
1. Introduction

Software defect detection represents the activity
of identifying software modules which contain
errors  and  it  contributes  to  increasing  the
effectiveness of the quality assurance process.
Fault  detection methods would be helpful  for
suggesting  to  the  developers  which  software
modules should be focused on during testing,
particularly  when,  from  lack  of  time,  the
modules cannot be systematically tested.

Code  review  is  frequently  used  in  agile
development  processes  for  maintaining  the
quality of the software. During code review, an
experienced  programmer  reviews  the  source
code  in  order  to  identify  vulnerabilities,
security  problems  and  other  problems
overlooked  by  the  initial  implementer.  Since
code  review  is  a  time  consuming  and  costly
activity,  software defect detection can be used
to guide the code review process by identifying
parts of the source code where the code review
is most likely to identify problems.

Software  defect  detection is  intensively
investigated in the literature and an active area
in the software engineering field, as shown by a
systematic  review  published  in  2011,  which
collected 208 fault prediction studies published
between  2000  and  2010  [12].  Detecting
software faults is a complex and difficult task,
mainly for large scale software projects. In the
literature there are a lot  of  machine learning-
based approaches for predicting faulty software

entities.  From  a  supervised  learning
perspective,  defect  prediction  is  a  hard
problem,  particularly  because  of  the
imbalanced  nature  of  the  training  data  (the
number  of  non-defective training  instances  is
much  higher  than  the  number  of  defective

ones). Moreover, it is not a trivial problem to
identify a set of software metrics that would be
relevant for discriminating between  faulty and
non-faulty modules.

Even  if  there  are  a  lot  of  methods  already
developed  for  detecting  software  defects,
researchers are still focusing on improving the
performance  of  existing  classifiers.  We  are
introducing  in  this  paper  an  unsupervised
machine learning method based on  fuzzy self-

organizing  maps for  detecting  faults  within
software  systems.  To  the  best  of  our
knowledge, our approach is novel in the search-
based  software  engineering  literature  and
proved  to  outperform  most  of  the  existing
similar approaches, considering the case studies
we have used for evaluation.

The rest of the paper is structured as follows.
Section  2  presents  the  importance  of  the
problem approached in this paper and gives a
motivation  for  our  work.  Several  existing
approaches similar to ours are given in Section
3.  Our  proposal  is  introduced  in  Section  4.
Section  5  provides  the  experimental  results
which  were  obtained  on  several  open-source
case  studies  and  Section  6  analyses  the
experimental  results  and  compares  them  to
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existing similar  work from the literature.  The
conclusions  of  the  paper  and  directions  for
future research are outlined in Section 7.

2. Problem Relevance. Motivation

Since  software  systems  are  continuously
growing in size and complexity, predicting the
reliability of software has a fundamental role in
the software development process  [25].  Clark
and Zubrow consider in [7] that there are three
main  reasons  for  which  the  analysis  and
prediction of software defects is essential. The
first  one  is  to  help  the  project  manager  to
measure the progress of a software project and
to  plan  activities  for  defect  detection.  The
second reason is  to  contribute  to  the  process
management,  by evaluating the quality of the
software  product  and  measuring  the  process
performance  [7].  Finally,  information  about
software  faults,  their  location  within  the
software  and  the  distribution  of  defects  may
contribute  to  improving  the  efficiency  of  the
testing  process  and  the  quality  of  the  next
version of the software.

Many  of  the  machine  learning-based  defect
predictors  existing in  the literature have been
built using historical data collected by mining
software repositories [13]. Unfortunately, there
are studies carried out in the defect prediction
literature  (like  [3])  which  have  revealed  that
defect data extracted from change logs and bug
reports may contain noise [13]. Other machine
learning-based  software  defect  predictors  use
openly  available  datasets,  like  the  NASA
datasets, where only the software metric values
computed  for  the  modules  of  the  software
system are available, but not the source code.
Unfortunately,  there  can  be  noise  in  these
datasets as well, as shown by  [11]. Therefore,
there  is  a need to build classifiers which can
cope with the lack of information, imprecision
and noise. Fuzzy techniques [22] [9] are known
in  the  soft  computing literature  to  be  able  to
better  deal  with  noisy  data  than  the  crisp
methods and may lead to the development of
more robust systems.

