
1. Introduction

Recycling  systems  enable  recovering  energy
and matter in a process. Such class of systems
are commonly found in chemical industry for
reducing the waste of reactants and hence, the
cost  of  a  reaction.  Recycling  systems  are
indeed  closed  loop  feedback  systems  before
being  controlled.  The  term  recycling  is
commonly used in process control literature in
order  to  avoid  confusion  with  single  (not
recycling)  systems  in  closed  loop  (or
feedback)  with the  controller.  For  instance  a
typical  plant  formed  by  reactor/separator
process, where reactants are recycled back to
the  reactor  [12,19].  Another  example  is  a
continuous stirred tank reactor (CSTR), where
the output stream of the reactor is sent through
a  separation  process,  then,  the  unreacted
reactants are returned into the CSTR through
pipes.  The  presence  of  recycle  streams
introduces either positive or negative feedback
structures into the system that can give rise to
some undesirable effects [15]. An example of
a recycling system is the recycle of the energy
developed  by  an  exothermic  reaction  in  an
adiabatic  plug  flow  reactor  for  feed
preheating. Instability could occur due to the
exponential increase in the reaction rate with
the temperature if it is not properly controlled
[4].  Some works  have  studied  the  effects  of
the  recycling  systems,  for  instance,  Luyben
studied  the  effects  of  the  recycle  paths  on
dynamics  process  and  their  implications  to
plantwide  control  [10,11].  Scali  and  Ferrari

discussed  the  robust  control  for  recycling
plants  and  proposed  the  concept  of  recycle
compensation  [16].  Similar  approaches  were
extended  by  Lakshminarayanan  and  Takada
[7], and Kwok et. Al [6]. In practice, it is quite
common to ignore the recycle delay and use
standard  ordinary  differential  equation
models.  However,  there  has  never  been  a
theoretical explanation why this consideration
is valid [9]. In fact, these references consider
precisely  simple  ordinary  differential
equations  for  the  analysis.  It  should  be
highlighted that the control problem becomes
more complex when time delays in both, the
direct and the recycling paths are present.  In
this situation, the transfer function of the total
recycling  system  has  a  delay  term  in  the
numerator  and  additionally  a  second  delay
term in the characteristic equation.  Then,  the
use  of  control  structures  for  systems  with  a
single time delay in the numerator, i.e., in the
direct  path,  cannot  be  directly  applied.  For
instance,  the  classical  Smith  Predictor  deals
with stable systems containing a single delay
term in the transfer function. By another way,
with  an  approach  inspired  in  the  Smith
Predictor  strategy,  Márquez  et.  al14 have
proposed a control methodology for recycling
systems  but  restricted  to  unstable  first  order
system at the direct path. This methodology is
based on an estimated feedback taken from an
observer-predictor.

This  work  considers  the  control  problem  of
recycling systems composed by a system with
n  stable  and  one  unstable  poles  at  the  direct

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro

Dynamic Delayed Controllers for Unstable
Recycling Systems with Time Delays

R. J. VAZQUEZ GUERRA, J. F. MARQUEZ RUBIO,
B. del-MURO-CUÉLLAR, G. I. DUCHÉN SÁNCHEZ

Sección de Estudios de Posgrado e Investigación,
ESIME Unidad Culhuacán, Instituto Politécnico Nacional,
1000, Av. Santa Ana, Coyoacán, 04430, D. F. México
rjjvg@yahoo.com.mx, jfcomr23@yahoo.com.mx, bdelmuro@yahoo.com, gduchen@ipn.mx

Abstract: In this work the problem of stabilization and control for recycling system is considered. Such class of systems
is characterized by possessing two main paths named through this work as the direct (feedforward) and the recycling
feedback) paths. This work considers recycling systems composed by a system of order n with one unstable pole at the
direct path and a stable system of order m in the recycling path, both with different time delays. Two different dynamic
delayed controllers are proposed in order to achieve a stable behavior of the closed-loop system. Stability conditions for
the existence of these controllers are stated. The problems of step tracking and reject step disturbances are also addressed.

Keywords: Recycling system; Unstable processes; Time delay; Stabilization.

