
1. Introduction

Reinforcement  learning  (RL)  is  typically
concerned  about  solving  sequential  decision
problems  modelled  by  Markov  Decision
Processes  (MDPs).  Applications  of  RL,  as  a
research field inside of Machine Learning, has
got extended to areas such as Robotics [10] or
Control  Theory  [7,  12,  16],  by  means  of
choosing  a  suitable  representation  of  the
problem to be solved.

The  first  RL applications  on  control  systems
have been found on Werbos [19, 20], where the
regulation  problem  was  tackled,  whose
objective is to design a controller for a given
process,  such  that  the  internal  state  of  this
process  approaches  zero  as  time  increases
unbounded. Then, an immediate extension was
to  apply  policy  iteration  (PI)  algorithms  to
solve  the  linear  quadratic  regulator  (LQR)
problem [4].

The LQR, i.e., the regulator problem when the
system  is  assumed  to  be  linear,  and  the
performance  index  is  given  in  terms  of  a
quadratic function [1] is particularly appealing
given that its solution is obtained by solving an
algebraic  Riccati  equation  (ARE).  Then,  PI
algorithms  basically  start  with  an  admissible
control policy and then iterate between policy
evaluation and policy improvement steps until
variations on the policy or the specified value
function are negligible, as seen on [4, 13, 17].

In the other hand, the linear quadratic tracking
(LQT) problem also assumes a linear model for

the process dynamics and a quadratic function
for  the  performance  index,  but  the  main
objective is to design a controller such that the
measured  output  of  the  process  to  be
controlled,  follows  an  exogenous  reference
signal,  so  the  LQR could be  considered  as  a
particular case of the LQT problem. Although,
as mentioned before, RL algorithms have been
extensively  applied  for  solving  the  LQR
problem,  the  LQT  has  not  received  much
attention on  the  literature  mainly because for
most reference signals the infinite horizon cost
becomes unbounded [2].  Work in [14] tackles
the problem on the continuous time domain by
solving an augmented ARE obtained from the
original  system  dynamics  and  the  reference
trajectory dynamics,  while [9] takes a similar
approach for the discrete-time case, where a Q-
learning algorithm is obtained for solving the
LQT problem without any model knowledge.

Then,  when  considering  noisy  systems,  the
performance index and notions of stability have
to be modified accordingly. This problem has
been extensively treated on literature from the
classical control,  or model-based approach [6,
8, 21], unlike on the learning paradigm. Work
on  [11]  uses  neural  networks  for  reducing
calculus  efforts  on  providing  optimal  control
for  the  stochastic  LQR,  while  other  works
focus  on  relaxing  assumptions  on  the  ARE
under  different  scenarios,  but  still  requiring
knowledge of the system dynamics [5, 22]. The
work on [9] could be considered as the closest
to our approach, given the LQT setup and the
absence  of  model  knowledge.  Nevertheless,
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unlike  the  work  therein,  we  consider  the
stochastic  LQT  problem,  and  we  extend  the
structure  of  the  (linear)  state  feedback
controller to be of a more general form. Then,
when analysing experimental  results,  RL will
prove to be especially useful for the case when
the  model  is  unknown,  but  it  is  still  useful
when dynamics are assumed to be given, since
hand-tuning  of  controller  parameters  could
represent  a  time  consuming  task  due  to  the
number  of  degrees  of  freedom  and  the
corresponding constraints.

The remainder of this document is organized as
follows: Section 2 presents a brief review about
the basic concepts to be used in the subsequent
sections, as well as the classical approach for
the  LQT  problem  by  using  (static)  state
feedback controllers. Then, Section 3 shows the
appropriate  procedure  for  obtaining  a
stabilizing  dynamic  controller  for  minimizing
the  LQT performance  criteria,  and  the  main
results.  Section  4  makes  an  illustration  on
simulation  results  obtained  for  an  arbitrary
plant.  Finally,  Section  5  draw  some  final
conclusions and give some insight  into future
work.

Notation: 

ξ{·} denotes the expectation operator,  λ́ (M )
is used to describe the largest eigenvalue of M,
while  MT denotes  the transpose  of  matrix  M,
and M

−1  its inverse when M is square.

R stand  for  the  set  of  all  the  real  numbers,
and when used with superscripts Rn (or R

n×m

) describe a vector (or matrix) with n rows (or
n rows and  m columns) whose elements are
real-valued.