In  consequence,  we  consider  a  fuzzy self-

organizing map  approach  towards  software
fault detection to be a pertinent choice for both
coping with uncertainty and for overcoming the
drawbacks of supervised learning.

3.  Related  Work  on  Software

Defect Detection

In the following, we will briefly review several
machine  learning-based  approaches  from  the
defect detection literature which are somehow
related  to  our  approach  (are  based  on
unsupervised  learning or  are  using  the  same
case studies as in this paper).

An approach that  uses a combination of self-
organizing  maps  and  threshold  values  is
presented  in  [1].  After  the  SOM  is  trained,
threshold values  are  used to  label  the trained
nodes:  if  any  of  the  values  from  the  weight
vector  is  greater  than  the  corresponding
threshold, the node will represent the defective
entities.  Classification  is  done  by  finding  the
best matching unit  for the given instance and
using the label of the node.

We have introduced an approach for detecting
defective entities using self-organizing maps in
[16]. After an attribute selection based on the
Information Gain  [18] of the attributes, a map
was trained to visualize the defective entities.
While  we  had  encouraging  results,  we  have
realized that in many cases defective and non-
defective  entities  are  quite  similar,  they  are
close  to  each  other  on  the  map.  These
observations led us to the use of fuzzy maps,
which can handle such situations.

There are  several  approaches in  the literature
that use different clustering algorithms to group
defective and non-defective entities. One such
approach is  presented in  [4],  where K-Means
algorithm is used and the centers of the clusters
are found using Quad Trees. Since determining
the optimal number of clusters is not a simple
task,  some  approaches  use  clustering
algorithms  where  the  number  of  clusters  is
automatically determined. Such an approach is
presented in  [6] where the X-means algorithm
from  Weka  is  used  for  clustering.  After  the
clusters  are  created  software  metric  threshold
values  are  used  to  determine  which  clusters
represent the defective and which represent the
non-defective entities. The X-means algorithm
(together  with  a  clustering  algorithm  that  is
capable  of  automatically  determining  the
optimal number of clusters, EM) is used in [20]
as  well,  together  with  different  attribute
selection techniques implemented in Weka.

Yu and Mishra in  [24] investigate the problem
of  building  cross-project  detection  models,
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which are models  built  from data taken from
one software system, but used and tested on a
different  software  system.  They  use  binary
logistic regression on the Ar datasets, and build
two models: self-assessment, when the model is
tested on the dataset from which it was built,
and  forward-assessment,  when  some  datasets
are used for building a model and a different
one is  used for testing it.  They conclude that
self-assessment  leads  to  better  performance
measures, but forward-assessment gives a more
realistic measure of the real performance of the
binary logistic regression model.

The problem of cross-project defect detection is
approached  in  [19] as  well.  The  authors
consider  situations  when the software metrics
from the datasets on which a model was built
are not the same as the metrics computed for
the  system  to  be  tested.  They  introduce  an
approach  which  tries  to  match  the  software
metrics  from the  different  sets  to  each  other,
based  on  correlation,  distribution,  and  other
characteristics.  To  compare  this  approach  to
other  existing  ones,  they  use  28  datasets
(including  the  Ar datasets)  and  Logistic
Regression from Weka.

