
1. Introduction

Assessment  of  a  high  risk  situation  in  plant
operation  represents  the  identification  of  all
process conditions that may lead to a hazardous
process  behaviour  and  implementation  of  a
cause-effect  strategy  able  to  handle  it
automatically. This strategy comes as an if-then
set  of  rules  and  provides  solutions  from
actuator  interlock  conditions  to  emergency
shut-down strategies. 

In  order  to  evaluate  the  risk  of  an  operating
plant, main approaches address offline methods
that  use  specific  operating  strategies  and
suggestions to make industrial  plants safe-by-
design, thus minimizing the consequences and
risks associated with human intervention.

Process control reconfiguration strategies come
to provide alternatives considering an abnormal
behaviour  of  the  process  in  a  nominal  state,
control  reconfiguration  determines  how  the
process should react under to faulty operation.
Efficient  strategy  reconfiguration  to  assess
possible  faults  that  may occur  in  the  process
operation usually requires  a priori  knowledge
of the process model. When this information is
not  available  alternative  methods  that  use
statistical process analysis or intelligent – based
reasoning can be applied. 

An  integrated  system  that  implements
automatic  unexpected  situation  detection  and
management strategies is referred to as a fault-

tolerant system [15]. There are four main stages
in the fault handling process [5]:

– Fault detection that identifies an abnormal
behaviour in the process output;

– Fault identification that determines the most
relevant variables in diagnosing the fault;

– Fault diagnosis that determines the type of
fault, as well as its location, magnitude and
time when it occurred;

– Process  recovery  or  control

reconfiguration which  tries  to  eliminate
the  fault  effect  by  replacing  the  missing
signal by an observed value.

1.1 Fault detection and diagnosis

First  three  stages  presented  above  are
commonly addressed as the fault detection and
diagnosis  (FDD)  process.  Different  methods
have  been  proposed  in  literature  to  find
solutions  for  this  problem:  model-based  [11]
(including MPC - model predictive control [2]),
based on structural analysis [7, 14], advanced
computing  methods  (like  artificial  neural
networks or fuzzy logic) [16, 17] and statistical
analysis methods [4, 6, 18].

Considering  real-time processes  for  which  an
analytical  plant  model  is  not  available,
statistical  methods  provide  a  handy approach
for addressing fault detection and diagnosis, as
they rely on historical process data.
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1.2 Process reconfiguration

Process  reconfiguration  or  system  recovery
after occurrence of a fault has the main purpose
of ensuring the fault will not affect the stability
of  the  process.  A  secondary  objective  is
represented  by  achieving  the  best  under-
optimal  solution  when  operating  in  a  faulty
state.  As  detailed  in  [9,  19],  numerous
researches  using different  methods have been
conducted  in  this  domain:  model-matching,
structural  analysis,  fuzzy-based  methods  or
trajectory tracking approaches.

1.3 System configurations

There  are  two  possible  directions  for
implementing a fault tolerant control structure:
having different controller models for each type
of possible fault, or actively reconfiguring the
control strategy each time a fault occurs [15].
The first  approach proved to provide a better
approach  in  handling  possible  performance
degradation  caused  by  the  fault  occurrence
[20]. It also has an advantage from an increased
speed in identifying a new control solution but
needs  more  resources  for  storing  and
processing  all  available  options.The  second
approach  of  an  adaptive  controller  has  an
increased  complexity  as  the  controller  is
modified  “on  the  way”  but  provides  the
possibility  of  identifying  increased
performance solutions.

The main purpose of  this  work is  to  identify
most  suitable  fault  detection  and  diagnosis
methods  for  a  standard  water  management
application  and  to  provide  an  automatic
reconfiguration  strategy  that  would  use  the
quantification of the cross-correlation between
process  variables  for  identifying  the  best
control alternative in presence of faults.

