
1. Introduction

The distributed systems use business object or
XML web services to share data between
applications, ensuring the platform and
programming language independence. The Web
services architecture involves the existence of a
few layers, protocols and related technologies
like XML, SOAP (Simple Object Access
Protocol), WSDL (Web Services Description
Language).

Various XML data storage approaches for
relational databases recommend the use of the
generic relational structure, including XML
document mapping. Kossman [1] has
represented XML documents using graphs.

The ideas of memorizing information related to
each node of the tree in an XML document has
been developed by Yoshikawa, Amagasa and
others [2]. The algorithm for XML data
translation proposed by Yoshikawa and
Amagasa is only appropriate for nonrecursive
data and fails to obtain accurate results if the
XML data has ascendants with the same label
in the tree representation.

The relational model allows the elaboration of
translation algorithms for the XQuery queries
into SQL queries, where XQuery is a standard
XML data interrogation language. For example,
Oracle allows the creation of XML views for
relational data, and the interrogation of XML
views can use the XPath language.

Multiple queries optimization has been
expressed in several contexts in the recent past
including transient views [3], view

maintenance [4], XML query optimization and
continuous query optimization.

Tudor proposes a cache pattern with
multiqueries and describes the multi-query
optimization with scheduling, caching and
pipelining. A set of cache patterns is derived
from a set of class of multiqueries that are
loaded into the cache [5].

A semantic cache memorizing XML views can
be used to optimize business objects. To avoid
repeated connections to a backend database, the
views stored in cache are interrogated. This
type of middle-tier cache has become very
popular for Web applications with relational
databases. Semantic cache uses the views’
semantics to determine if the queries can be
solved with the cache information entirely or
partially [6], [7].

The contributions to this article can be
summarized as follows:

1. a method to optimize access to XML data
has been identified and it is based on the
extraction of XPath views from a
semantic cache.

2. a new solving technique has been
proposed for the XPath queries. Thus,
this paper offers:

a. a definition for the XPath query classes
for which the XPath view heuristic
extraction algorithm is evaluated;

b. an effective method to select an XPath
view from cache based on the
constraint satisfaction verification for
the XPath expressions;

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 173

Query Optimization against XML Data

Nicoleta Liviana TUDOR

Petroleum-Gas University of Ploiesti,
Department of Informatics, Information Technology, Mathematics and Physics,
39, Bucuresti Blvd., Ploiesti, 100680, Romania,
Tudor.Liviana@gmail.com

Abstract: Web services allow middleware access to a relational database and require data representation in XML format.
The XML views obtained from relational databases can be accessed by using XPath queries. This article proposes an
optimization model for XML data processing based on a heuristic algorithm to extract data from XPath views. To this end,
the author uses various XPath query classes temporarily stored in cache, as XPath views. For each view selected from
cache, a compensation query can be found and composed with in order to solve an XML data query. Experimental results
reveal the effectiveness of the heuristic method used to solve queries on XML documents.

Keywords: cache, heuristic algorithm, relational databases, query processing, XML data.

3. the heuristic solving techniques for the
queries described above have been
implemented for relational Oracle
databases. The complexity analysis stands
as proof for the performance of the
proposed algorithm. The time complexity
will be evaluated according to the size of
the input space represented by the set of
XPath views. The experimental results
prove the feasibility and effectiveness of
the newly proposed heuristic algorithm.

The article is organized as follows. Section 2
describes the way to process XML queries and
the conversion of XQuery queries in relational
databases. Section 3 describes the issue of
XML data rewriting using XPath views in
Oracle databases. The author presents the
composition of XPath queries and the creation
of an XPath views’ cache. Section 4 describes
the HSelectXP heuristic algorithm for special
XPath query classes. Section 5 describes a
complexity evaluation for the heuristic
algorithm. Section 6 presents the experimental
results, comparisons against other known
algorithms and the way to process queries using
the heuristic algorithm. The experimental study
emphasizes the performance of the heuristic
algorithm in processing XML query data.
Section 7 draws-up the conclusions regarding
the effectiveness of a semantic cache and the
heuristic algorithm in optimizing access to
XML data.