Multiple  Linear  Regression  and  Genetic
Programming  are  used  in  [2] to  evaluate  the
influence  and  performance  of  different
resampling methods for the problem of defect
detection.  The  Ar datasets  are  used  as  case
studies  to  compare  five  different  resampling
methods:  hold-out,  repeated  random  sub-
sampling,  10-fold cross  validation,  leave-one-
out  cross-validation  and  non-parametric
bootstrapping.  The  results  of  the  study  show
that,  considering  the  AUC  performance
measure,  there  is  no  significant  difference
between  the  resampling  methods,  but  the
authors  claim  that  this  can  be  caused  by  the
imbalanced  datasets  or  the  high  number  of
attributes.

A  comparison  of  statistical  and  machine
learning  methods  for  defect  prediction  is
presented  in  [15].  They  compare  logistic
regression  with  six  machine  learning
approaches. The models were evaluated on two
Ar datasets,  and  the  best  performance  was
obtained using Decision Trees.

4. Methodology

In  this  section  we  introduce  our  fuzzy self-

organizing  map model  for  detecting  faults  in
existing software systems.

The  software  entities  (classes,  modules,
methods, functions) from a software system are
represented  as  high-dimensional  vectors  (an
element  from  this  vector  is  the  value  of  a
software  metric  applied  to  the  considered
entity). As shown in  [16], the software system
Soft is  viewed  as  a  set  of  instances  (called
entities)  Soft={e1 ,e2 ,…, e

n
} .  A  set  of

software metrics will be used as the feature set
characterizing  the  entities  from  the  software
system,  M ={m1 ,m2 ,… , m

l
} .  Therefore,  an

entity  e
i
∈Soft  from the software system can

be  represented  as  a  l-dimensional  vector,
e

i
={e

i1 ,e
i2 ,…, e

il
}  (eij denotes  the  value  of

the software metric mj applied to the entity ei).

For  each entity  from the software system, its
label  is  known  (D=defect  or  N=non-defect).
The labels of the instances will not be used for
building  the  fuzzy  SOM,  since  the  learning
process will  be completely unsupervised.  The
labels will be used only for pre-processing the
input data and for evaluating the performance
of the resulting classification model.

Before applying the fuzzy SOM approach, the
data  is  pre-processed.  First,  the  data  is
normalized  using  the  Min-Max normalization
method,  and  then  a  feature  selection  step  is
used in  order  to  identify a subset  of  features
(software metrics) that are highly relevant for
the fault detection task (details will be given in
the experimental part of the paper). As a result
of  the  feature  selection  step,  p features
(software metrics) will be selected and will be
further used for building the fuzzy SOM.

4.1 The fuzzy SOM model. Our proposal

The dataset  pre-processed as indicated above,
will be used for the unsupervised training of the
map.  As  for  the  classical  SOM  approach,  a
distance function between the input instances is
needed. We are using as distance between two
software entities  ei and  ej Euclidean Distance

between their corresponding vectors.

We are proposing, in the following, a fuzzy self-

organizing map algorithm (FSOM) for building
the  fuzzy map.  Our  algorithm  does  not
reproduce  any  existing  algorithm  from  the
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literature,  but  it  combines  the  existing
viewpoints  related  to  fuzzy  SOM approaches.
The underlying idea in FSOM is the classical
SOM algorithm, combined with the concept of
fuzziness employed in fuzzy clustering [14].

The  FSOM  algorithm  enhances  the  classical
Kohonen algorithm for  building a  SOM with
the idea (employed in fuzzy clustering) of using
a fuzzy membership matrix. In fuzzy clustering,
instead of using a crisp assignment of an object
to a cluster,  an object  can belong to multiple
clusters.  The degree to which an input object
belongs to each cluster is indicated by the set of
membership levels expressed by the columns of
the  membership  matrix.  In  building  the  fuzzy

SOM,  we will  use the  fuzzy membership idea
related  to  the  computation  of  the  “winning
neuron”. Instead of using a crisp best-matching
unit  (BMU),  as  used  in  the  classical  SOM
algorithm, the membership matrix will be used
to specify the degree to which an input instance
belongs  to  an  output  neuron  (cluster).  This
means that an input instance is not mapped to a
single neuron (its BMU), but to all the neurons
(clusters)  from  the  map  (but  with  a  certain
membership degree).