195



path and  m  stable poles in the recycling path,
both  trajectories  containing  time  delays.  The
key idea in  our  proposal  is  to  use a  delayed
control  feedback  in  order  to  establish  the
conditions  to  guarantee  the  closed  loop
stability. The idea of introducing a delay term
into the controller has been previously used in
the literature.  For instance Abdallah et  al.  [1]
consider  a  delayed  term  into  controller  for
vibration  mitigation.  The  dynamic  delayed
controllers here proposed do not only tackle a
more  general  family  of  plants  than  the
considered in Márquez et. Al [14], they are also
easier  to implement considering that this  new
proposal  do  not  use  any  observer  scheme  to
design the control law. In fact, the main idea of
this  work  is  to  explore  the  simplest  way  to
stabilize the recycling process with time delays
and internal instability. The conditions for the
existence of the proposed dynamic controllers
are stated in terms of the poles position and the
delays magnitude. It is important to remark that
the  problem  of  stabilization  and  control  of
delayed  unstable  plants  even  without  a
recycling  path  is  not  completely  solved.  For
instance,  recent  works  [8,17] deal  with  the
stabilization  and  control  of  delayed  systems
with only one unstable pole. Also, note that the
stability  results  for  systems with delay in the
direct input-output path (see Lee [8], Silva [17],
Wang [18],  for instance) cannot be applied to
the class of system here considered, where two
delay terms of different magnitude are obtained
in the characteristic equation when the control
loop is closed.

Figure 1. Recycling system

2. Problem Statement

Consider the class of recycling system shown
in Figure 1, which can be described as 

Y ( s)=[G d (s) Gd ( s)G r (s) ] [U (s)
Y ( s) ] , (1)

with

Gd (s)=
N 1

D1( s)
e

−τ1 s
,

G r (s)=
N 2

D2 (s)
e
−τ2 s

,

where U(s) is the process input and Y(s) is the
process  output.  Gd(s) and  Gr(s) are  transfer
functions  of  the  direct  (feedforward)  and  the
recycling  (feedback)  paths,  respectively;
τ1 , τ2≥0  are  the  time  delays  associated  to

Gd(s) and Gr(s).  N1 and N2 are constants;  D1(s)
and  D2(s) are  polynomials  on  the  complex
variable  s.  The open-loop transfer function of
the recycling system (1) is given by 

GT ( s)=
Y (s)
U (s)

=

=
N1 D 2( s)e

−τ1 s

D1 ( s)D 2( s)−N 1 N 2 e
−(τ1+τ 2)s

, (2)

Now, for this class of systems (2), a traditional
output feedback control of the form

U ( s)=C ( s) [ R( s)−Y ( s)]

yields a closed-loop system given by 

Y (s)
R(s)

=

=
C (s)N 1 D2(s)e−τ1 s

D1(s)D 2(s)+ [C (s)N 1 D2(s)−N 1 N 2 e
−τ2s ] e−τ1 s

Then  the  characteristic  quasipolynomial  is
obtained

E (s)=D1( s)D 2( s)−N 1 N 2 e
−(τ 1+τ2)s+

+C ( s)N 1 D2(s)e
−τ1 s

It  is  clear  that  the  characteristic  equation
E (s)=0  has  two  transcendental  terms
e

−(τ1+ τ2)s and e
−τ1 s . These transcendental terms

induce  an  infinite  number  of  poles  [2].
Moreover,  a  characteristic  equation  with  two
different  time  delays  is  more  complicated  to
analyze  than  a  characteristic  equation  with  a
single time delay [5] and the stability results for
systems with a single delay term in the direct
input  -  output  path  [Lee  [8],  Silva  [17],  for
instance]  cannot  be  applied.  Accordingly,
recycling systems are challenging problems for
control  analysis  and  design.  This  work
proposes two dynamic delayed controllers that
use an output feedback in order to stabilize a
class of recycling system.
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3. Main Results

Let us consider the class of recycling systems
studied in this work, and characterized by 

Gd (s)=
N 1

D1(s)
e

−τ1 s=

=
N 1

( s−a)( s+bd 1)…(s+bdn)
e

−τ1 s
,

Gr ( s)=
N 2

D 2( s)
e

−τ 2 s=

=
N 2

( s+br 1)…(s+brm)
e

−τ2 s
,

(3)

where  a , b
di

,b
rl
∈R ,  with  a , b

di
,b

rl
>0 ,

∀ i=1,2,…, n  and  ∀ l=1,2,… ,m .  In  this
case  Gd(s) is  considered unstable and  Gr(s) is
Hurwitz stable.

Figure 2. Dynamic delayed Cσ (s)  controller in
closed-loop with a recycling system

3.1 Proposed dynamic delayed controllers

First, consider the recycling system of Figure 1
with Gd(s) and Gr(s) and given by (3), the open-
loop transfer function GT(s) defined in (2) and a
new controller Gσ(s),

U ( s)=Cσ ( s) [ R(s)−Y ( s) ] ,

with  σ=1, 2  and  where  R(s) is  an  input
reference.  Then,  the  closed-loop  transfer
function in Figure 2 is

Y (s )
R(s )

=

=
Cσ (s) N 1 D 2(s )e

−τ 1 s

D1(s ) D2(s )+ [Cσ( s)N 1 D 2(s )−N 1 N 2 e
−τ 2 s ]e−τ1 s

(4)

Then, in what follows the main results of this
work are presented.