2. Methods and Algorithms

2.1 Fault-tolerant control method

Our fault  analysis and control  reconfiguration
approach is based on the idea presented in [13]
of  “hiding”  the  faults  by  placing  a
reconfiguration  block  between  the  nominal
controller  and  faulty  plant  at  the
reconfiguration time. This way, we can find a
minimum  invasive  solution  so  that  the
reconfigured plant  has  the same behaviour as
the  nominal  plant.  The  control  scheme  is
illustrated  in  Figure  1.  u and  y represent  the

plant  input  and  output  in  absence  of  faults,
considering  a  standard  control  scheme.  The
fault-tolerant control strategy introduces the  uf

parameter  as  the  alternative  control  signal  in
case of a faulty actuator,  u* as being the reset
on the actuator control signal in case of fault
detection and yf as the process output through a
faulty sensor.

Figure 1. Fault-tolerant control based on fault-
hiding technique

On  top  of  the  common  control  structure
represented  by  the  plant  and  controller
connected  in  a  closed  loop,  we  considered  a
local  Fault  Detection  and  Diagnosis  (FDD)
module  and  a  reconfiguration  module.  FDD
will continuously capture process data and send
analysis results  to the reconfiguration module
(Reconfiguration).  In  absence  of  faults,  the
reconfiguration  module  will  send  to  the
controller  the  values  from  the  measuring
devices  and  will  not  interfere  with  the
commands  from  the  controller.  At  the  same
time, the virtual actuator will send the  u* = u

command value to the process actuator.

In  case  of  a  sensor  fault,  the  reconfiguration
module will evaluate the possibility to predict
the  corresponding  value  from  other  cross-
correlated  process  parameters.  This  will
activate  a  virtual  sensor  that  will  provide the
controller with the estimated value. 

An actuator fault can be identified based on the
analysis  of  the  system  dynamics  and  a  fault
pattern recognition technique. In order to provide
solutions for an actuator fault, the reconfiguration
module  must  implement  predefined  fault
management  models.  These  should  take  into
consideration structural characteristics of a plant
in order to specify functional redundancies and
provide control alternatives.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 2, June 2016228



2.2 Statistical methods for FDD

Statistical  methods  for  fault  detection  and
diagnosis have two main approaches: univariate
analysis,  when  the  variation  of  each  process
variable  is  taken  into  consideration,  and
multivariate  analysis,  which  takes  into
consideration  also  the  relationship  between
different  parameters.  Each  of  them  provides
minimum  (LCL  –  lower  control  limit)  and
maximum (UCL – upper control limit) values
under normal plant operation. Exceeding one of
these  limits  is  signalled  as  a  fault.  First
approach is  easier  to implement and provides
easier  interpretation  for  the  process  control
engineer but may miss fault signals because it
doesn’t  take  into  consideration  how
simultaneous  faults  may  affect  the  process
dynamics. Second approach is characterised by
increased accuracy and space reduction but its
complexity  makes  it  hard  to  implement  in
process controllers.

To  deal  with  this  limitations  we  can  use  a
hybrid  approach  that  implements  univariate
methods at the controller level, ensuring a fast
reaction  to  individual  device-specific  faults,
and  multivariate  methods  at  the  supervisory
level where advanced processing tools can be
used  to  respond  to  inconsistencies  in  the
dynamic behaviour of the plant as a whole.

2.3 Univariate parameter analysis

Statistical analysis techniques provide tools to
define  the  expected  variation  of  a  parameter
based on its prior behaviour. There are several
methods  for  choosing  the  upper  and  lower
control  limits  of  a  process  variable,  out  of
which  the  most  common are  Shewhart  chart,
exponentially  weighted  moving  average
(EWMA),  X and R or S chart or individuals
control  chart  [6].  Differences  between  these
methods come from the detection speed of the
process shifts and the computational effort.

Another  important  aspect  regarding  their
applicability  comes  from  the  fact  that  most
statistical  process  control  methods  assume
several  observations  are  available  for  each
sample  in  the  data  set.  This  can  be  easily
obtained  in  cases  where  several  identical
experiments  can  be  conducted,  or  if  we  can
read  several  values  almost  simultaneously
from  process  devices,  but  in  a  real-time
processes specific approaches that use a single
data  set  should  be  used.  In  this  case  two

methods  are  available  [10]:  Western  Electric
rules  and  individuals  control  chart.  These
methods illustrate the variation of the process
measurements  relative  to  the  average  value
(represented as the center line CL), and to the
upper  and  lower  control  limit  (UCL  and
LCLC, respectively).