Intuitively,  an  input  instance  will  have  the
larger  membership  degree to  the  neuron
representing its BMU. The idea of updating the
winning neuron and its neighbours is kept from
the classical SOM, but if the input instance has
a  larger  membership  degree  (level)  to  a
neighbouring  neuron,  this  neuron  will  be
''moved''  closer  to  the input instance than the
other neurons (i.e., the updating rule considers
the  computed  membership  levels).  Through
these  updating  rules,  the  FSOM  algorithm
maintains  the  main  characteristic  of  the
classical SOM of “moving” the winning neuron
and  its  neighbourhood  towards  the  input
instance, but it  may express a better updating
scheme than the crisp approach.

Let us consider, in the following, that the input
layer  of  the  map  consists  of  p neurons  (the
dimensionality  of  the  input  data  after  feature
selection)  and  the  computational  layer  of  the
map consists  of  c neurons disposed on a two
dimensional grid, in which an output neuron i is
represented  as  a  p-dimensional  vector  of
weights,  w

i
={w

i 1 , w
i 2 ,…, w

ip
}  (wij represents

the weight of the connection between the  j-th
neuron from the input layer and the i-th neuron
from the computational layer).

Let  us  denote  by  u the  membership  matrix,
where:  u

ik
∈[0,1 ] , ∀ 1≤i≤c , 1≤k≤n .  These

values  are  used to  describe a set  of  fuzzy  c-
partitions for the  n entities,  and  uik represents
the  degree  to  which  entity  ek belongs  to  the
output neuron (cluster) i.

The  main  steps  of  the  FSOM  algorithm  are
described in the following.

Step 1. Weights initialization. The weights are
initialized with small random values from [0,1].

Step  2.  Membership  degrees  computation.

The  values  from  the  membership  matrix  are
computed as in Formula (1) (as for the fuzzy c-

means clustering algorithm  [14]).  m is  a real
number,  greater  than  1  and  represents  the
fuzzifier. The role of the  fuzzifier is to control
the overlapping between the clusters [14].

uik=
1

∑
j=1

c

(‖x k−w i‖

‖xk−w j‖ )
2

m−1 (1)

Step 3. Sampling. Select a random input entity
et and send it to the map.

Step  3.1.  Matching. Find  the  “winning”
neuron  j*,  as  the  output  neuron  which
maximizes the membership degree of the input

entity et to the neuron, i.e. j
*=argmax

1≤ j≤c

u
jt .

Step  3.2.  Updating. After  identifying  the
“winning  neuron”,  update  the  connection
weights  of  the  winning  unit  and  its
neighbouring neurons, such that the neurons are
“moved”  closer  to  the  input  instance.  When
updating  the  weights  for  a  particular  neuron,
we will consider the membership degree of the
considered  entity  to  that  neuron.  More
precisely,  for  each  output  neuron
j , (∀1≤ j≤c) , its weights w

ji
, (∀1≤i≤ p )

will be updated with a value  Δ w
ji  computed

as in Formula (2).

Δw
ji
=η⋅T

jj

*⋅(eti
−w

ji )⋅u
jt

m
(2)

where  η is the learning rate and  T
jj*  denotes

the neighbourhood function usually used in the
classical Kohonen's algorithm  [21] and whose
radius decreases over time.

Step 4. Iteration. Repeat steps 2-3 for a given
number of iterations.

If we look at Step 2 of the FSOM algorithm, we
observe  that  an  input  entity  will  have  the
largest  membership  degree to  the  neuron
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(cluster) representing its BMU. Intuitively, the
degrees to which the entity belongs to the other
neurons from the map (others than its  BMU)
have to decrease as the distance from the entity
and  the  neurons  increases.  Another
characteristic of the fuzzy algorithm (compared
to the crisp variant) is the fact that the weights
of particular neurons from the neighbourhood
of  the  “winning  neuron”  (see  Step  3)  are
updated differently depending on the degree to
which the current entity belongs to the neuron.
This updating method may lead to final weights
which would give a better representation of the
input space.

