
1. Introduction

Software defect detection represents the activity
of identifying software modules which contain
errors and it contributes to increasing the
effectiveness of the quality assurance process.
Fault detection methods would be helpful for
suggesting to the developers which software
modules should be focused on during testing,
particularly when, from lack of time, the
modules cannot be systematically tested.

Code review is frequently used in agile
development processes for maintaining the
quality of the software. During code review, an
experienced programmer reviews the source
code in order to identify vulnerabilities,
security problems and other problems
overlooked by the initial implementer. Since
code review is a time consuming and costly
activity, software defect detection can be used
to guide the code review process by identifying
parts of the source code where the code review
is most likely to identify problems.

Software defect detection is intensively
investigated in the literature and an active area
in the software engineering field, as shown by a
systematic review published in 2011, which
collected 208 fault prediction studies published
between 2000 and 2010 [12]. Detecting
software faults is a complex and difficult task,
mainly for large scale software projects. In the
literature there are a lot of machine learning-
based approaches for predicting faulty software

entities. From a supervised learning
perspective, defect prediction is a hard
problem, particularly because of the
imbalanced nature of the training data (the
number of non-defective training instances is
much higher than the number of defective

ones). Moreover, it is not a trivial problem to
identify a set of software metrics that would be
relevant for discriminating between faulty and
non-faulty modules.

Even if there are a lot of methods already
developed for detecting software defects,
researchers are still focusing on improving the
performance of existing classifiers. We are
introducing in this paper an unsupervised
machine learning method based on fuzzy self-

organizing maps for detecting faults within
software systems. To the best of our
knowledge, our approach is novel in the search-
based software engineering literature and
proved to outperform most of the existing
similar approaches, considering the case studies
we have used for evaluation.

The rest of the paper is structured as follows.
Section 2 presents the importance of the
problem approached in this paper and gives a
motivation for our work. Several existing
approaches similar to ours are given in Section
3. Our proposal is introduced in Section 4.
Section 5 provides the experimental results
which were obtained on several open-source
case studies and Section 6 analyses the
experimental results and compares them to

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 207

A Novel Approach Using Fuzzy Self-Organizing Maps for

Detecting Software Faults

Istvan-Gergely CZIBULA, Gabriela CZIBULA,

Zsuzsanna MARIAN, Vlad-Sebastian IONESCU

Babeş-Bolyai University,
1, M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania,
istvanc, gabis, marianzsu, ivlad@cs.ubbcluj.ro

Abstract: As software projects become more complex, there is an increased focus on their analysis and testing. Detecting
software faults is a problem of major importance for improving the quality of the software development related processes
and the efficiency of the software testing process. In order to detect faults in existing software systems, we introduce in
this paper a novel approach, based on fuzzy self-organizing feature maps. A fuzzy map will be trained, using unsupervised
learning, to provide a two-dimensional representation of the faulty and non-faulty entities from a software system and it
will be able to identify if a software module is or not a defective one. Five open-source case studies are used for the
experimental evaluation of our approach. The obtained results are better than most of the results already reported in the
literature for the considered datasets and emphasize that a fuzzy self-organizing map is more efficient than a crisp one for
the case studies used for evaluation.

Keywords: Software defect detection, Machine learning, Self-organizing map, Fuzzy clustering.

existing similar work from the literature. The
conclusions of the paper and directions for
future research are outlined in Section 7.

2. Problem Relevance. Motivation

Since software systems are continuously
growing in size and complexity, predicting the
reliability of software has a fundamental role in
the software development process [25]. Clark
and Zubrow consider in [7] that there are three
main reasons for which the analysis and
prediction of software defects is essential. The
first one is to help the project manager to
measure the progress of a software project and
to plan activities for defect detection. The
second reason is to contribute to the process
management, by evaluating the quality of the
software product and measuring the process
performance [7]. Finally, information about
software faults, their location within the
software and the distribution of defects may
contribute to improving the efficiency of the
testing process and the quality of the next
version of the software.