Considering a process data set

X =[ X 1 , X 2 ,… , X
n
] , X ∈ℝn  

of  a  considerable  number  of  samples  n,  we
can  define  the  average  value  with  the
following equation:

X =
∑
i=1

n

X i

n

(1)

The  standard  deviation  describes  the
variability of the data values.  It  is  computed
based  on  the  variables  sample  average  with
the following formula:

σ=√ 1
n−1∑i=1

n

|X i− X|2 (2)

The  Western  Electric  rules compute  a
parameter’s  plot  center  line  as  being  the
average  value  and  considers  a  parameter  as
being out of control if its value is outside the
following upper and lower limits defined by the
following equations:

UCL=X −3∗σ (3)

LCL=X −3∗σ (4)

This is also called the 3σ rule. In addition to
this,  the  occurrence  of  any  of  the  following
conditions signals a parameter fault:

– Two  of  three  consecutive  samples  go
beyond the ±2σ control limits;

– Four  of  five  consecutive  samples  go
beyond the ±σ control limits;

– Eight consecutive points plot on one side of
the CL.

The individuals control chart method computes
the  moving  range  between  two  consecutive
samples to provide a quantitive measure of the
process  variability.  The  moving range  MRi is
defined by:

MR
i
=|X

i
− X

i−1| (5)

The average moving range on all the n samples
is given by:
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MR=
∑
i=1

n

|X i−X i−1|

n−1

(6)

An  estimator  for  the  standard  deviation  from
this method is:

σ̂=
MR

d 2
(7)

where  d2 represents  a  tabulated  constant
dependent on the sample size, equal to 1.128 in
this  case  because  of  the  computing  of  the
difference  between  two  consecutive  samples
[10].  Using  this  method  UCL and  LCL are
defined by:

UCL=X +3∗
MR

1.128
(8)

LCL=X −3∗
MR

1.128
(9)

As the method uses the average of all process
values at  each step,  the correct  identification
of a process fault depends on the magnitude of
the fault measured value relative to the  UCL

and  LCL,  respectively,  as  well  as  on  the
number  of  fault  values  m from  the  total
number of samples n. Under these conditions,
it is necessary to determine the magnitude of
the fault value that can be identified using this
method  and how the  ratio  between the  fault
values and normal operation values can affect
its correct identification. 

2.4 Multivariate parameter analysis

The most commonly used multivariate method
for  fault  diagnosis  are  Principal  Component
Analysis  (PCA)  and  PLS  (Partial  Least
Squares) [5]. While other methods like Fisher’s
Discriminant  analysis  (FDA)  or  Discriminant
partial least squares (DPLS) have shown better
accuracy in fault diagnosis [5] their increased
complexity  make  them  less  suitable  for
practical implementations. 

PCA is an efficient method for determining the
variance of the data that reduces the initial data
set to one of “principal components” or loading
vectors that  represent  a linear combination of
the original data set. 

Let us consider a data matrix X ∈ℝnxm , where
n represents the number of observations and m
is  the  number  of  variables,  and  x the  last
observation vector,  x∈ℝm . As detailed in [5],

the  loading  vectors  can  be  computed  using
SDV (Singular Value Decomposition):

1

√n−1
X =U ΣV

T
(10)

where  U ∈ℝnxn  and  V ∈ℝmxm  are  unitary
matrices and Σ∈ℝnxm  is a diagonal matrix.

Critical  limits  can  be  derived  from  this
method using the  T2 statistic.  The  Hotelling
T2 statistic  provides  an  elliptical  confidence
area based on the covariance matrix between
the  observed  parameters  that  accurately
identifies potential outliers. 