Theorem 1 Consider the open-loop recycling

system  given  by  (2)  and  the  control  scheme

shown in Figure 2. Then there exists a dynamic
C1( s)  controller given by 

C1( s)=
K

P

D2( s)
e

−τ2 s (5)

such  that  the  closed-loop  system  (4)  (with

σ=1 ) is stable if and only if

ϕ<
1
a
−∑

i=1

m 1
bdi

−∑
l=1

m 1
brl

(6)

where ϕ=τ1+ τ2 .

Figure 3. System G
C σ( s)

Proof. Consider  K P=
K

P
+ N 1 N 2

N 1
 and

substituting  C1( s)  into  the  characteristic
equation in (4), yields

E1( s)=D1 (s)D2 (s)+K
p
e
−ϕs=0 (7)

Note  that  the  time  delay  in  the  C1( s )

controller  contributes  to  obtain  the
characteristic  equation  (7).  The  stability
properties of the characteristic equation given
by  (7)  are  obtained  by  considering  the
following auxiliary system shown in Figure 3
with σ=1 , where

GC 1
( s)=

K
P
e

−ϕs

D1( s)D 2( s)
(8)

It  can  be  seen  that  closed-loop  characteristic
equation  of  the  system  shown  in  Figure  3,
Y 1 (s )/R1( s ) ,  is  equivalent  to  the

characteristic  equation  (7).  In  such  case,  the
free control parameter is K

P . In what follows
a frequency domain analysis with the approach
proposed in Lee [8] is used in order to obtain
the stability conditions of the auxiliary closed-
loop system.

(Necessity) The open-loop frequency response
of the system (8) is given by

GC1
( j ω)=

=

K P

abT

e
−ϕ j ω

( j(1a )ω−1)∏
i=1

n

( j (1bdi
)ω+1)∏l=1

m

( j(1brl
)ω+1)

where bT=∏
i=1

n

bdi∏
l=1

m

brl .

Then, the magnitude is given as

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 197



MG C
1

( j ω)=

=

K P

abT

√(1+( 1
a )

2

ω2)∏
i=1

n

(1+( 1
bdi

)
2

ω2)∏l=1

m

(1+( 1
brl

)
2

ω2 )
(9)

The phase is expressed as

∠GC 1
( j ω)=−π−ϕω+arctan(1

a
ω)−

−∑
i=1

n

arctan( 1
bdi

ω)−∑
l=1

m

arctan( 1
brl

ω)
(10)

The Nyquist stability criterion establishes that
the  closed-loop  system shown in  Figure  3  is
stable  iff  0=N +P ,  with  P the  number  of
poles of the transfer function G

C 1
 in the right

half  plane  and  N the  number  of
counterclockwise  rotations  to  the  point
(−1, 0)  in the Nyquist diagram. In this case,
P=1  due  to  G

C 1  has  one  unstable  pole,
therefore  one  counterclockwise  rotation  is
required in order to assure closed-loop stability.
From (10), we see that ∠G

C 1
(0)=−π , then in

order to obtain a counterclockwise rotation to
the point (−1, 0) , the phase expression should
satisfy ∠G

C 1
( j ω)>−π  for ω≈0 . Therefore,

this  last  condition  can  be  assured  by

considering 
d

d ω (∠G C1
( jω))|ω=0>0 . Since 

d

d ω (∠GC1
( jω))|ω=0=

−ϕ+ 1
a
−∑

i=1

n
1
b

di

−∑
l =1

m
1
b

rl

>0

the following stability condition is obtained,

ϕ<
1
a
−∑

i=1

n 1
bdi

−∑
l=1

m 1
brl

(Sufficiency) Consider  that  the  condition

ϕ<
1
a
−∑

i=1

n 1
bdi

−∑
l=1

m 1
brl

 is  satisfied,  then

d

d ω (∠GC1
( jω))|ω=0>0 . This is, ∠G

C 1
( j ω)

is an increasing function for frequencies ω≈0 .
Therefore  an  adequate  K

P  produces  a
counterclockwise rotation to the point (−1, 0)
obtaining the closed-loop stability. ▄

In what follows the set of stabilizing gains K
P

is  obtained.  For  this  purpose,  the  phase
crossover frequency ωc  is given by

−ϕωc+arctan (1
a

ωc)−∑
i=1

n

arctan ( 1
bdi

ωc)−
−∑

l =1

m

arctan ( 1
b

rl

ω
c)=0

(11)

where  ω
c
>0 . Also notice that (11) is derived

from  ∠G
C 1
(ω

c
)=−180 .  For  systems  where

the phase decreases with the frequency (as in
the case of G

c 1 ) such that its phase expression
( ∠G

c 1 )  crosses  −180 °  only  once  from
above  at  frequency  ωc ,  one  may  use  the
stability  condition  |G

c1 (ωc
)|<1 ,  which  gives

as result, the set of stabilizing gains K
P

ab
T
< K

P
<ab

T
M (12)

where

M =√(1+( 1
a )

2

ωc

2)∏
i=1

n

(1+( 1
bdi

)
2

ωc

2)∏l=1

m

(1+( 1
brl

)
2

ωc

2)
and bT=∏

i=1

n

bdi∏
l=1

m

brl .