Many of the machine learning-based defect
predictors existing in the literature have been
built using historical data collected by mining
software repositories [13]. Unfortunately, there
are studies carried out in the defect prediction
literature (like [3]) which have revealed that
defect data extracted from change logs and bug
reports may contain noise [13]. Other machine
learning-based software defect predictors use
openly available datasets, like the NASA
datasets, where only the software metric values
computed for the modules of the software
system are available, but not the source code.
Unfortunately, there can be noise in these
datasets as well, as shown by [11]. Therefore,
there is a need to build classifiers which can
cope with the lack of information, imprecision
and noise. Fuzzy techniques [22] [9] are known
in the soft computing literature to be able to
better deal with noisy data than the crisp
methods and may lead to the development of
more robust systems.

In consequence, we consider a fuzzy self-

organizing map approach towards software
fault detection to be a pertinent choice for both
coping with uncertainty and for overcoming the
drawbacks of supervised learning.

3. Related Work on Software

Defect Detection

In the following, we will briefly review several
machine learning-based approaches from the
defect detection literature which are somehow
related to our approach (are based on
unsupervised learning or are using the same
case studies as in this paper).

An approach that uses a combination of self-
organizing maps and threshold values is
presented in [1]. After the SOM is trained,
threshold values are used to label the trained
nodes: if any of the values from the weight
vector is greater than the corresponding
threshold, the node will represent the defective
entities. Classification is done by finding the
best matching unit for the given instance and
using the label of the node.

We have introduced an approach for detecting
defective entities using self-organizing maps in
[16]. After an attribute selection based on the
Information Gain [18] of the attributes, a map
was trained to visualize the defective entities.
While we had encouraging results, we have
realized that in many cases defective and non-
defective entities are quite similar, they are
close to each other on the map. These
observations led us to the use of fuzzy maps,
which can handle such situations.

There are several approaches in the literature
that use different clustering algorithms to group
defective and non-defective entities. One such
approach is presented in [4], where K-Means
algorithm is used and the centers of the clusters
are found using Quad Trees. Since determining
the optimal number of clusters is not a simple
task, some approaches use clustering
algorithms where the number of clusters is
automatically determined. Such an approach is
presented in [6] where the X-means algorithm
from Weka is used for clustering. After the
clusters are created software metric threshold
values are used to determine which clusters
represent the defective and which represent the
non-defective entities. The X-means algorithm
(together with a clustering algorithm that is
capable of automatically determining the
optimal number of clusters, EM) is used in [20]
as well, together with different attribute
selection techniques implemented in Weka.

Yu and Mishra in [24] investigate the problem
of building cross-project detection models,

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016208

which are models built from data taken from
one software system, but used and tested on a
different software system. They use binary
logistic regression on the Ar datasets, and build
two models: self-assessment, when the model is
tested on the dataset from which it was built,
and forward-assessment, when some datasets
are used for building a model and a different
one is used for testing it. They conclude that
self-assessment leads to better performance
measures, but forward-assessment gives a more
realistic measure of the real performance of the
binary logistic regression model.

The problem of cross-project defect detection is
approached in [19] as well. The authors
consider situations when the software metrics
from the datasets on which a model was built
are not the same as the metrics computed for
the system to be tested. They introduce an
approach which tries to match the software
metrics from the different sets to each other,
based on correlation, distribution, and other
characteristics. To compare this approach to
other existing ones, they use 28 datasets
(including the Ar datasets) and Logistic
Regression from Weka.

Multiple Linear Regression and Genetic
Programming are used in [2] to evaluate the
influence and performance of different
resampling methods for the problem of defect
detection. The Ar datasets are used as case
studies to compare five different resampling
methods: hold-out, repeated random sub-
sampling, 10-fold cross validation, leave-one-
out cross-validation and non-parametric
bootstrapping. The results of the study show
that, considering the AUC performance
measure, there is no significant difference
between the resampling methods, but the
authors claim that this can be caused by the
imbalanced datasets or the high number of
attributes.

A comparison of statistical and machine
learning methods for defect prediction is
presented in [15]. They compare logistic
regression with six machine learning
approaches. The models were evaluated on two
Ar datasets, and the best performance was
obtained using Decision Trees.

4. Methodology

In this section we introduce our fuzzy self-

organizing map model for detecting faults in
existing software systems.