Considering  P the  loading  vectors  matrix
associated with a largest singular values and Σa

containing  first  a  rows  and  columns  of  the
singular values matrix, the Hotelling T2 statistic
is given by:

T
2=x

T
P∑a

−2
P

T
x (11)

The threshold for the T2 statistic is:

UCL=T a

2=
(n+1)(n−1)a

n (n−a)
F α(a ,n−a ) (12)

where  F α(a , n−a)  represent  the  upper
100α%  critical  point  of  the  F-distribution

with a and n-a degrees of freedom. If the value
for the  T2 statistic is greater than UCL then a
fault occurred.

As  the  result  of  the  multivariate  analysis  is
affected by variations of multiple parameters,
additional  actions  must  be  performed  to
diagnose  the cause.  An overview of  existing
methods  is  presented  in  [1].  The  main
approaches  are  the  investigation  of  the
principal  components  that  lead  to  exceeding
the  control  limits  or  the  graphical
interpretation  using  Andrew  curves  or  the
cross-correlation  ratios  between  process
variables and principal components.

2.5 Virtual sensor estimation

The  main  objectives  of  control  strategy
reconfiguration  are  to  ensure  system stability
and  to  track  as  much  as  possible  the  initial
control  loop.  Considering  the  FDD  step
implemented using statistical analysis methods,
increased  execution  performance  can  be
achieved if  we  follow the same approach for
the system reconfiguration step.
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Faults of measuring devices can be overcome
by  taking  into  consideration  the  cross-
correlation between process variables. In order
to quantify the strength of  the correlation we
can compute the sample correlation coefficient
rxy of two variables sample vector X and Y as:

r xy=
∑
i=1

n

(Y i−Y )(X i− X )

√∑
i=1

n

(Y i−Y )2∑
i=1

n

( X i− X )2

(13)

The closer its value is to ±1, the stronger is the
correlation between the variables and the sign
of  this  coefficient  indicates  if  we  have  a
positive or a negative relationship [10].

Based on the assumptions that,  under  normal
operation,  the  variation  of  a  parameter  X
should follow a dynamic behaviour similar to
the parameter Y, and that each parameter has a
normal distribution, we can estimate the value
of X in the presence of a sensor fault based on
its behaviour prior to the fault occurrence and
on the sample correlation coefficient using the
following approximation:

X n≈
(n−1)σ(n−1) x

σ
ny

r
xy
−cov

xy

Y n−Y
+ X n−1 (14)

where  σx and  σy represent  the  standard
deviations  of  the  cross-correlated  variables,
covxy in the covariance between X and Y, and
X

n−1  is  the average value of  X prior  to  the
occurrence of the fault.

In this case, the average value of X at step n is
computed with the following recursive formula:

X n=
(n−1)X

n−1+ X
n

n
(15)

In  the  same  way,  we  obtained  a  recursive
formula for computing the time series variance,
given by:

σnx

2
=

n−1
n

σ(n−1) x

2
+

1
n−1

( X n− X n)
2

(16)

By considering the entire data set  of  X when
computing  the  average  values  and  sample
variation,  the  accuracy  of  the  approximated
value may be affected by process behaviour in
different  operating  modes.  For  this,  a  limited
set of last measured variables should be used.

2.6 Virtual actuator implementation

Design of virtual actuators can be implemented
only if at least one of the following conditions
is true:

– the  faulty  actuator  was  designed  in  a
redundant  structure  (for  example  in
multiple  pumps  configuration  where  at
least one is considered reserve);

– the process design allows fault isolation
and  activation  of  an  alternative  route
(for  example,  in  power  or  water
management systems).

The  virtual  actuator  will  implement  specific
reconfiguration  strategies  considering  actions
both in case of single  faults  and for  multiple
faults. An implementation solution is by use of
fault  decision  trees  with  different  costs
associated  to  multiple  control  solutions  in
applications with functional redundancy.

4.  Experimental Results

and Discussions 

4.1 Application

Using  real-time  process  data  from  a  water
management  system  application,  we
investigated how we can improve the process
reaction  to  faults  by  implementing  additional
state  evaluation  and  control  reconfiguration
modules  that  would  not  interfere  with  the
functionality  of  the  controller  for  the  steady-
state  operation  of  the  plant.  Until  now,  fault
detection and diagnosis  for  water  distribution
systems have been proposed in literature using
either fuzzy-based methods [8, 12] or statistical
analysis using PCA [3]. Our approach uses the
univariate  method,  parameter  estimation  and
strategy  reconfiguration  for  implementing  a
fault-tolerant control system.