Remark 1 The C1( s)  controller is not able to

reject  step  disturbances  neither  to  track  step

references.  In  order  to  take  into  account  the

mentioned  issues,  in  the  next  paragraphs  a

second dynamic controller with integral factor

is proposed.

Theorem 2 Consider the open-loop recycling

system given  by  (2),  and  the  control  scheme

shown in Figure 2. Then there exists a dynamic
C2( s)  controller given as 

C2( s)=
K

P
(s+α)

sD2( s)
e

−τ 2 s (13)

such that the closed-loop system (4) (with =2)
is stable if and only if

ϕ<
1
a
−∑

i=1

n 1
bdi

−∑
l=1

m 1
brl

(14)

where ϕ=τ1+ τ2 .

Proof. Consider  K P=
K

P
+ N 1 N 2

N 1
,

α=
K

P
α

K P+ N 1 N 2
 and  substituting  C2( s)  into

the characteristic equation in (4), leads to

E2( s)=D 1(s)D2 (2)+
K

P
(s+α)

s
e
−ϕα=0 (15)

Now  the  stability  conditions  of  the
characteristic  equation  (15),  can  be  obtained
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from the auxiliary system shown in Figure 3
with σ=2 , where

GC 2
( s)=

K
P
(s+α)e

−ϕs

sD1( s)D2( s)
(16)

Notice that the characteristic equation (15) and
the  closed-loop  characteristic  equation  of  the
auxiliary system shown in Figure 3 are similar.
Therefore  the  stability  properties  of  the
auxiliary  system  are  obtained  by  using  the
frequency  domain  analysis  with  a  similar
approach as used in Lee [8].

(Necessity) The open-loop frequency response
of the system (16) is given by

GC 2
( jω)=

=

KP

abT

( j
1
α ω+1 )eϕ jω

j
1
α ω( j ( 1

α )ω−1)∏
i=1

n

( j ( 1
bdi

)ω+1)∏l=1

m

( j ( 1
b rl

)ω+1)
with bT=∏

i=1

n

bdi∏
l =1

m

brl .

Then,  the  magnitude  M
GC 2

( jω)  and  phase
∠G

C 2
( j ω)  are obtained as (17) and (18).

Notice that the expressions (17) and (18) of the
system (16) are equivalent to the expression (9)
and (10) of the system (8) when α=0 .

Therefore,  there  exist  a  sufficiently  small  α
gain  such  that  the  stability  condition  of  the
system (8) can be applied to the system (16),
which produces the stability condition

ϕ<
1
a
−∑

i=1

n 1
bdi

−∑
l=1

m 1
brl

(Sufficiency) Consider  that  the  condition

ϕ<
1
a

−∑
i=1

n
1
bdi

−∑
l=1

m
1
brl

 is  satisfied,  and  that

there exist a sufficiently small α gain such that
d

d ω (∠G
C 2

( jω))|ω=0>0 .  Then  ∠G
C 2

( j ω)

is  an increasing function for low frequencies.
And  an  adequate  K

P  produces  a

counterclockwise rotation to the point (−1, 0)
ensuring the stability. ▄

In  what  follows  the  parameters  of  the
controller  provided  by  Theorem  2  are
obtained.  First,  α is  selected  such  that  the
following equation is solved

−ϕωc+arctan (1
a

ωc)−arctan ( α
ωc )−

−∑
i=1

n

arctan ( 1
bdi

ωc)−∑
l=1

m

arctan ( 1
brl

ωc)=0
(19)

We define ω
c 1>0  and ω

c 2>0  as the first two
phase  crossover  frequencies  of  (19).  Also
notice  that  (19)  is  derived  from
∠G

C 2(ωc
)=−180 . Then, we use the stability

condition  |GC 2(ωc
)|<1 , which gives as result

the set of stabilizing gains K
P .

ab
T

α M 1< K P<
ab

T

α M 2
(20)

M g=√(1+( 1
a )

2

ωcg

2 )∏
i=1

n

(1+( 1
bdi

)
2

ωcg

2 )∏l=1

m

(1+( 1
brl

)
2

ωcg

2 )
1+( α

ωcg )
2

with g=1,2  and where bT=∏
i=1

n

bdi∏
l =1

m

brl .

Remark  2  The  proposed  C2(s) controller

satisfies,  the  properties  of  step  tracking

reference and rejecting step disturbance in the

closed-loop system. This can be easily verified

by using the proposed controller and applying

the final value theorem.