After  the  map  was  trained  using  the  FSOM
algorithm described above, in order to visualize
the obtained map, the U-Matrix method is used.
The  U-Matrix  value  of  a  particular  node
(neuron)  from  the  map  is  calculated  as  the
average  distance  between  the  node  and  its  4
neighbours. If one interprets these distances as
heights,  the  U-Matrix  may  be  interpreted  as
follows: high places on the U-Matrix represent
entities that are dissimilar with those from low
places, while the data falling around the same
height represent entities that are similar and can
grouped together to represent a cluster.

Since the fault prediction problem is a binary
classification one, our goal is to identify on the
trained map two clusters corresponding to the
two classes of entities: defects and non-defects.

Even  if  the  fuzzy  SOM was  built  using
unsupervised learning, after its creation it may
also be used in a supervised learning scenario
for classifying a new software entity. First, the
“winning neuron” corresponding to this entity
is determined (as indicated in Step 3.1). Then,
the  class  (defect or  non-defect)  to  which  the
winning neuron belongs will indicate the result
of classifying the new software entity.

For evaluating the performance of the FSOM
model trained as shown above, we compute the
confusion matrix for the two possible classes,
considering the  defective class as the  positive

one and the non-defective class as the negative

one.  For  computing  the  values  from  the
confusion  matrix,  we  use  the  known  labels
(classes) of the training entities.

Since  defect  prediction  data  is  highly
imbalanced  the  number  of  defects is  much
smaller  than  the  number  of  non-defects)  the
main challenge in software fault prediction is to
increase the  true positive rate (i.e.,  maximize

the  number  of  defective entities  that  are
classified  as  faults),  or,  equivalently,  to
decrease the false negative rate (i.e., minimize
the  number  of  defective entities  that  are
wrongly  classified  as  non-faults).  For  the
problem  of  defect  detection,  having  false

negatives is  a  more  serious  problem  than
having  false  positives.  The  first  situation
denotes  an  undetected  fault  in  the  system,
which can cause serious problems later, while
in case of the second situation some time is lost
to  thoroughly test  a  fault-free  entity  that  was
classified as faulty. In the case of imbalanced
data, the evaluation measure that is relevant for
representing the performance of the classifiers
is  the  Area  Under  the  ROC  Curve  (AUC)

measure  [10] (larger  AUC  values  indicate
better classifiers).

5. Computational Experiments

In  this  section  we  provide  an  experimental
evaluation  of  the  FSOM model  (described  in
Section 4) on five open source datasets which
were  previously  used  in  the  software  defect
detection literature. We mention that we have
used  our  own  implementation  for  FSOM,
without using any third party libraries.

5.1 Datasets

The  datasets  used  in  our  experiments  are
publicly available for download at [17] and are
called  Ar1,  Ar3,  Ar4,  Ar5 and  Ar6.  All  five
datasets were obtained from a Turkish white-
goods  manufacturer  embedded  software
implemented in  C  [16].  The software entities
from these datasets are functions and methods
from  the  considered  software  and  are
represented  as  29-dimensional  vectors
containing the value of different McCabe and
Halstead  software  metrics.  For  each  instance
within  the  datasets,  we  also  know  the  class
label,  denoting whether the entity is  defective

or non-defective.

We  depict  in  Table  1  the  descriptions  of  the
Ar1-Ar6 datasets used in our case studies. For
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Table 1. Description of the datasets used for the
experimental evaluation.