The software entities (classes, modules,
methods, functions) from a software system are
represented as high-dimensional vectors (an
element from this vector is the value of a
software metric applied to the considered
entity). As shown in [16], the software system
Soft is viewed as a set of instances (called
entities) Soft={e1 ,e2 ,…, e

n
} . A set of

software metrics will be used as the feature set
characterizing the entities from the software
system, M ={m1 ,m2 ,… , m

l
} . Therefore, an

entity e
i
∈Soft from the software system can

be represented as a l-dimensional vector,
e

i
={e

i1 ,e
i2 ,…, e

il
} (eij denotes the value of

the software metric mj applied to the entity ei).

For each entity from the software system, its
label is known (D=defect or N=non-defect).
The labels of the instances will not be used for
building the fuzzy SOM, since the learning
process will be completely unsupervised. The
labels will be used only for pre-processing the
input data and for evaluating the performance
of the resulting classification model.

Before applying the fuzzy SOM approach, the
data is pre-processed. First, the data is
normalized using the Min-Max normalization
method, and then a feature selection step is
used in order to identify a subset of features
(software metrics) that are highly relevant for
the fault detection task (details will be given in
the experimental part of the paper). As a result
of the feature selection step, p features
(software metrics) will be selected and will be
further used for building the fuzzy SOM.

4.1 The fuzzy SOM model. Our proposal

The dataset pre-processed as indicated above,
will be used for the unsupervised training of the
map. As for the classical SOM approach, a
distance function between the input instances is
needed. We are using as distance between two
software entities ei and ej Euclidean Distance

between their corresponding vectors.

We are proposing, in the following, a fuzzy self-

organizing map algorithm (FSOM) for building
the fuzzy map. Our algorithm does not
reproduce any existing algorithm from the

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 209

literature, but it combines the existing
viewpoints related to fuzzy SOM approaches.
The underlying idea in FSOM is the classical
SOM algorithm, combined with the concept of
fuzziness employed in fuzzy clustering [14].

The FSOM algorithm enhances the classical
Kohonen algorithm for building a SOM with
the idea (employed in fuzzy clustering) of using
a fuzzy membership matrix. In fuzzy clustering,
instead of using a crisp assignment of an object
to a cluster, an object can belong to multiple
clusters. The degree to which an input object
belongs to each cluster is indicated by the set of
membership levels expressed by the columns of
the membership matrix. In building the fuzzy

SOM, we will use the fuzzy membership idea
related to the computation of the “winning
neuron”. Instead of using a crisp best-matching
unit (BMU), as used in the classical SOM
algorithm, the membership matrix will be used
to specify the degree to which an input instance
belongs to an output neuron (cluster). This
means that an input instance is not mapped to a
single neuron (its BMU), but to all the neurons
(clusters) from the map (but with a certain
membership degree).

Intuitively, an input instance will have the
larger membership degree to the neuron
representing its BMU. The idea of updating the
winning neuron and its neighbours is kept from
the classical SOM, but if the input instance has
a larger membership degree (level) to a
neighbouring neuron, this neuron will be
''moved'' closer to the input instance than the
other neurons (i.e., the updating rule considers
the computed membership levels). Through
these updating rules, the FSOM algorithm
maintains the main characteristic of the
classical SOM of “moving” the winning neuron
and its neighbourhood towards the input
instance, but it may express a better updating
scheme than the crisp approach.

Let us consider, in the following, that the input
layer of the map consists of p neurons (the
dimensionality of the input data after feature
selection) and the computational layer of the
map consists of c neurons disposed on a two
dimensional grid, in which an output neuron i is
represented as a p-dimensional vector of
weights, w

i
={w

i 1 , w
i 2 ,…, w

ip
} (wij represents

the weight of the connection between the j-th
neuron from the input layer and the i-th neuron
from the computational layer).

Let us denote by u the membership matrix,
where: u

ik
∈[0,1] , ∀ 1≤i≤c , 1≤k≤n . These

values are used to describe a set of fuzzy c-
partitions for the n entities, and uik represents
the degree to which entity ek belongs to the
output neuron (cluster) i.

The main steps of the FSOM algorithm are
described in the following.

Step 1. Weights initialization. The weights are
initialized with small random values from [0,1].

Step 2. Membership degrees computation.