4. Robustness: Uncertainties in the
Parameters and in the Delay Terms

In  the  preceding  developments,  a  control
strategy  has  been  presented  under  the
assumption  of  a  complete  knowledge  of  the
actual process. In practice, it is desired to get a
control strategy that provides stability conditions
with  respect  to  model  uncertainties.  In  what
follows,  two  different  approaches  are  used  in
order to analyze robustness issues with respect
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M
GC 2

( jω)=
K P

ab
T √ 1+( αω )

2

ω2 (1+( 1
α )

2

ω2)∏
i=1

n

(1+( 1
bdi

)
2

ω2)∏l=1

m

(1+( 1
brl

)
2

ω2)
(17)

∠GC 2
( j ω)=−π−ϕω+arctan ( 1

α ω)−arctan (αω )−∑
i=1

n

arctan( 1
bdi

ω)−∑
l=1

m

arctan( 1
brl

ω) (18)
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to  the  proposed  control  strategies  applied  to
recycling systems. The first presented approach
addresses  the  problem  of  stability  when
uncertainties with respect to the plant parameters
are considered. Subsequently a second approach
allows  analysing  the  control  strategies
robustness  with respect  to  uncertainties  in  the
time  delays.  Additionally,  both  analysis
strategies can be used simultaneously.

4.1 Parameters uncertainties

The first  step towards the robustness analysis
consists  in  taking  into  account  parametric
uncertainties  in  the  recycling  system.
Therefore,  it  is  assumed  that  there  are  no
uncertainties in the time delays. For simplicity
in the notation, we dropped the argument  s in
the  polynomials.  Consider  now  a  general
representation of the proposed controllers C1(s)
and C2(s) as 

Cσ=
N

C

DC

e
−τ cs (21)

where  NC represents the numerator,  DC is  the
denominator of the controller and  e

−τc s  is the
delay  term.  Since  robustness  analysis  with
respect to uncertainties in the plant parameters
is  considered,  the  plant  with  uncertain
parameters is defined as

ḠT ( s)=
Ḡ

d
(s)

1−Ḡ
d
( s)Ḡ

r

(22)

with

Ḡd ( s)=
N̄ 1

D̄1

e
−τ1 s=

=
N 1+N 1

0

( s−a+a
0 ) (s+bd 1+bd 1

0 )… (s+bdn+b dn

0 )
e

−τ1 s
,

Ḡr=
N̄ 2

D̄2

e
−τ2 s=

=
N 2+ N 2

0

(s+b
r 1+b

r 1
0 )…( s+b

rm
+b

rm

0 )
e

−τ2s

where N 1
0 , a

0 , b
d 1
0 , … , b

dn

0 , N 2
0 , b

r 1
0 , … ,

b
rm

0  are  the  uncertainties  on  the  parameters
plant. Notice that when

N 1
0=a

0=b
d 1
0 =…=b

dn

0 =N 2
0=b

r 1
0 =…=b

rm

0 =0

the system (22) becomes the nominal process
(2). In this subsection, it is assumed τc = τ2 and
no uncertainties in the time delays. Therefore,
consider the proposed control structure shown
in  Figure  2  with  the  uncertainty  parameters

plant  Ḡ
T
( s)  given  by  (22)  and  the  general

control  given  by  (21),  then  the  closed-loop
characteristic equation

Dc D̄1 D̄2+( N c D̄2−Dc N̄ 2 ) N̄ 1 e
−(τ1+ τ2 ) s=0 (23)

has  a  single  time  delay  term  ( e−(τ1+τ 2 ) s ),
which allows analyzing its  stability by means
of a traditional Nyquist criteria. 

Figure 4. Auxiliary system

This can be done by considering an auxiliary
system shown in Figure 4, where 

G f =
N

c
N̄ 1 D̄ 2−D

c
N̄1 N̄ 2

Dc D̄1 D̄2

e
−(τ1+ τ2) s (24)

Note that the closed-loop characteristic equation
of the auxiliary system shown in Figure 4 is the
same that  the characteristic  equation given by
(23).  In this way,  the stability Nyquist  criteria
can be applied to the auxiliary system shown in
Figure  4  to  obtain  the  stability  results  of  the
characteristic equation (23). Also notice that  Gf

includes the parameters of the open-loop system
as well as the control parameters. It should be
pointed  out  that  we  have  made  such
transformation of the system in order to apply
the  Nyquist  stability  criterion  in  a  traditional
way, which states that when the loop is closed,
the system will be stable iff 0=N +P , with P
the number of poles of the transfer Gf in the right
half plane and N the number of clockwise round
trips  to  the  point  -1  (N  negative  in
counterclockwise) in the Nyquist diagram. Then,
we can verify that when

N 1
0=a

0=b
d 1
0 =…=b

dn

0 =N 2
0=b

r 1
0 =…=b

rm

0 =0

(nominal system case), the Nyquist diagram of
the  Gf satisfies  the  mentioned  stability
conditions. Moreover we can set uncertainties
on  the  open  loop  system  i.e.,
N 1

0
,a

0
,b

d 1
0

,… , b
dn

0
, N 2

0
,b

r 1
0

,…, b
rm

0  different
from zero  and  verify  if  the  Nyquist  diagram
satisfies  the  stability  properties.  This  last
analysis  is  just  the  key  to  analyze  the
robustness  issue  of  the  proposed  control

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016200



strategy, and will be illustrated in the section of
Simulation Results.