2. Processing XML Data

Generally speaking, processing XML queries
involves compiling XML documents and
creating an XML DOM (Document Object
Model) tree with nodes memorizing elements,
attributes and text. The compiler generates a
view based on the transmitted parameters,
mapping the XML documents’ nodes in the
lines of the created view.

The XML views obtained from the relational
data use XDR (XML Data Reduced) schemes
and can be accessed using XPath queries.
XPath language (XML Path Language) allows
the interrogation of data in an XML view
(Figure 1).

An XPath query selects a set of nodes in the
XML DOM graph associated to the XML
document, using access control operators and
rules [8], [9].

In some cases, there is a compatibility issue
between the language used to update XQuery
views and the SQL language, for relational
databases. Some XQuery processors don’t allow
for XQuery instruction conversion to SQL,
during data transmission to the client application
or the conversion of XML documents.

Figure 1. Xpath queries

In the following paragraphs we will analyze the
possibility to optimize data native XML data
access from Oracle databases, using a semantic
cache for XPath views.

The XQuery optimizations can be divided into
two broad areas. Logical optimizations are
transformation of the XQuery into equivalent
SQL query modeling XQuery semantics.
Physical optimizations are transformation of
the XPath operators, into equivalent operations
directly on the underlying internal storage and
index tables.

In the following paragraphs we will analyze the
possibility to optimize data native XML data
access from Oracle databases, using a semantic
cache for XPath views.

3. Semantic Cache For XPath Views

Query optimization at the level of the server
database, but also at the level of the client
application performing semantic caching
determines the occurrence of the rewrite issue
for the XPath queries using XPath views.

In the following paragraphs, we will present an
optimization method for XPath queries through
the use of a heuristic algorithm which extracts
XPath views from a semantic cache. To avoid
repeated connections to the database, the views
stored in cache can be interrogated.

Mandhani and Suciu proposed a method to
create a semantic cache which memorizes
frequently used XPath views for query
processing [10]. XQuery queries contain XPath
fragments, and the views materialized in cache
contain XPath expressions. For the execution of
a query, the system first checks whether or not it
can return the result of the query from the cache.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016174

Mandhani and Suciu have stored the view cache
in relational tables, demonstrating the
effectiveness of the view selection technique.

The semantic cache proposed by Lee and
Wesley Chu [11] consists of a Hash table with
type data (key, value), where key is a semantic
description of the query performed, and the
value contains the results for the query
associated with the key. In this type of cache,
semantic views only use conjunctive
predicates, the queries being turned into
conjunctive components.

Processing queries using an XPath view
semantic cache involves finding a query which,
by composition with the view in cache, will
return the result of a query.

3.1 Rewriting XPath views

The XPath expression is evaluated against the
XML document without ever constructing the
XML document in memory. This
optimization is called XPath rewrite [12]. For
example, Oracle XML DB can optimize
queries that use XPath (XQuery) expressions.
The result of the queries was stored in cache
as materialized views.

XML data allow rewriting equivalent to using
XPath view internal structure navigation [13].
XML data can be represented as a non-oriented
tree with a U set of edges, an X set of nodes, an
r root and an f function labelling the tree nodes.

3.2 The creation of an XPath view cache

Let’s consider a materialized V view and a Q
XPath query which needs processing. The
composition of the queries involves the
existence of a C query which, by composition
with a V view from cache, will return the result
of a Q query observing relation

C o V = Q (1)

In the context of the composition of a query

using the XPath view cache, we will describe
the operation of inserting an XP view in cache,
the selection of a view from cache and we will
present the situation in which a query cannot be
solved from cache, even if the results are stored
in cache.

To insert a view in cache, we will consider the
XPath views Vi, 1  i n and the filtration and
validation constraints for the XPath expressions
p(1), p(2), and so on. The description of a

semantic cache with n XPath views can be the
following [14]:

semantic cache : = {Vi /Vi:/a/b[p(j)] [p(k)]}, (2)

where a and b are XML elements of view, 1  i
 n; j, k  1.

Inclusion of XPath expressions p(i)  p(j), i, j 

1, shows that the set of nodes resulted from the
evaluation of p(i) is included in the set of nodes
selected by the p(j) expression. An XPath
expression is considered invalid when the set of
nodes evaluated is always void.