Dataset Defects Non-defects Difficulty

Ar1 9 (7.4%) 112 (92.6%) 0.666
Ar3 8 (12.7%) 55 (87.3%) 0.625
Ar4 20 (18.69%) 87 (81.31%) 0.7
Ar5 8 (22.22%) 28 (77.78%) 0.375
Ar6 15 (14.85%) 86 (85.15%) 0.666



each dataset,  the  number of  defects and  non-

defects is illustrated, as well as the difficulty of
the  dataset.  The  measure  of  difficulty for  a
dataset was introduced by Boetticher in [5] and
is  computed  as  the  percentage  of  entities  for
which the nearest neighbour (ignoring the label
of the entity when computing the distances) has
a  different  label.  Since  our  datasets  are
imbalanced, when computing the difficulty of
the datasets, we considered only the percentage
of  defective  entities  for  which  the  nearest
neighbour is non-defective.

From Table 1 one can observe that all datasets
are  strongly  imbalanced,  with  all  number  of
defects much smaller than the number of  non-

defects. Moreover, it can be seen that the task
of accurately classifying the defective entities
is very difficult.  Ar1,  Ar4 and  Ar6 seem to be
the  most  difficult  datasets  from  the  defect
classification point of view. The complexity of
the software fault  prediction task for  the  Ar1

and  Ar6 datasets  is  highlighted  in  Figure  1,
which depicts  a two dimensional  view of the
data  obtained  using  t-SNE  [23].  T-distributed
Stochastic Neighbour Embedding (t-SNE) is a
method for visualizing high-dimension data in
a way that better reflects the initial structure of
the data compared to other techniques, such as
PCA. From a visualization point  of  view,  the
method  has  been  shown  to  produce  better
results  than  its  competitors  on  a  significant
number of datasets.

5.2 Results

For the fuzzy self-organizing map, we used the
torus topology in our experiments,  since it  is
shown  in  the  literature  that  this  topology
provides  better  neighborhoods  than  the

conventional  one.  The  parameters  used  for
building  the  map  are  the  following:  200000
training iterations  and the  learning coefficient

was set to 0.7. For controlling the overlapping
degree in the fuzzy approach, the fuzzifier was
set to 2 (shown in the literature as a good value
for controlling the fuziness degree).

For the feature selection step, we have used the
analysis that was performed in [16] on the Ar3,
Ar4 and  Ar5 datasets.  For  determining  the
importance  of  the  software  metrics  for  the
defect detection task, the information gain (IG)
measure was used. From the software metrics
whose  IG  values  were  higher  than  a  given
threshold,  a  subset  of  metrics  that  measure
different characteristics of the software system
were  finally  selected.  Therefore,  9  software
metrics  were  selected  in  [16]  to  be
representative for the defect detection process:
halstead_vocabulary,  total_operands,
total_operators,  executable_loc,
halstead_length,  total_loc,  condition_count,
branch_count,  decision_count [16].  The
previously  mentioned  software  metrics  will
also be used in our FSOM approach.

In the following, we present the results we have
obtained by applying the FSOM model on the
Ar1,  Ar3,  Ar4,  Ar5 and Ar6 datasets. After the
data  is  preprocessed,  the  FSOM  algorithm
introduced in Section 4 is applied and the U-
Matrix corresponding to the trained FSOM will
be used to identify the class of defects and non-

defects.  Then,  for  each  instance  from  the
training dataset, we compare the class provided
by our FSOM with the entity's true class label
(known  from  the  training  data).  Finally,  the
AUC measure is computed.
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Figure 1. t-SNE plots for the Ar1 and Ar6 datasets.



Figure 2 depicts the U-Matrix visualizations of
the best FSOMs obtained on the five datasets
used in our experiments. On each neuron from
the maps we represent software entities which
were mapped on that neuron, i.e., instances for
which  the  neuron  was  their  BMU.  The  red
circles represent the defective entities and the
green  circles  represent  the  non-defective
entities.  Each neuron is  also marked with the
number of defects  D and non-defects  N which
are represented on it.