4.2 Time delay uncertainties

Here it will be shown that the results presented
in Gu et. al5 can be used in order to analyze the
robustness  properties  of  the  control  strategy
addressed  in  this  work  with  respect  to
uncertainties  in  the  time-delay.  In  particular,
because the time delay used in  the controller
may be different from one associated with the
plant.  With this aim, consider  a characteristic
quasipolynomial of the form 

p (s)= p0( s)+ p1( s)e
−τa s+ p2( s)e

−τb s=0 (25)

where its stability properties will be established
as  a  function  of  the  time-delays  τa and  τb.
Following [5] it  is  possible to give a  general
framework for our particular case. Let T denote
the set of all points (τa , τb )∈R+

2  (where R+
2

denotes the set  of  vectors in  R2 with positive
elements) such that p(s) has at least one zero on
the  imaginary  axis.  Any  ( τa

, τ
b)∈T  is

known  as  a  crossing  point  and  T is  the
collection of all stability crossing curves.

Now  consider  the  plant  with  uncertain
time-delays 

ĜT ( s)=
Ĝ d (s)

1−Ĝ
d
(s)Ĝ

r
( s)

(26)

with

Ĝd (s)=
N 1

D1
e

−(τ 1+τ10 ) s

Ĝ
r
(s)=

N 2

D 2

e
−( τ2+τ 20 )s

where  τ10 and  τ20 are  the  time-delay
uncertainties on the plant.  Then, the proposed
control  structure  shown in  Figure  2  with  the
uncertain  time-delays  plant  ĜT ( s)  given  by
(26)  and  the  general  control  given  by  (21),
gives the closed-loop characteristic equation

p
A
(s)= p

a
(s)+ p

b
(s)e

−τ a s+ p
c
(s)e

−τb s=0 (27)

with 

p
a
(s)= D

c
D1 D2 ,

pb (s)=−Dc N 1 N 2 ,

p
c
( s)=N

c
N 1 D2 ,

τa=τ1+τ10+τ2+τ20 ,

τb=τ1+τ10+τc

Note that in the nominal case τc=τ 2 , however
the  characteristic  equation  (27)  allows  the
analysis  of  the  closed-loop  stability  when
τ

c
≠τ 2 .  It  is  clear  that  the  characteristic

equation (27) has the form of (25), therefore it
is possible to identify the region of ( τa

, τ
b)  in

R+
2  such that p

A
(s)  is stable.

5. Simulation Results

In  this  section  dynamic  delayed  controllers
are applied to different processes to illustrate
the performance.

5.1 Example 1

Consider the recycling system of Figure 1 with,

Gd (s)=
N 1

D1
(s)e

−τ1 s=
11

(s−0.4 )( s+2)
e

−0.4s

G
r
( s)=

N 2

D 2

(s)e
−τ2 s= 3

(s+5)
e

−0.5 s
(28)

 The total time delay is ϕ=0.9 .

5.1.1 Performance evaluation

Since  the  condition  (6)  of  the  Theorem 1  is
fulfilled, it follows that the recycling system is
stabilizable  by  dynamic  C1(s) controller.
Computing  ωc = 0.6390 from (11),  and using
(12)  the  range  4<K

P
<7.9785  is  obtained.

K
P
=4.3  is  chosen.  From  (5)  the

corresponding dynamic  C1(s) controller can be
written as,

C1( s)=
K

P

D2

(s)e
−τ 2 s=

3.3909
( s+5)

e
−0.5 s

Figure 5 shows the stable  output  response of
the  system  (28)  in  closed-loop  with  the
dynamic C1(s) controller.

Figure 5. Output response of the system (28) in
closed-loop with C1(s) controller
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How, the dynamic C2(s) controller provided by
Theorem 2 is applied to the recycling system
given by (28). Notice that the condition (14) is
satisfied, therefore the parameter α is selected
as  α=0.03 .  From  (19),  we  obtain
ω

c 1(s)=0.2043  and  ω
c 2( s)=0.5733 .  Then

K
P  is bounded by 4.4707< KP<7.3097  from

(20). The parameter K
P
=5.3  is chosen. Then,

from  (13)  the  corresponding  dynamic
controller is, 

C2( s)=
K

P
( s+α)

sD2( s)
e

−τ 2 s=

=
3.4818( s+0.0042)

s(s+5)
e

−0.5 s

Figure  6 shows system output response of the
system (28)  in  closed-loop  with  the  dynamic
C2(s) controller,  subject to a disturbance step-
type  acting  on  the  time  t=200s with  a
magnitude of 0.3 units.