System configuration is illustrated in Figure 2.
The  process  consists  in  three  wells,  each
equipped with a pump that  will  extract  water
and push it through the network pipes until it
reaches the accumulation tank. The pumps are
functioning  in  a  2  active  and  1  stand-by
configuration.  We measure the water  level  in
each well and in the tank, and also the water
pressure  and  output  flow  on  the  main  pipe,
immediately  after  the  link  of  each  secondary
pipe to the main pipe. The control objective is
to maintain the tank water level  between two
predefined limits.
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Figure 2. Water management application example

In  the  design  phase  we  identified  several
technological interlocks and alarms that can be
considered in the process operation: 

1) A pump failure can be identified if the start
or stop command is not executed.

2) A sensor  failure  is  signaled  if  the  input
signal is less than 0 (under 4 mA).

3) If  flow  in  any  of  the  measuring  points
exceeds the value of 7 m/s than the main
collecting pump is broken.

4) If flow is 0 and its corresponding pump is
on than its secondary pipe is broken.

5) Pump operation is 2 active and 1 reserve,
and  the  switching  is  performed  manually
by  the  plant  operator  considering  total
functioning hours.

These  conditions  were  implemented  in  the
standard  operation  of  the  process  control
strategy. Limitations of this standard approach
come from the reaction to the fault occurrence,
rather  than  predicting  a  possible  abnormal
operation  and  also  from  the  limitation  in
providing solutions for addressing all possible
faults. For example, fault 1 can be caused not
only  by  a  pump  failure,  but  also  by  a
controller input or output module failure or a
power relay failure. Each of this causes may
have  different  solutions  but  a  correct  fault
diagnosis is needed.

In order to improve process reaction to unexpected
situations,  we  designed  a  fault  detection  and
diagnosis  module  and  interconnected  it  to  a
process reconfiguration module.

4.2 Implementation and results

The implemented fault tolerant structure is the
one  presented  in  Figure  1.  We  analysed  the
benefits  and  limitations  of  using  either  PCA
multivariate  or  X-chart  univariate  fault
diagnosis  and  identification  techniques.  For
each case we considered a pressure sensor fault
resulting in a step variation with a magnitude of
6% over the average value. We chose this value

based on the computed value of the univariate
UCL limit. The system reconfiguration module
was  designed  following  the  fault-hiding
technique with statistical estimation in case of a
sensor  fault  and  predefined  reconfiguration
model in case of an actuator fault.

In  the  univariate  analysis  this  results  in  a
variation  slightly  above  the  computed  upper
control limit. As illustrated in Figure 3, even
this slight variation was correctly identified as
a  process  fault.  Also,  fault  identification
accuracy is not affected by adding more faulty
signals to the data set but its performance rises
as  the  time period  for  capturing  the  process
behaviour is higher.

Figure 3. Fault detection and identification using
individual control chart method

We applied the PCA multivariate method on the
same data set, including also the flow and level
parameters.  The  T  squared  distribution  is
illustrated in Figure 4. As can be seen, the fault
is  again  correctly  detected  but  for  the
identification of the faulty parameter we need
additional operations. For this, the T2 threshold
can be  computed  on  2  by  2  data  sets  where
occurrence of a fault can be identified as one of
the variables being the faulty one.

Fault  identification  steps  were  illustrated  in
Figure  5.  Figure  5a)  indicates  a  fault  in  the
simultaneous analysis on pressure and flow and
Figure 5b) indicates no fault for the flow and
level  analysis.  Thus  we  can  identify  the
pressure as being the faulty parameter. 

For the process reconfiguration we analysed
possible  cross-correlations  between  process
variables  in  order  to  design a virtual  sensor
that  would  replace  the  faulty  signal  of  the
pressure value. 
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We computed the sample correlation coefficient
between the three variables  associated with a
pump functioning. The resulted scatter plot is
illustrated in Figure 6.