The values from the membership matrix are
computed as in Formula (1) (as for the fuzzy c-

means clustering algorithm [14]). m is a real
number, greater than 1 and represents the
fuzzifier. The role of the fuzzifier is to control
the overlapping between the clusters [14].

uik=
1

∑
j=1

c

(‖x k−w i‖

‖xk−w j‖)
2

m−1 (1)

Step 3. Sampling. Select a random input entity
et and send it to the map.

Step 3.1. Matching. Find the “winning”
neuron j*, as the output neuron which
maximizes the membership degree of the input

entity et to the neuron, i.e. j
*=argmax

1≤ j≤c

u
jt .

Step 3.2. Updating. After identifying the
“winning neuron”, update the connection
weights of the winning unit and its
neighbouring neurons, such that the neurons are
“moved” closer to the input instance. When
updating the weights for a particular neuron,
we will consider the membership degree of the
considered entity to that neuron. More
precisely, for each output neuron
j , (∀1≤ j≤c) , its weights w

ji
, (∀1≤i≤ p)

will be updated with a value Δ w
ji computed

as in Formula (2).

Δw
ji
=η⋅T

jj

*⋅(eti
−w

ji)⋅u
jt

m
(2)

where η is the learning rate and T
jj* denotes

the neighbourhood function usually used in the
classical Kohonen's algorithm [21] and whose
radius decreases over time.

Step 4. Iteration. Repeat steps 2-3 for a given
number of iterations.

If we look at Step 2 of the FSOM algorithm, we
observe that an input entity will have the
largest membership degree to the neuron

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016210

(cluster) representing its BMU. Intuitively, the
degrees to which the entity belongs to the other
neurons from the map (others than its BMU)
have to decrease as the distance from the entity
and the neurons increases. Another
characteristic of the fuzzy algorithm (compared
to the crisp variant) is the fact that the weights
of particular neurons from the neighbourhood
of the “winning neuron” (see Step 3) are
updated differently depending on the degree to
which the current entity belongs to the neuron.
This updating method may lead to final weights
which would give a better representation of the
input space.

After the map was trained using the FSOM
algorithm described above, in order to visualize
the obtained map, the U-Matrix method is used.
The U-Matrix value of a particular node
(neuron) from the map is calculated as the
average distance between the node and its 4
neighbours. If one interprets these distances as
heights, the U-Matrix may be interpreted as
follows: high places on the U-Matrix represent
entities that are dissimilar with those from low
places, while the data falling around the same
height represent entities that are similar and can
grouped together to represent a cluster.

Since the fault prediction problem is a binary
classification one, our goal is to identify on the
trained map two clusters corresponding to the
two classes of entities: defects and non-defects.

Even if the fuzzy SOM was built using
unsupervised learning, after its creation it may
also be used in a supervised learning scenario
for classifying a new software entity. First, the
“winning neuron” corresponding to this entity
is determined (as indicated in Step 3.1). Then,
the class (defect or non-defect) to which the
winning neuron belongs will indicate the result
of classifying the new software entity.

For evaluating the performance of the FSOM
model trained as shown above, we compute the
confusion matrix for the two possible classes,
considering the defective class as the positive

one and the non-defective class as the negative

one. For computing the values from the
confusion matrix, we use the known labels
(classes) of the training entities.

Since defect prediction data is highly
imbalanced the number of defects is much
smaller than the number of non-defects) the
main challenge in software fault prediction is to
increase the true positive rate (i.e., maximize

the number of defective entities that are
classified as faults), or, equivalently, to
decrease the false negative rate (i.e., minimize
the number of defective entities that are
wrongly classified as non-faults). For the
problem of defect detection, having false

negatives is a more serious problem than
having false positives. The first situation
denotes an undetected fault in the system,
which can cause serious problems later, while
in case of the second situation some time is lost
to thoroughly test a fault-free entity that was
classified as faulty. In the case of imbalanced
data, the evaluation measure that is relevant for
representing the performance of the classifiers
is the Area Under the ROC Curve (AUC)

measure [10] (larger AUC values indicate
better classifiers).

5. Computational Experiments

In this section we provide an experimental
evaluation of the FSOM model (described in
Section 4) on five open source datasets which
were previously used in the software defect
detection literature. We mention that we have
used our own implementation for FSOM,
without using any third party libraries.