Figure 6. Output response of the system (28) in
closed-loop with C2(s) controller

5.1.2 Robustness analysis

Following the presented results of Robustness
with respect to parameters uncertainties, in this
Example  we  analyze  the  robustness  of  the
closed-loop system when the C1(s) controller is
used and an uncertainty on the unstable  pole
position (parameter a) is considered. To do this,
we build a Nyquist diagram of the system (24)
for  different  values  of  a0,  this  is  shown  in
Figure  7.  From stability  Nyquist  criteria,  the
system (24) is stable if and only if the point -1
is encircled in counterclockwise, this due to the
unstable pole at open loop of (24). In this way,
Figure  7  illustrates  that  for  the  nominal  case
a

0=0  the system is stable. Then with a
0=0.4

and  a
0=−0.03  the  stability  of  closed-loop

system is at the limit. From this Figure, we can
conclude  that  the  closed-loop  stability  is

preserved with  an  uncertainty  of  100 %  and
−7.5%  in the parameter a.

Figure 7. Nyquist diagram for different values of a0

uncertainty.

With a similar development, Figure 8 shows the
Nyquist  diagram for  different  values  of  b

r 1
0 ,

which allows to conclude that the closed-loop
stability  is  preserved  with  an  uncertainty  of
−1%  and  +10 %  in  the  parameter  b

r 1 (
b

r 1=5  in the nominal  case).  As we can see,
this analysis can be extended for any parameter
of the system or the combination of more than
one uncertainty.

Figure 8.Nyquist diagram for different values of
b0

r1 uncertainty.

Now,  let  us  analyze  the  robustness  of  the
closed-loop system with respect to time delays.
Following [5] for each particular example, it is
possible to obtain a figure that shows the points
( τa

, τ
b)  such  that  the  characteristic  equation

(27) has at least one zero on the imaginary axis.
Therefore,  the  figure  allows  obtaining  the
minimum  and  the  maximum  values  of  τa ,
such  that  the  closed  loop  of  the  proposed
control strategies remains stable. These values
are denoted as  τa min  and  τa max .  This can be
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also extended to the time delay  τb ,  with the
minimum  and  the  maximum  values  of  τb ,
denoted  as  τb min  and  τb max ,  respectively.
Therefore, our robustness analysis is based on
obtaining the minimum and maximum values
of  τ10  and τ20  such that (27) remains stable,
which  can  be  obtained  directly  from  τa min ,
τa max ,  τb min  and  τb max .  Taking into account

the  characteristic  equation  (27)  and  the
procedure  derived  from  [5]  in  Figure  9  it  is
presented  the  corresponding  region  ( τa

, τ
b)

when  the  C1(s) controller  is  used.  Let  us
consider an uncertainty ( τ20 )  in the time delay
τ2. In  this  way,  from  Figure  9  we  see  for
τ

b
=0.9  (this value of  τb  is analyzed due to

τb=τ1+τc  and  no  uncertainty  in  the  time-
delay τ1 ), it is obtained 0.8<τ

a
<1.3  into the

stable  region.  With  the  observation  that
τa=τ1+τ2+τ20 , we see that the range of  τ20

such  that  the  closed-loop  system  is  stable  is
−0.1<τ20<0.4 .  Therefore,  with  similar

analysis, Figure 9 can be also used to obtain the
stability  range when uncertainties  in  the time
delays τ1   is set.

Figure 9. Stability region for τa and τb, to C1(s)
controller, example 1.

Similarly,  in  Figure  10  is  presented  the
corresponding region  ( τa

, τ
b)  when the  C2(s)

controller  is  used.  In  this  case,  let  us  also
analyze the case where an uncertainty (τ10)  in
the  time  delay  τ1  is  considered.  We  have
τ

c
=τ 2=0.5 ,  therefore  τ

a
=0.9+ τ10  and

τ
b
=0.9+τ10 .  From the last equations we can

see that the uncertainty τ10  affects τa  and τb

at the same time. In this way, in Figure 10, all
possibilities  of  ( τa

, τ
b)  such  that  the

uncertainty  is  set  are  presented  by  means  a
dashed line. From the dashed line in Figure 10,
the  maximal  values  of  ( τa

, τ
b)  such that  the

closed loop system is stable is (1.1, 1.1). Now,

if  we  consider  that  the  nominal  case  is  (0.9,
0.9), we obtain  −0.4<τ10<0.2  (the minimum
of τ10  is obtained taking into account that τ1

should satisfy τ1>0 ).

Figure 10.Stability region for τa and τb, to C2(s)
controller, example 1.