Because  this  step  is  performed  offline,  on  a
known  process  behaviour,  fault  data  was  not
used  here.  As  can  be  seen,  these  three
parameters  C1, corresponding to pressure,  C2,
corresponding to flow, and  C3, corresponding
to  level,  are  strongly  related  and  have  the
correlation coefficients equal to:

– r(C1, C2) = - 0.8130

– r(C1, C3) = 0.8526

– r(C2, C3) = -0.9735 

As  the  maximum  correlation  value  for
pressure is obtained from the level value, the
virtual  pressure  sensor  value  was  computed
starting from the after  fault  variation of  the
level parameter. 
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Figure 4. Fault detection using PCA method

a)

b)

Figure 5. Fault identification from PCA analysis

a)

b)

c)

Figure 6. Cross-correlation between pump
variables: a) pressure and flow, b) pressure and

level, c) flow and level



Figure 7 shows the evolution of the computed
value for the pressure parameter in the presence
of faults,  based on its  correlation to the level
parameter. The estimated signal is represented
by the dashed line. As can be seen the moment
the signal fault is detected, the virtual sensor is
activated and the estimated value is transmitted
to the controller.

 Figure 7. Pressure estimation in presence of faults

A  second  experiment  was  conducted  to
evaluate the estimation performance based on
the  proposed  method.  The  evaluation  was
conducted on a set consisting in the last 20 data
samples.  Figure  8  presents  a  comparison
between  the  measured  value  (represented  by
the straight  line),  its  estimation considering a
constant  value  of  the  sample  correlation
coefficient (represented by the dashed line) and
its  estimation  after  recalculating  the  sample
correlation coefficient at each step (represented
by the dotted line).

Figure 8. Comparison between real pressure
variation (straight line), estimated value with r

constant (dashed line) and estimated value with r
recalculated (dotted line)

As can be seen, a better estimation is achieved
by  maintaining  the  initial  high  sample

correlation coefficient. This is because the error
between the estimated value and the real value
results in a weaker correlation to the associated
parameter  and  also  a  less  accurate
approximation of the virtual sensor.

As  this  application  has  three  pumps  with
similar  characteristics  and  functionality,  we
implemented  an  actuator  fault  handling  that
processes  the  commands  issues  by  the
controller  and  analysis  it  in  the  context  of
existing faults received from the FDD module.
A  simplified  strategy  for  actuator  control
reconfiguration considering a 3 pump system is
illustrated in Figure 9. If the controller issues a
start  command  for  an  unfaulty  pump,  the
command is  sent  to  the  actuator.  In  case  the
request  was  issued  for  a  faulty  pump,  the
strategy  will  investigate  if  other  pumps  are
available. If so, it will send the command to the
corresponding  pump.  To  ensure  process
stability, the FDD module must also implement
the  necessary  adjustments  at  the  pump
feedback to simulate a normal operation at the
controller level.

Figure 9. Actuator control reconfiguration

4. Conclusions

In  this  paper  it  is  identified  a  control
methodology  suitable  for  implementing  fault
tolerant control based on process historical data
and  physical  control  structure.  The
methodology was validated on a case study for
a  simple  water  management  application.  We
analysed  the  balance  between  increased
performance  and  reliability  of  FDD
multivariate methods, compared to the ease of
implementation  on  univariate  solutions.  The
conclusion  was  that  univariate  solutions
provide  satisfactory  results  for  this  type  of
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applications and can be implemented efficiently
at the controller level using recursive functions,
thus being preferred to multivariate solutions.
Even  more,  the  computed  mathematical
parameters can be used to estimate the value of
a  virtual  sensor.  Also,  a  methodology  for
implementing a virtual actuator was proposed.

Our  main  objective  was  the  identification  of
practical  limitations  concerning  both  the
complexity  of  the  algorithms  and  the
adaptability  to  existing  control  applications.
Future  work  will  be  focused  on  identifying
better  statistical  methods  for  estimating  the
variation of a sensor which entered a fault state
and  evaluating  the  proposed  method  on  a
multivariate control application. 
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