Lee and Wesley Chu [11] have stored the
semantic cache in Hash tables with input data
of type (key, value), where the key is a
semantic description based on the precedent
queries and the value contains results of queries
associated to the key.

In the following paragraphs we will introduce
a heuristic method to effectively solve XML
data queries.

4. Heuristic Selection Algorithm

For XPath Views In Cache

Suppose the system has cached the results of a
very large number of XML views. When the
system needs to evaluate a new XPath query Q,
one possibility is to iterate over the views one
by one and use a query-answering algorithm.

To optimize XML data queries from Oracle
databases, we will create a semantic cache for
XPath views. We will propose a HSelectXP

heuristic algorithm which selects a materialized
V XPath view in cache in order to process an
XPath query. For each view selected from
cache, a C compensation query can be found,
composing the view according to the
relationship: C o V = Q. The algorithm will be
checked for two classes of XPath queries which
will be hereafter defined.

4.1 XPath query classes

XPath queries can contain child nodes marked
with the symbol / and nodes representing
descendant subtrees marked with the symbol //.
The predicates used for data filtering will be
marked with [], and the symbol * will be used
to substitute a descendant node. Thus, it can be
safely assumed that the tree formalization of an
XP (XPath) query uses the representation
XP{/,//,*,[]}.

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 175

Two classes of XP queries shall be taken into
account: XP{/,//,[]}, XP{/,*,[]}. The models
XP{/,//,*,[]} can be defined to represent the
trees associated to some XPath query classes,
for a set of constraints of the XPath
expressions. Constraints of XPath expressions
p(1), p(2), and so on, can be used for selection
of nodes of XML trees needed for rewriting
XPath views [14].

The existence of a morphism on the group of
XP models offers the possibility of equivalent
rewriting of XPath views, using
transformations of models of trees associated to
XP queries from cache, under filtering
constraints of XPath expressions, in XP{/,//,*,
[]} representation [15].

4.2 Heuristic algorithm description

The HSelectXP heuristic algorithm selects an
XPath view from cache to quickly process an
XPath query. For each view selected by the
heuristic algorithm, a compensation query can
be found, to which it is composed to supply the
results of a data query. The query can be formed
by the difference of the set of constraints of the
initial query and the selected view.

procedure HSelectXP(V, n)
Input: Q, a XPath query
Output: V, a XP view from cache if
exist; otherwise null

let be: ViXP views, 1  i  n
let be: Y, the set of constraints of
query Q
for i = 1, n

call Choose(V, i, X)
call Possible(X, sw)
if sw = 1 then store(V, i)
endif

repeat
return(V)

The HSelectXP heuristic algorithm works as
follows. In the procedure HSelectXP, the n
view set from cache is used. The Choose

procedure supplies the X set (the set of
constraints for the Vi view in cache). The
Possible procedure returns in the variable sw
the value 1 if X is a possible solution (if X is
included in Y) and returns 0 otherwise.

There may be cases in which a query cannot be
processed using XPath views from cache. As an
example, let’s consider a Q query, two XPath

views, V1 and V2 stored in cache and the XPath
expression validation constraints p(i), where
i>0:

Q: /a/b [p(1)] [p(2)]/c

V1: /a/b[p(3)]
V2: //b[p(4)]

The results of the Q query contain attributes
included in the views V1 and V2, but the
constraints [p(1)] and [p(2)] (for node b) do not
correspond to the views V1 and V2.

5. Complexity Analysis

In order to evaluate the complexity of the
HSelectXP heuristic algorithm, two criteria
could be taken into account: (a) the time
required to run the algorithm (given by the
number of elementary operations required to
select an Xpath view from cache) and (b) the
amount of memory that the algorithm requires.
The time complexity has no connection to the
specifications of the machine which is running
the algorithm and represents the main criterion
for the analysis.

n is given as the number of input data for the
HSelectXP heuristic algorithm. We note that n
equals the number of memory locations
required to store the XP views from cache,
flagged as Vi, i=1,…, n. We note TV(n) as the
time required by the algorithm for a V set of n
input data and T(n) as the time required by the
algorithm in the worst case scenario, thus:

T(n) = sup{TV(n), where V is a set of input data
with the size n}

We will study the behaviour of T(n) where n
has higher values. We will determine the upper
end of the running time using the O order of an
f function which increases at least as slow as T,
compared to the n size of the input data so that:

T (n)∼ f (n)⇔lim
n→∞

T (n)
f (n)

=const>0 (3)

and

T (n)=O(f (n))⇔∃C>0,
n0∈N , T (n)≤Cf (n) , ∀ n≥n0

The evaluation of T(n) for the
HSelectXPheuristic algorithm is based on the n
times repetition of the call for the procedures
Choose and Possible. The procedure Choose

required a constant amount of time. The
running time for the procedure Possible

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016176

depends on the complexity of the XPath query
for each i step and on its comparison to the
initial query. The average number of
comparisons is

T (n)=∑
i=1

n

pi nr i (4)

where pi represents the probability that the Vi

XPath view is chosen and processed, and nri

represents the number of constraints associated
with the query of Vi. Data uncertainty is
frequently modeled as a probability distribution
over possible data values [15].

The probability for an XPath view to be looked
up and processed can be expressed in the
following manner [16]:

pi=
number of searchesof i view

total number of searches
(5)

We are dealing with the case of a successful
search: if we assume that the search probability
of a view is the same as the search probability
of other views, then the average number of
comparisons is:

T (n)=∑
i=1

n
i

n
⋅nr i≤

≤
nr (1+2+…+n)

n
=

nr (n+1)
2

(6)

where nr = sup{ nri / nri represents the number
of constraints associated with the query of Vi,
i=1,…, n}. Should we choose a polynomial
function f of 1st degree. It means that T
increases as slow as the function f, where f(n)

= n. Thus the time complexity of the heuristic
algorithm is O(n).

6. Experimental Evaluation

and Comparisons

The experimental study is performed on an
AMD Athlon 1.9Ghz processor with 2GB
RAM. The database is implemented using
Oracle Database 10g Express Edition. The use
of cache in an Oracle database is hereafter
described. In the first stage, an XML type data
table is created and an XML data benchmark is
inserted in it, having a size of 462Kb. Two
classes of frequently used XP queries shall be
taken into account: XP{/,//,[]}, XP{/,*,[]}.
Then, a cache of views corresponding to the
stored query classes is created.

Heuristic cache shall hereafter represent the
cache of XPath views implemented in the
Oracle database which uses a cursor type
temporary table and memorizes the constraints
of the XPath expressions applied to the XML
data table. The heuristic algorithm which
selects an XPath view from cache is
implemented in the PL/SQL Oracle
programming language.

To evaluate the performance of the XML view
cache, a comparative analysis of the execution
time shall be performed for the queries done
with the SELECT command and the queries
done using two types of caches (heuristic cache
and naive cache).

6.1 Comparisons to other algorithms

We will compare our heuristic cache with
semantic cache, naive semantic cache and with
algorithm without cache. A naive semantic cache
(called the Naive Cache in our experiments) is
based on matching of query strings.

A semantic cache of XQuery views provides
solutions for the query and view matching
problem [17]. For XQuery views, it will obtain
smaller cached results and rewritten queries,
which will increase cache hits.

An effective semantic cache based algorithm
uses a Greedy approximation to look up the
result of a query in cache and describes
heuristics to improve the selection of a view
from cache [10]. The complexity of the
algorithm based on query caching and view
selection depends on the operations required to
generate a potential query, for the operation of
selecting a view based on the template of a
XPath query.

The method for maintaining a semantic cache
of material-ized XPath view describes some
heuristics to improve the view selection, and
obtain a higher cache hit rate.

Answerability checking based on matching of
query strings requires comparing operations
between the tree patterns of the query and view.

6.2 XML data benchmark

The Benchmark sets of data offer the possibility
of performing standard tests for real applications.
The large sizes of the Benchmark sets of data
represent a reason to study the performance
parameters in the database operations.

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 177

The experimental study uses a benchmark
which stores information on the scientific
papers registered in the SIGMOD database.
The document “SIGMON.xml” has a structure
presented in a tree form in Figure 2.

Figure 2. SIGMOD structure

6.3 Selection of XPath view from cache

Let’s consider four types of XPath query for the
SIGMOD.xml document and the corresponding
views memorizing query results in cache.