5.1 Datasets

The datasets used in our experiments are
publicly available for download at [17] and are
called Ar1, Ar3, Ar4, Ar5 and Ar6. All five
datasets were obtained from a Turkish white-
goods manufacturer embedded software
implemented in C [16]. The software entities
from these datasets are functions and methods
from the considered software and are
represented as 29-dimensional vectors
containing the value of different McCabe and
Halstead software metrics. For each instance
within the datasets, we also know the class
label, denoting whether the entity is defective

or non-defective.

We depict in Table 1 the descriptions of the
Ar1-Ar6 datasets used in our case studies. For

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 211

Table 1. Description of the datasets used for the
experimental evaluation.

Dataset Defects Non-defects Difficulty

Ar1 9 (7.4%) 112 (92.6%) 0.666
Ar3 8 (12.7%) 55 (87.3%) 0.625
Ar4 20 (18.69%) 87 (81.31%) 0.7
Ar5 8 (22.22%) 28 (77.78%) 0.375
Ar6 15 (14.85%) 86 (85.15%) 0.666

each dataset, the number of defects and non-

defects is illustrated, as well as the difficulty of
the dataset. The measure of difficulty for a
dataset was introduced by Boetticher in [5] and
is computed as the percentage of entities for
which the nearest neighbour (ignoring the label
of the entity when computing the distances) has
a different label. Since our datasets are
imbalanced, when computing the difficulty of
the datasets, we considered only the percentage
of defective entities for which the nearest
neighbour is non-defective.

From Table 1 one can observe that all datasets
are strongly imbalanced, with all number of
defects much smaller than the number of non-

defects. Moreover, it can be seen that the task
of accurately classifying the defective entities
is very difficult. Ar1, Ar4 and Ar6 seem to be
the most difficult datasets from the defect
classification point of view. The complexity of
the software fault prediction task for the Ar1

and Ar6 datasets is highlighted in Figure 1,
which depicts a two dimensional view of the
data obtained using t-SNE [23]. T-distributed
Stochastic Neighbour Embedding (t-SNE) is a
method for visualizing high-dimension data in
a way that better reflects the initial structure of
the data compared to other techniques, such as
PCA. From a visualization point of view, the
method has been shown to produce better
results than its competitors on a significant
number of datasets.

5.2 Results

For the fuzzy self-organizing map, we used the
torus topology in our experiments, since it is
shown in the literature that this topology
provides better neighborhoods than the

conventional one. The parameters used for
building the map are the following: 200000
training iterations and the learning coefficient

was set to 0.7. For controlling the overlapping
degree in the fuzzy approach, the fuzzifier was
set to 2 (shown in the literature as a good value
for controlling the fuziness degree).

For the feature selection step, we have used the
analysis that was performed in [16] on the Ar3,
Ar4 and Ar5 datasets. For determining the
importance of the software metrics for the
defect detection task, the information gain (IG)
measure was used. From the software metrics
whose IG values were higher than a given
threshold, a subset of metrics that measure
different characteristics of the software system
were finally selected. Therefore, 9 software
metrics were selected in [16] to be
representative for the defect detection process:
halstead_vocabulary, total_operands,
total_operators, executable_loc,
halstead_length, total_loc, condition_count,
branch_count, decision_count [16]. The
previously mentioned software metrics will
also be used in our FSOM approach.

In the following, we present the results we have
obtained by applying the FSOM model on the
Ar1, Ar3, Ar4, Ar5 and Ar6 datasets. After the
data is preprocessed, the FSOM algorithm
introduced in Section 4 is applied and the U-
Matrix corresponding to the trained FSOM will
be used to identify the class of defects and non-

defects. Then, for each instance from the
training dataset, we compare the class provided
by our FSOM with the entity's true class label
(known from the training data). Finally, the
AUC measure is computed.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016212

Figure 1. t-SNE plots for the Ar1 and Ar6 datasets.

Figure 2 depicts the U-Matrix visualizations of
the best FSOMs obtained on the five datasets
used in our experiments. On each neuron from
the maps we represent software entities which
were mapped on that neuron, i.e., instances for
which the neuron was their BMU. The red
circles represent the defective entities and the
green circles represent the non-defective
entities. Each neuron is also marked with the
number of defects D and non-defects N which
are represented on it.

