the cycle with

only one call to the cloud.

10. Conclusions

First, the implemented external integration

options show good performance and technical

maintainability metrics and proved themselves

successful across connectivity projects. Their

limited adoption rates, however, can be a

matter of usability, but can also be related to

the Coresystems’ partner model attractiveness.

Second, although the existing infrastructure has

some known limitations, its usability is

unquestionable, proved by the exponential

account and user growth throughout the last

half of a decade.

Third, we do not believe in a “one size fits all”

solution, thus the proposed improvement

model will not be a final consumer application

serving any ERP integration requirement, but

rather a flexible framework to support

scalability and customizability.

Studies in Informatics and Control, Vol. 25, No. 3, September 2016 http://www.sic.ici.ro 383

Figure 10. Proposed Integration Model Architecture

Figure 11. Improved Download Process

Acknowledgements

Coresystems AG [6], a Swiss company offering

cloud-based field service management

products, supports the work of this paper.

REFERENCES

1. ALBOAIE, L., M.-F. VAIDA, Trust and

Reputation Model for Various Online

Communities, Studies in Informatics and

Control, vol. 20(2), 2011, pp. 143-156.

2. BARAY, S., S. HAMEED, A. BADII,

Analysing the Effectiveness of

Implementing Enterprise Resource

Planning in the Printing Industry, Euro.

and Medit. Conf. on Inf. Syst. (EMCIS),

July 2006, Costa Blanca, Alicante, Spain.

3. CHIDAMBER, S. R., KEMERER, C. F., A

Metrics Suite for Object Oriented

Design, IEEE Trans. on Software

Engineering, vol. 20(6), 1994, pp. 476-493.

4. COLE, A., Venturing onto the Private

Cloud, retrieved June 4th, 2010,

http://www.itbusinessedge.com/

5. COLTMAN, T. R., T. M. DEVINNEY, D.

F. MIDGLEY, Customer Relationship

Management and Firm Performance, J.

Inf. Tech. vol. 26(3), 2011, pp. 205-219.

6. Coresystems AG Official Website,

http://www.coresystems.ch.

7. GANESHAN, R. E. J., M. J. MAGAZINE,

P. STEPHENS, A Taxonomic Review of

Supply Chain Management Research,

Quantitative Models for Supply Chain

Management, 1999.

8. HERALD, H., Extended ERP Reborn in

B-to-B, InfoWorld, Aug. 27 – Sept. 3 2001,

vol. 23(35/36), p. 21, Trade Publication.

9. JACOBS, F. R., F. C. ‘Ted’ WESTON Jr.,

Enterprise Resource Planning (ERP)—A

Brief History, J. Operations Management,

vol. 25(2), March 2007, pp. 357-363.

10. KIF, M., Microsoft's Enterprise Service

Bus (ESB) Strategy, http://blogs.msdn.

com/, retrieved January 23rd, 2007.

11. MCKENDRICK J., Enterprise Service

Busted, retrieved July 22nd, 2008,

http://www.zdnet.com/article/enterprise-

service-busted/.

12. POPA, S., M.-F. VAIDA, A Practical

Abstraction of ERP to Cloud Integration

Complexity: The Easy Way, 15th

RoEduNet International Conference –

Networking in Education and Research

(RoEduNet NER), Bucharest, September

2016 – proceedings.

13. POPA, S., M.-F. VAIDA, Outspreading

Enterprise Capabilities into the Cloud – A

Commercial Case Study, ACTA Technica

Napocensis, vol. 57(3), 2016 procs.

14. SACHAN, A., S. DATTA, Review of

Supply Chain Management and

Logistics Research, Intl. J. of Physical

Distribution & Logistics Management, vol.

35(9), 2005, pp.664-705.

15. SEROTER, R., Patterns of Cloud

Integration, http://www.pluralsight.com,

retrieved September 4th, 2013.

16. SHATNAWI, R., A Quantitative

Investigation of the Acceptable Risk

Levels of Object-Oriented Metrics in

Open-Source Systems, IEEE Transactions

on Software Engineering, vol. 36(2), 2010,

pp: 216-225.

17. SOJA, P., Success Factors in ERP

Systems Implementations: Lessons from

Practice, J. Ent. Information Management,

vol. 19(6), 2006, pp. 646-661.

18. SUBRAHMANIAN, E., S. RACHURI, S.

FOUFOU, R. D. SRIRAM, Product

Lifecycle Management Support: A

Challenge in Supporting Product Design

and Manufacturing in a Networked

Economy, Int. J. Product Lifecycle

Management, vol. 1(1), 2005.

19. WATSON, A. H., T. J. McCABE, T. J.,

Structured Testing: A Testing

Methodology Using the Cyclomatic

Complexity Metric, 1996, NIST Special

Publication 500-235.

20. WINER, R. S., Customer Relationship

Management: A Framework, Research

Directions, and the Future, University of

California, Berkeley, April 2011.

21. ZHANG, Q., L. CHENG, R. BOUTABA,

Cloud Computing: State-of-the-Art and

Research Challenges, 20.04.2010, The

Brazilian Computer Society, Internet Serv

Appl 1: 7.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 3, September 2016384