V1: //SigmodRecord/issue/volume
V2: //SigmodRecord/issue
[volume=12]/articles/article/title
V3://SigmodRecord/issue[volume=11]
[number=3]/articles/article/*
V4: //SigmodRecord/issue[volume=14]
[number=1]/articles
V5://SigmodRecord/issue[volume=11]/
/number,SigmodRecord/issue[volume=11]
//articles

Let’s also consider a workload with XPath
queries mentioned as Qi (i>1), which are
checked for solvability using a view in cache. If
a query cannot be processed using a view in
cache, then a new view is added to the cache.

An example of query which can be solved
using views in cache is the next one:

Q1: SELECT extract(OBJECT_VALUE,
'/SigmodRecord/issue[volume=11]
[number=1]//articles') FROM references;

Query Q1 is related to views V3 and V5 (results
of query Q are included in views V3 and V5),
but the constraint [number=3] does not contain
[number=1]. Therefore only view V5 returns
results for query Q, and query C, to whom it
composes is:

C://[number=1]/articles

This is a demonstration that to process the
query Q, the cache of XPath views may be
used, because there is a query C and a view V5
materialized in cache thus CoV5 = Q.

6.4 Heuristic algorithm performance

We will consider a cache comprised by XPath
views corresponding to the query classes
defined above. To study the performance of the
heuristic cache the hit rate and average
processing duration for XPath queries
parameters are used.

The average query time for the XPath views is
presented in Table 1. For each XPath query, the
heuristic algorithm implemented in PL/SQL
Oracle selects a view which is appropriate for
processing. Table 2 presents the average

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016178

Table 1. Query duration for views in cache

XPath views V1 V2 V3 V4 V5

The average processing duration (5 queries) in seconds 0.135 0.146 0.122 0.236 0.230

Table 2. The average processing duration for XPath queries

Processing

method

The average query processing duration in seconds

(10 executions)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

no cache 0.17 0.2 0.12 0.18 0.15 0.13 0.131

heuristic algorithm 0.02 0.07 0.01 0.06 0.02 0.01 0.019

the view selected by the algorithm V5 V2 V1 V1 V5 V4 V1

the average duration 0.03 0.01 0.01 0.01 0.01 0.01 0.02

processing duration resulted from the
composition of the cache view selection
operation and processing of the selected view.

The comparative analysis of the XPath queries’
processing methods emphasizes the
effectiveness of the proposed heuristic
algorithm, as compared to the solving method
for the queries without using cache, by using a
database (Figure 3).

Figure 3.The comparative analysis of the average
processing duration for XPath queries.

6.5 Effectiveness of the heuristic cache

Cache effectiveness can be statistically
determined, by calculating the hit rate (of the
performance), which is dependent on the view
cache implementing method and represents the
percentage of queries satisfied by the cache.
For example, the H hit rate is calculated as a
percent as follows: from 100 accesses, how
many times the data is found in cache.

We will compare our heuristic cache with a
naive semantic cache. We will consider two
workloads with sizes of 7 and 15 XPath queries
and the hit rate for each type of cache studied
shall be determined (Figure 4). Figure 5
presents the query processing time using three
methods: with the proposed heuristic cache,
with the naive cache and with no cache.

Figure 4. Hit rate for two types of cache.

The effectiveness of the heuristic cache
proposed is emphasized by comparing the
values for hit rate and average processing
duration for the queries obtained in the case of

the heuristic algorithm, with the ones obtained
in the case of the naive cache and, respectively,
with the values obtained with no cache.

Figure 5. The average processing duration
for XPath queries.

7. Conclusions

In this article, an optimization method has been
defined for XML data access, which is based
on a heuristic algorithm for selecting an XPath
view from cache. The use of cache stored
XPath views allows avoiding repeated access to
database data and optimizes XPath query
processing. The author describes a heuristic
algorithm for XP{/,//,*,[]} query classes which
select an XPath view stored in cache to solve a
very large XML data query. For each XPath
view, a compensation query can be found, and
it helps to supply the result of an XPath query.
The complexity analysis stands as proof for the
performance of the proposed algorithm.