Visualizing the U-Matrices from Figure 2, one
can identify two distinct areas: one containing
lightly coloured neurons, whereas the second
area consists of darker neurons. The two areas
represented on the maps correspond to the
clusters of defective and non-defective software
entities. Since the percentage of software faults
from the software systems is significantly
smaller than the percentage of non-faulty
entities (see Table 1), the area from the map
containing a larger number of elements is
considered to be the non-defective cluster. The
remaining area from the map corresponds to the
defective cluster.

Table 2 illustrates, for each dataset, the
configuration used for the FSOMs (number of
rows and columns of the maps) as well as the
values from the confusion matrix (false

positives, false negatives, true positives and
true negatives).

Table 2. Results obtained using FSOM on all
experimented datasets.

Datase

t

rows x cols FP FN TP TN

Ar1 3x2 26 1 8 86
Ar3 2x3 1 2 6 54
Ar4 2x3 18 4 16 69
Ar5 3x2 4 0 8 24
Ar6 3x3 18 4 11 68

6. Discussion and Comparison to

Related Work

As presented in Section 5 and graphically
illustrated in Figure 2, our FSOM approach was
able to provide a good topological mapping of
the entities from the software system and
successfully identified two clusters
corresponding to the faulty and non-faulty

entities. Even if the separation was not perfect,
which is extremely difficult for the software
defect detection task, for all five datasets we
obtained good enough true positive rates (at
least 73% detection rate for the defects). For
the Ar5 dataset, our FSOM succeeded in
obtaining a perfect defect detection rate,
misclassifying only 4 non-defective entities.

The AUC measure is often considered to be the
best performance measure to compare
classifiers [10]. However, it is usually suitable
for methods which, instead of directly returning

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 213

Figure 2. U-Matrix for the datasets used in our experiments.

the classification of an instance, return a score
which is transformed into classification using a
threshold. In such cases, different thresholds
lead to different (sensitivity, 1-specificity)
points on the ROC curve, and AUC measures
the area under this curve. For methods where
no threshold is used (for example, in our
approach) the ROC curve contains one single
point, which is linked to the points (0, 0) and
(1, 1), thus providing a curve and making the
computation of the AUC measure possible.

Table 3 presents the values of the AUC
measure computed for the results we have
obtained using our approach, but it also
contains values reported in the literature for
some existing similar approaches ([1], [6], [20],
[4], [24]), presented in Section 3. If an
approach does not report results on a particular
dataset, we marked it with “n/a” (not

available). In case of approaches that do not
report the value of the AUC measure, but report
other measures (for example false positive rate,
false negative rate) if it was possible, we
computed the values from the confusion matrix
of these measures and used them to compute

the value for the AUC measure, as in case of
our approach. The best results obtained for the
AUC are marked with bold in the table.

We would like to mention that the results from
[2] for the Multiple Linear Regression and
Genetic Programming approaches are the best
values reported by the authors and they were
usually achieved for different resampling
settings. In the case of the cross-project defect
prediction approach, [24], we have reported
only the results of the experiments when the
same dataset was used both for building the
model and testing it.

From Table 3 we observe that our FSOM
approach has better results than most of the
approaches existing in the literature and
considered for comparison. Out of 54
comparisons, our algorithm has a better or
equal value for the AUC performance measure
in 48 cases, which represents 89% of the cases.

It has to be noted that the fuzzy SOM method
introduced in this paper proved to have a better
or equal performance, for all datasets, than the
crisp approach previously introduced in [16].

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016214

Table 3. Comparison of our AUC values with the related work.