In general, Figure 9 and Figure 10 can be used
to  obtain  more  than  one  time-delay
uncertainty.  Moreover,  the  two  proposed
approaches  (Nyquist  criteria  and  curves
( τa

, τ
b)  can be also used together in order to

consider  uncertainties  in  the  parameters  and
the time delays.

5.2 Example 2

Consider the recycling system of Figure 1 with 

Gd (s)=
N 1

D1(s)
e

−τ 1 s=
1

( s−0.8)( s+6)
e

−0.6 s

Gr ( s)=
N 2

D 2( s)
e

−τ 2 s=
1

(s+12)
e

−0.2 s

(29)

Since the condition (14) of the Theorem 2 is
satisfied,  the  C2(s) controller  can be used for
the recycling system (29). Thus, the parameter
a is  chosen  as  a=0.005 ,  obtaining
ω

c 1(s)=0.1655 ,  ωc 2( s)=0.6225  and
therefore  58.82<K

P
<73.47 .  For  the

simulations K
P
=61  is selected, from (13) the

corresponding dynamic controller is

C2( s)=
K

P
( s+a )

sD2( s)
e
−τ2 s=

=
62(s+0.0049)

s( s+12)
e
−0.2 s

(30)

In Marquez [13] a scheme observer and a two
degree of freedom control [3] have been used.
Now with  comparison  purposes  the  proposed
C2(s)  controller  given  by  (30),  also  can  be
implemented in two degree of freedom as
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U ( s)=R (s)G
ff
(s)−Y ( s)G

c
(s) ,

with

G ff ( s)=
K

P

D2
(η+α

s )e
−τ2 s

Gc( s)=
K

P

D2
(1+α

s )e
−τ2 s

where η is a parameter that should be selected
from  0<η<1 . For the simulations  η=0 .03
is  chosen.  On  the  other  hand,  consider  the
observer/controller  methodology  proposed  by
Marquez et  al  [13].  In  this  way the  observer
parameter is used as  k =5  and a PI controller
to the delay-free direct path, given by

G
ff
( s)=5.33(0.12+

0.0086
s )

G
c
( s)=5.33(1+0.0086

s ) .

Then,  an  unitary  step  reference  and  a  step
disturbance Q(s) of magnitude −0.1  acting at
140  sec.  are  considered  in  order  to  compare
both control strategies. The performance of the
output  signal  is  shown  in  Figure  11.  Under
these  conditions  and  by  considering  initial
conditions different from zero in the process as
well as a process uncertainty at time delay as
τ1=0 , Figure 12 presents the behavior of the

two control strategies. Then, Figure 13 shows
the  output  performance  when  the  position  of
the  process  recycling  pole  (s=−12)  has  an
uncertainty to s=−5 .

Figure 11. Comparative output response under
step disturbance.

Finally,  Figure  14  shows the output  response
when random noise in the output measurement
is  considered  as  well  as  an  initial  output

different from zero in the process. As we can
see, the observer based controller has a better
job  in  rejecting  measurement  noise  than  the
proposed  controller. In  order  to  assessing
quantitatively  the  output  signal  performance,
Table 1 shows a comparison between the two
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Figure 12. Comparative output response under
initial condition different from zero and uncertainty

at τ1.

Figure 13. Comparative output response when
uncertainty at D2(s) is considered.

Figure 14.Comparative output response when
random noise in the output
measurement is considered.
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control  strategies  by  using  the  Integral  Time
Absolute  Error  (ITAE)  criteria.  From Figures
11,  12,  13,  14 and Table 1,  we can conclude
that similar output response can be obtained by
using both control  methodologies,  however  it
should be pointed out that the control strategy
provided in the present work is simpler than the
one presented by Marquez et al [13].

Table 1. ITAE-Criteria

Performance
Proposed
strategy

Observer
Marquez13

Figure 11 944.7 1139

Figure 12 1520 2607

Figure 13 3389 2354

Figure 14 4024 2301

6. Conclusions

In this paper two dynamic delayed controllers
were proposed in order to stabilize and control
recycling  system.  The  recycling  system  is
composed by a system with  n  stable and one
unstable poles at the direct path and  m  stable
poles  in  the  recycling  path,  both  paths  with
time delay. Conditions for the existence of the
corresponding stabilizing controllers are stated.
The  schemes  by  dynamic  delayed  controllers
are simple and may be easily implemented. The
C2(s) dynamic controller  is  more complicated
than  the  C1(s) controller  but  it  contains  an
integral factor that solves the step disturbances
rejection  problem  and  the  tracking  of  step
references.  Numerical  simulations  are
presented in order to illustrate the application
of  the  proposed  results.  Also,  results  with
respect to the robustness of the control strategy
are  presented.  Then  it  is  illustrated  that  the
proposed  strategy  allows  considerably
magnitude of uncertainties.
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