Visualizing the U-Matrices from Figure 2, one
can identify two distinct areas: one containing
lightly  coloured  neurons,  whereas  the  second
area consists of darker neurons. The two areas
represented  on  the  maps  correspond  to  the
clusters of defective and non-defective software
entities. Since the percentage of software faults
from  the  software  systems  is  significantly
smaller  than  the  percentage  of  non-faulty
entities  (see Table  1),  the area from the map
containing  a  larger  number  of  elements  is
considered to be the non-defective cluster. The
remaining area from the map corresponds to the
defective cluster.

Table  2  illustrates,  for  each  dataset,  the
configuration used for the FSOMs (number of
rows and columns of the maps) as well as the
values  from  the  confusion  matrix (false

positives,  false  negatives,  true  positives and
true negatives).

Table 2. Results obtained using FSOM on all
experimented datasets.

Datase

t

rows x cols FP FN TP TN

Ar1 3x2 26 1 8 86
Ar3 2x3 1 2 6 54
Ar4 2x3 18 4 16 69
Ar5 3x2 4 0 8 24
Ar6 3x3 18 4 11 68

6.  Discussion  and  Comparison  to

Related Work

As  presented  in  Section  5  and  graphically
illustrated in Figure 2, our FSOM approach was
able to provide a good topological mapping of
the  entities  from  the  software  system  and
successfully  identified  two  clusters
corresponding  to  the  faulty and  non-faulty

entities. Even if the separation was not perfect,
which  is  extremely  difficult  for  the  software
defect  detection task,  for  all  five datasets  we
obtained  good  enough  true  positive  rates (at
least  73% detection rate  for  the defects).  For
the  Ar5 dataset,  our  FSOM  succeeded  in
obtaining  a  perfect  defect  detection  rate,
misclassifying only 4 non-defective entities.

The AUC measure is often considered to be the
best  performance  measure  to  compare
classifiers  [10]. However, it is usually suitable
for methods which, instead of directly returning
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Figure 2. U-Matrix for the datasets used in our experiments.



the classification of an instance, return a score
which is transformed into classification using a
threshold.  In  such  cases,  different  thresholds
lead  to  different  (sensitivity,  1-specificity)
points on the ROC curve, and AUC measures
the area under this curve. For methods where
no  threshold  is  used  (for  example,  in  our
approach) the ROC curve contains one single
point, which is linked to the points (0, 0) and
(1, 1), thus providing a curve and making the
computation of the AUC measure possible.

Table  3  presents  the  values  of  the  AUC
measure  computed  for  the  results  we  have
obtained  using  our  approach,  but  it  also
contains  values  reported  in  the  literature  for
some existing similar approaches ([1], [6], [20],
[4],  [24]),  presented  in  Section  3.  If  an
approach does not report results on a particular
dataset,  we  marked  it  with  “n/a”  (not

available).  In  case of  approaches  that  do  not
report the value of the AUC measure, but report
other measures (for example false positive rate,
false  negative  rate)  if  it  was  possible,  we
computed the values from the confusion matrix
of these measures  and used them to compute

the value for the AUC measure, as in case of
our approach. The best results obtained for the
AUC are marked with bold in the table.

We would like to mention that the results from
[2] for  the  Multiple  Linear  Regression  and
Genetic Programming approaches are the best
values reported by the authors and they were
usually  achieved  for  different  resampling
settings. In the case of the cross-project defect
prediction  approach,  [24],  we  have  reported
only the  results  of  the experiments  when the
same  dataset  was  used  both  for  building  the
model and testing it.

From  Table  3  we  observe  that  our  FSOM
approach  has  better  results  than  most  of  the
approaches  existing  in  the  literature  and
considered  for  comparison.  Out  of  54
comparisons,  our  algorithm  has  a  better  or
equal value for the AUC performance measure
in 48 cases, which represents 89% of the cases.

It has to be noted that the  fuzzy SOM method
introduced in this paper proved to have a better
or equal performance, for all datasets, than the
crisp approach previously  introduced in  [16].
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Table 3. Comparison of our AUC values with the related work.