Approach Ar1 Ar3 Ar4 Ar5 Ar6

Our FSOM 0.829 0.87 0.80 0.93 0.762

SOM [16] 0.695 0.87 0.74 0.92 0.726

SOM with Threshold [1] n/a 0.88 0.95 0.84 n/a

K-means with Quad-Trees [4] n/a 0.70 0.75 0.87 n/a

Clustering Xmeans [20] n/a 0.84 0.69 0.86 n/a

Clustering EM [20] n/a 0.82 0.69 0.80 n/a

Clustering Xmeans [6] n/a 0.70 0.75 0.87 n/a

Genetic Programming [2] 0.530 0.67 0.65 0.67 0.630

Multiple Linear Regression [2] 0.550 0.61 0.62 0.55 0.590

Binary Logistic Regression [24] 0.551 0.87 0.73 0.39 0.722

Logistic Regression [19] 0.734 0.82 0.82 0.91 0.640

Logistic Regression [15] 0.494 n/a n/a n/a 0.538

Artificial Neural Networks [15] 0.711 n/a n/a n/a 0.774

Support Vector Machines [15] 0.717 n/a n/a n/a 0.721

Decision Trees [15] 0.865 n/a n/a n/a 0.948

Cascade Correlation Networks [15] 0.786 n/a n/a n/a 0.758

GMDH Network [15] 0.744 n/a n/a n/a 0.702

Gene Expression Programming [15] 0.547 n/a n/a n/a 0.688

For the Ar3 and Ar6 datasets, the FSOM
performed similarly to the classical SOM. For
the other three datasets the FSOM
outperformed the SOM. For the Ar1 dataset, the
FSOM obtained a significantly better AUC
value than the classical SOM. These results
highlight the effectiveness of using a fuzzy

approach rather than a crisp one.

Analyzing the results from Table 3 we observe
that our FSOM approach has the highest AUC
value for the Ar5 dataset, the second highest
value for the Ar1 and Ar3 datasets and the third
highest value for the Ar6 dataset. Interestingly,
the results that we have obtained are perfectly
correlated with the difficulties of the
considered datasets (given in Table 1). More
precisely, the best result was obtained for the
“easiest” dataset, Ar5, while the worst results
were provided for the datasets which are more
“difficult”, Ar6 and Ar4. Even for the hardest
datasets, the AUC values obtained by the
FSOM are better than most of the AUC values
from the literature.

Figure 3 depicts the AUC value obtained by our
FSOM and the average AUC value reported in
related work from the literature for each dataset
(see Table 3). The first dashed bar from this
figure corresponds to our FSOM. One can
observe that the AUC value provided by our
approach is better, for each dataset, than the
average AUC value from the related work.

Figure 3. Comparison to related work.

7. Conclusions and Future Work

A fuzzy self-organizing feature map has been
introduced in this paper for detecting, in an
unsupervised manner, those software entities
which are likely to be defective. The
experiments we have performed on five open-
source datasets used in the software defect
detection literature highlight a very good

performance of the proposed approach,
providing results better than most of the similar
existing approaches. Moreover, the fuzzy

approach [8] introduced in this paper proved to
outperform, for the considered case studies, the
crisp SOM approach.

Other open-source case studies and real
software systems will be further used in order
to extend the experimental evaluation of the
fuzzy self-organizing map model proposed in
this paper. We also aim to investigate the
applicability of other fuzzy models for software
defect detection, as well as to identify software
metrics appropriate for software fault detection.

Acknowledgments

This work was supported by a grant of the
Romanian National Authority for Scientific
Research, CNCS-UEFISCDI, project number
PN-II-RU-TE-2014-4-0082.

REFERENCES

1. ABAEI, G., Z. REZAEI, A. SELAMAT,
Fault Prediction by Utilizing Self-

organizing Map and Threshold, in
ICCSCE, 2013, pp. 465-470.

2. AFZAL, W., R. TORKAR, R. FELDT,
Resampling Methods in Software

Quality Classification, International
Journal of Software Engineering and
Knowledge Engineering, vol. 22, no. 2,
2012 pp. 203-223.

3. ARANDA, J., G. VENOLIA, The Secret

Life of Bugs: Going Past the Errors and

Omissions in Software Repositories, in
Proceedings of the 31st International
Conference on Software Engineering,
USA, 2009, pp. 298-308.

4. BISHNU, P., V. BHATTACHERJEE,
Software Fault Prediction Using Quad

Tree-Based K-Means Clustering

Algorithm, IEEE Transactions on
Knowledge and Data Engineering, vol. 24,
no. 6, June 2012, pp. 1146-1150.

5. BOETTICHER, G. D., Advances in

Machine Learning Applications in

Software Engineering, IGI Global, 2007.

6. CATAL, C., U. SEVIM, B. DIRI, Software

Fault Prediction of Unlabeled Program

Modules, in WCE, 2009, pp. 212-217.