2. Background

2.1 Reinforcement learning

In simple terms, the main objective of RL is to
optimize the expected long-term reward, on an
(initially)  unknown  environment  through
finding an optimal sequence of actions to take
for a given problem.

Definition 1 

An RL problem, depicted by a MDP is given in
terms of the tuple (S,A,T,R):

– S: This is the set of all possible states on a
given time step.

– A: denote  the  set  of  actions  the  agent
could take.

– T : S×A×S→[0,1]  correspond to the state
transition function, which is assumed to be
unknown and quantifies the probability of
the agent being transferred from state  s to
state s' by executing action a.

– R: S×A→ R  is the reward function, whose
values are real and scalar.

– π : S →A  is a map from states to actions,
and  describes  the  policy  (decides  which
action to take on a given state).

As a result of the choices made by policy π, its
quality  is  quantified  by  the  value  function
V

π( s) , with the agent being on state s at time
step k. Then, the value function corresponds to
the expected (discounted) accumulated reward
with initial state s:

V
π( s)=ξ {∑

i=0

∞

γ i
r

k+1∨π} , (1)

where γ∈[0,1]  corresponds to the discount factor.

Then, a policy π*  is said to be optimal, if the
following expression holds,

V
π*

( s)≥V
π( s)∀ s ,π (2)

i.e.,  the  optimal  policy  V
π*

( s)=max
a∈A

Q
π*

( s ,a ) will  yield  the
biggest  value  function  with  respect  to  every
possible policy π, independently of initial state
s.  Although  there  could  exist  more  than  one
optimal policy, its optimal value is unique [3]
and may be obtained by means of solving the
Bellman optimality equation

V
π*

( s)=max
a∈A

∑
s∈S

Pr {(s ,a , s ' )}⋅

⋅( R( s , a)+γV
π*

(s ' ))
(3)

where Pr {( s , a , s ' ) }  is the probability of being
led to state s' when action a is executed on state
s. Then, one of the most popular and convergent
in  probability,  dynamic  programming
algorithms,  is  known  as  policy  iteration  (PI),
whose procedural form is shown on Algorithm
1, which is concerned with policy improvement.
PI starts with some initial and randomly chosen
policy.  Then,  at  each  successive  iteration,  the
algorithm evaluates the current  policy with its
value  function,  and  performs  an  improvement
step where a new policy is obtained by means of
performing greedy actions at each state over the
current policy.
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PI  corresponds  to  a  Dynamic  Programming
(DP) algorithm, and besides value iteration (VI)
is the basis of many successful Reinforcement
Learning.  However,  in  the latter  setting  (RL)
the learning process is usually assumed to be
generated from the current interaction between
the  agent  and  its  environment,  with  real  or
simulated data.

State-action  values  (also  known as  Q-values)
are introduced in order to solve the problem of
lack  of  knowledge  on  the  transition  model,
which is involved on the policy improvement
step for any value estimation algorithm.

For a given policy  π, the tuple (s,a) yields the
state-action  value  Q(s,a),  which  is  the
(expected)  discounted  return  over  all
trajectories assuming  a is executed on state  s,
according policy π. There is a relation between
the  optimal  state  value  V

π*

 and  its

corresponding optimal state-action value  Q
π*

,
and is given by

V
π*

( s)=max
a∈A

Q
π*

( s ,a ) (4)

and a representative algorithm for state-action
value estimation is Q-learning [18], which can
be  viewed  as  an  asynchronous,  stochastic
version of VI.

2.2 State Feedback Control

When  tackling  the  problem  of  making  a
system  follow  a  given  trajectory,  the  main
objective  is  to  find  the  appropriate  control
signals  (or  actions  that  the  controller  should
generate) for making a variable of the system
to be controlled to keep track of  the desired
reference value (Algorithm 1).

Then,  according  to  notation  introduced  on
Figure  1,  for  the  state-feedback  scheme,  a
control  signal  u[k] must  be  generated,  and
used as input of the controlled system, which
has an output  y[k] that should keep track of
the  reference  r[k] at  time  k.  Therefore,  a
model is needed.

Figure 1. State feedback control scheme

One  of  the  typical  options  is  to  assume  a
given structure for the model, and then tune

its  parameters  until  the  model  and  real
system  dynamics  matches.  Another  option,
could be to use physical laws for building a
model  and  set  relations  between  all  the
variables of the system.