Approach Ar1 Ar3 Ar4 Ar5 Ar6

Our FSOM 0.829 0.87 0.80 0.93 0.762

SOM [16] 0.695 0.87 0.74 0.92 0.726

SOM with Threshold [1] n/a 0.88 0.95 0.84 n/a

K-means with Quad-Trees [4] n/a 0.70 0.75 0.87 n/a

Clustering Xmeans [20] n/a 0.84 0.69 0.86 n/a

Clustering EM [20] n/a 0.82 0.69 0.80 n/a

Clustering Xmeans [6] n/a 0.70 0.75 0.87 n/a

Genetic Programming [2] 0.530 0.67 0.65 0.67 0.630

Multiple Linear Regression [2] 0.550 0.61 0.62 0.55 0.590

Binary Logistic Regression [24] 0.551 0.87 0.73 0.39 0.722

Logistic Regression [19] 0.734 0.82 0.82 0.91 0.640

Logistic Regression [15] 0.494 n/a n/a n/a 0.538

Artificial Neural Networks [15] 0.711 n/a n/a n/a 0.774

Support Vector Machines [15] 0.717 n/a n/a n/a 0.721

Decision Trees [15] 0.865 n/a n/a n/a 0.948

Cascade Correlation Networks [15] 0.786 n/a n/a n/a 0.758

GMDH Network [15] 0.744 n/a n/a n/a 0.702

Gene Expression Programming [15] 0.547 n/a n/a n/a 0.688



For  the  Ar3 and  Ar6 datasets,  the  FSOM
performed similarly to the classical SOM. For
the  other  three  datasets  the  FSOM
outperformed the SOM. For the Ar1 dataset, the
FSOM  obtained  a  significantly  better  AUC
value  than  the  classical  SOM.  These  results
highlight  the  effectiveness  of  using  a  fuzzy

approach rather than a crisp one.

Analyzing the results from Table 3 we observe
that our FSOM approach has the highest AUC
value for  the  Ar5 dataset,  the  second highest
value for the Ar1 and Ar3 datasets and the third
highest value for the Ar6 dataset. Interestingly,
the results that we have obtained are perfectly
correlated  with  the  difficulties  of  the
considered  datasets  (given  in  Table  1).  More
precisely,  the best  result  was obtained for the
“easiest” dataset,  Ar5,  while the worst  results
were provided for the datasets which are more
“difficult”,  Ar6 and  Ar4.  Even for the hardest
datasets,  the  AUC  values  obtained  by  the
FSOM are better than most of the AUC values
from the literature.

Figure 3 depicts the AUC value obtained by our
FSOM and the average AUC value reported in
related work from the literature for each dataset
(see  Table  3).  The  first  dashed bar  from this
figure  corresponds  to  our  FSOM.  One  can
observe  that  the AUC value  provided by  our
approach  is  better,  for  each  dataset,  than  the
average AUC value from the related work.

Figure 3. Comparison to related work.

7. Conclusions and Future Work

A fuzzy self-organizing feature map has been
introduced  in  this  paper  for  detecting,  in  an
unsupervised  manner,  those  software  entities
which  are  likely  to  be  defective.  The
experiments we have performed on five open-
source  datasets  used  in  the  software  defect
detection  literature  highlight  a  very  good

performance  of  the  proposed  approach,
providing results better than most of the similar
existing  approaches.  Moreover,  the  fuzzy

approach [8] introduced in this paper proved to
outperform, for the considered case studies, the
crisp SOM approach.

Other  open-source  case  studies  and  real
software systems will be further used in order
to  extend  the  experimental  evaluation  of  the
fuzzy self-organizing map model  proposed in
this  paper.  We  also  aim  to  investigate  the
applicability of other fuzzy models for software
defect detection, as well as to identify software
metrics appropriate for software fault detection.
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