The experimental study uses a Benchmark with
XML data extracted from the SIGMOD
database. The XPath view cache is stored in an
Oracle database as temporary table. To study
the performance of the heuristic cache the hit
rate and average processing duration for XPath
queries parameters are used. The comparative
analysis of the two types of cache (naive cache
and heuristic cache) emphasizes the
effectiveness of the heuristic algorithm in
processing XML data queries.

REFERENCES

1. KOSSMAN, D., D. FLORESCU, Storing

and Querying XML Data using an

RDBMS, IEEE Data Eng. Bulletin, 1999.

2. YOSHIKAWA, M., T. AMAGASA, T.
SHIMURA, S. S. UEMURA, Xrel: A

Path-based Approach to Storage and

Retrieval of XML Documents using

Relational Databases, ACM Trans. on
Internet Tech., no. 1, 2001, pp. 110-141.

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 179

3. SUBRAMANIAN, S. N., S.
VENKATARAMAN, Cost based

Optimization of Decision Support

Queries using Transient Views, In ACM
SIGMOD International Conference
Management of Data, Seattle, WA, 1998.

4. MISTRY, H., P. ROY, S. SUDARSHAN,
K. RAMAMRITHAM, Materialized

View Selection and Maintenance using

Multi-query Optimization, In ACM
SIGMOD International Conference on
Management of Data, 2001.

5. TUDOR, N. L., Cache Pattern with

Multi-Queries, Advances in Electrical and
Computer Engineering, Faculty of El.
Engineering and Computer Science, Stefan
cel Mare University of Suceava, Romania,

vol. 10, nr. 2, 2010, pp. 84-88.

6. ARINBJARNAR, M., B. PORSSON, B. P.
JONSSON, Performance of Semantic

caching Revisited, Technical Report
RUTR–CS06002, Reikjavik University
Iceland, 2006.

7. LUO, Q., S. KRISHNAMURTHY, C.
MOHAN, H. PIRAHESH, H. WOO, B.
LINDSAY, J. NAUGHTON, Middle-tier

Database Caching for e-Business, In
Proceedings of the ACM SIGMOD
International conference on Management
of data, 2002, pp 600 - 611.

8. DAMIANI, E., S. D. C. DI VIMERCATI,
S. PARABOSCHI, P. SAMARATI, Design

and Implementation of an Access

Control Processor for XML Documents,
Computer Networks, Amsterdam,
Netherlands, 1999, vol. 33(1–6), 2000,
pp. 59-75.

9. FUNDULAKI, I., M. MARX, Specifying

Access Control Policies for XML

Documents with XPath, In The ACM

Symposium on Access Control Models
and Technologies (SACMAT), ACM
Press, 2004, pp 61-69.

10. MANDHANI, B., D. SUCIU, Query

Caching and View Selection for XML

Databases, Proceedings of the 31st VLDB
Conference, Trondheim, Norway, 2005.

11. LEE, D., C. W. WESLEY, Semantic

Caching Via Query Matching for Web

Sources, In ACM Proceedings of the 8th

International Conference on Information
and Knowledge Management, USA, 1999.

12. TANG, J., S. ZHOU, A Theoretic

Framework for Answering XPath

Queries using Views, Third International
XML Database Symposium, XSym,
Trondheim, Norway, 2005.

13. Balmin, A., F. Özcan, K. S. Beyer, R.
Cochrane, H. Pirahesh, A Framework for

using Materialized XPath Views in

XML Query Processing, In VLDB, 2004.

14. TUDOR, N. L., Models XP for Rewriting

XPath Queries, Studies in Informatics
and Control, Bucharest, Romania, vol. 20,
no. 2, 2011, pp. 121-128.

15. VASILE, S. L., Query Optimization on

Random Databases, Studies in
Informatics and Control, vol. 23(3), 2014,
pp. 257-265.

16. TREMBLAY, J. P., P. G. SORENSON, An

Introduction to Data Structures with

Applications, second edition, McGraw-
Hill, New-York, 1984.

17. CHEN, L., S. WANG, E.
RUNDENSTEINER, Replacement

Strategies for XQuerycaching Systems,
Data & Knowledge Engineering, vol. 49,
no. 2, 2004, pp. 145-175.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016180