Definition 2

For  a  (stochastic)  linear,  discrete-time  and
strictly  causal  systems,  the  state  space
representation of the process to be controlled,
G on Figure 1, is given by

x [k +1]=Ax [k ]+Bu [k ]+v [k ] , (5a)

y [k ]=Cx [k ]+w [k ] (5b)

where  x [k ]∈R
nx , y [k ]∈R

ny  and  u [ k ]∈R
nu

corresponds  to  the  internal  state,  measured
output and control signal respectively at time k,
and A, B, C and D are (usually) known matrices
of appropriate dimensions, while v[k] and w[k]
are  uncorrelated  (gaussian)  zero-mean  white
noises, namely process and measurement noise
with constant variance Pv and Pw respectively.

When  considering  a  (static)  linear  state
feedback controller,  C on Figure 1, according
to notation therein introduced, the control law
would be given by

u [k ]= ŕ [k ]−Lx [k ] (6)
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where L∈R
nu×nx  stands for the feedback gain,

and Tr is a pre-filter such that y[k] gets as close
as possible to r[k].

Then, the performance index for the stochastic
infinite-horizon LQT problem at time k will be
given by 

J [k ]=

=ξ {∑
i=k

∞

(r [ i]−y [i])T
Q (r [i ]−y [i ])+u

T [i ]Ru[i ]} (7)

with  Q>0  and  R≥0  weighting matrices of
appropriate  dimensions.  Since we are  dealing
with stochastic systems, an appropiate notion of
stability is given by mean-square stability [15],
on the following Lemma.

Lemma 1

The process given by (5), whose state is given
by  x[k] at  time  k,  will  be mean-square stable
(MSS) if and only if 

lim
k→∞

|ξ{x [k ] x
T [k ]}|<∞ (8)

independently of the initial state x [0]=x 0 .

Moreover,  the  controller  (6)  stabilizes  the
system  on  (5),  if  the  reference  r[k] decays
asymptotically to zero, and  L is such that the
closed-loop  eigenvalues  are  inside  the  unit
circle, i.e., 

lim
k→∞

r[k ]=0 , (9a)

|λ́ ( A−BL )|<1 . (9b)

Proof:

For the definition of mean square stability, the
reader is encouraged to see [15]. Although the
conditions  set  on  Lemma 1  can be found on
standard stochastic control theory literature, we
show  how  these  conditions  are  obtained  for
sake of clarity.

By  replacing  (6)  on  (5),  the  second  order
moments matrix of M

x
[k ]=ξ {x [k ]⋅x

T [k ]}  is
given by

M x[k ]=( A−BL ) M x [ k−1 ] ( A−BL )T +

+ BM ŕ [ k−1 ] BT + Pv

(10)

with  Pv the  variance  of  process  noise  as  on
Definition 2, and M

ŕ
[k ]=ξ {ŕ [k ] ŕ

T [k ]} .

Then, in terms of the initial state x [0]=x 0 ,

M x[ k ]=(A−BL )k
M x[0 ]( A−BL)k ,T+

+∑
i=1

k

(A−BL)i−1(BM ŕ[k−i ] B
T+ Pv )(A−BL)i−1,T

where it can be seen that for the system being
MSS, is necessary to get M

ŕ
[k ]  bounded as k

grows to infinity, so ŕ [k ] , and therefore r [k ]
has  to  decay asymptotically.  Since  the  factor
(A−BL)  is part of a matrix power series, its

spectral radium has to be less than unit, which
directly involves

|λ́ (A−BL)|<1 . (11)

▫▫▫

The  asymptotically  decaying  assumption  on
reference r limits the class of trajectories to be
used, and more important, sense of minimality
in (7) is lost. Therefore, as on [9], the following
section  will  introduce  a  discounted
performance  index  for  the  LQT  setup,  and
assuming the reference is being generated by a
system F, as depicted on Figure 1.

3. Linear Quadratic Tracking

3.1 Problem Formulation

In this section, we will expand the class of state
feedback  controllers  on  the  LQT  problem,
allowing  it  to  have  its  own  dynamics
component on the resulting control signal, but
still  on  the  realm of  linear  controllers.  Then,
considering  Figure  1,  the  controller  for  the
system on (5) would be given by

where  the  c  subscript  is  set  to  stress  the
difference  between  matrices  (A , B ,C )  from
the plant model and (A

c
, B

c
,C

c
, D

c
)  from the

controller,  as  well  as  the  state  of  the  plant,
x [k ] ,  and the internal state of the controller

itself, x
c
[k ] .