Studies in Informatics and Control, Vol. 25, No. 2, June 2016 http://www.sic.ici.ro 215

7. CLARK, B., D. ZUBROW, How Good is

the Software: A Review of Defect

Prediction Techniques, in Software
Engineering Symposium, Carnegie Mellon
University, 2001, pp. 1-35.

8. DINU, S., Multi-objective Assembly Line

Balancing Using Fuzzy Inertia-adaptive

Particle Swarm Algorithm, Studies in
Informatics and Control, vol. 24, no. 3,
2015, pp. 283-292.

9. DRAGOMIR, O., F. DRAGOMIR, V.
STEFAN, E. MINCA, Adaptive Neuro –

Fuzzy Inference Systems – An

Alternative Forecasting Tool for

Prosumers, Studies in Informatics and
Control, vol. 24, no. 3, 2015, pp. 351-360.

10. FAWCETT, T., An Introduction to ROC

Analysis, Pattern Recognition Letters, vol.
27, no. 8, 2006, pp. 861-874.

11. GRAY, D., D. BOWES, N. DAVEY, Y.
SUN, B. CHRISTIANSON, The Misuse

of the NASA Metrics Data Program

Data Sets for Automated Software

Defect Prediction, Proceedings of the
Evaluation and Assesment in Software
Engineering, 2011.

12. HALL, T., S. BEECHMAN, D. BOWES,
D. GRAY, S. COUNSELL, A Systematic

Literature Review on Fault Prediction

Performance in Software Engineering,
IEEE Transactions on Software Eng., vol.
38(6), 2011, pp. 1276-1304.

13. KIM, S., H. ZHANG, R. WO, L. GONG,
Dealing with Noise in Defect Prediction,
in Proceedings of the 33rd International
Conference on Software Engineering, New
York, NY, USA, 2011, pp. 481-490.

14. 14.KLAWONN, F. and HÖPPNER, F.,
What Is Fuzzy about Fuzzy Clustering?

Understanding and Improving the

Concept of the Fuzzifier, LNCS 2810,
Springer, 2003, pp. 254-264.

15. MALHOTRA, R., Comparative Analysis

of Statistical and Machine Learning

Methods for Predicting Faulty Modules,
Applied Soft Computing, vol. 21, 2014,
pp. 286-297.

16. MARIAN, Z., G. CZIBULA, I.-G.
CZIBULA, S. SOTOC, Software Defect

Detection using Self-Organizing Maps,
Studia Univ. Babes-Bolyai, Informatica,
vol. LX, no. 2, 2015 pp. 55-69.

17. MENZIES, T., R. KRISHNA, D. PRYOR,
The Promise Repository of Empirical

Software Engineering Data,
http://openscience.us/repo/, North Carolina
State Univ., Dep. of Computer Science.

18. MITCHELL, T. M., Machine learning,
McGraw-Hill, New York, USA, 1997.

19. NAM, J. S. KIM, Heterogeneous Defect

Prediction, in Proceedings of the 2015
10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 508-519.

20. PARK, M. E. HONG, Software Fault

Prediction Model using Clustering

Algorithms Determining the Number of

Clusters Automatically, Int. Journal of
Software Engineering and Its Applications,
vol. 8, no. 7, 2014, pp. 199-205.

21. SOMERVUO, P., T. KOHONEN, Self-

organizing Maps and Learning Vector

Quantization for Feature Sequences,
Neural Processing Letters, vol. 10, 1999,
pp. 151-159.

22. TEODORESCU, H.-N. L., Coordinate

Fuzzy Transforms and Fuzzy Tent Maps

– Properties and Applications, Studies in
Informatics and Control, vol. 24, no. 3,
2015, pp. 243-250.

23. VAN DER MAATEN, L., G. HINTON,
Visualizing Data using t-SNE, Journal of
Machine Learning Research, vol. 9, 2008,
pp. 2579-2605.

24. YU, L., A. MISHRA, Experience in

Predicting Fault-Prone Software

Modules Using Complexity Metrics,
Quality Technology & Quantitative
Manag., vol. 9, no. 4, 2012, pp. 421-433.

25. ZHENG, J., Predicting Software

Reliability with Neural Network

Ensembles, Expert Systems with
Applications , vol. 36, no. 2, Part 1, 2009,
pp. 2116-2122.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016216