Note  that  once  the  controller  has  been
designed,  the  prefilter  Tr for  transforming
reference r[k] into ŕ [k ]  should be chosen such
that the transfer function from r [k ]  to  y[k] is
unitary, in order to ensure stationary tracking.

Remark 1. It can be seen from (12), that when
C

c
=0  we  have  exactly  the  same  state-

feedback law as  in  (6),  with  Dc and  L being
equivalent. When this is the case, we could still
have  a  dynamic  controller,  but  the  dynamics
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(and  hence  stability)  of  the  controller  itself
doesn’t  play  any  role  on  the  stability  of  the
control  loop,  allowing  the  controller  to  be
unstable, as long it stabilizes the plant.

Then, Lemma 2 set conditions for both the
system on (5) and the controller on (12) to
be MSS.

Lemma 2

Consider process (5) whose input is given by
the state feedback law

with  xc [ k ]  being as on (12). Then, the closed
loop  and  the  controller  itself  will  be  mean
square stable, if

with Aa being a block matrix given by

Proof:

Let xa[k] be the augmented state vector, at time
k, such that

From (5) and (12), we have

with

Then,  by making an analogous analysis  from
Lemma 1, it is straightforward that for  x

a
[k ]

being MSS, conditions on (14) must hold.

▫▫▫

The  asymptotically  decaying  reference  r[k]
requirement  is  also  necessary  for

convergence of the sum on the performance
index for the stochastic LQT problem, as can
be  seen  on  (7).  This  requirement  can  be
relaxed when introducing a discount factor, γ
∈ (0, 1), such that

with

where  both  Q1  and  Q2 are  positive  definite
matrices,  penalizing  the  control  error  and
avoiding to get the dynamics of the controller
itself boundless respectively.

3.2 PI for solving the stochastic LQT

In order to make the LQT problem look more
like  a  RL  problem,  let  the  value  function
V (X [k ])  be

where  X[k] stands  for  an  augmented  state
vector  containing  the  internal  state  of  the
process  to  be  controlled,  the  state  of  the
controller  itself  and  the  exogenous  reference,
i.e.,

Then, the value function can be written as

with Q1  as on (19) and Q́  given by

 

Theorem 1

Consider the control law

with  xc[k] as  described  on  (12),  and  r[k]
produced by the model
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as  depicted  on  Figure  1.  Then,  assuming the
optimal  value  function  is  quadratic  in  the
augmented state vector, i.e.,

 

for  some  stationary  and  symmetric  matrix
P>0 , and g[k] such that

where parameters (T
r
,C

c
, D

c
)  are given by

with

and each matrix Pij from P on (26) is such that

where  P
ij
=P

ji

T  as  a  consequence  of  the
symmetry of P .

Proof:

Value function on (22) can be rewritten as

By the other hand, since the value function is
assumed  to  be  quadratic  in  terms  of  the
augmented state vector, 

but from (21) we have

Then, by replacing (5), (12) and (25) into (33),
we have

where Z is defined as on (29a), H is given by

with M  as on (29b), and Ṕ  is given by

where each matrix Ṕ
ij  is such that

Finally, for minimizing the expression in (34),
it can be seen that the optimal control law u[k]
has to be chosen such that

so comparing terms on (24) and (38) yields (28).

In a similar form, by replacing (26) into (34),
and comparing both sides from the expression,
it can be found

so a little algebra yields (27). ▫▫▫

Remark  2.  The  assumption  that  r[k] is
generated  by  model  described  on  (25),  is
valid for a large class of useful  trajectories,
such  as  a  unit  step  signal,  sinusoidal
waveforms and more.

Then,  Algorithm  2  shows  the  policy
evaluation and improvement steps for the  l-th

iteration of PI.

It  can  be  seen  that  Algorithm  2  can  be
implemented  online,  but  all  dynamics,
including  the  generator  model  for  the
exogenous  reference  signal,  have  to  be
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known. Despite this fact, expressions can be
easily computed, and we can achieve a state
feedback  controller  with  its  own  (stable)
dynamics  by  just  designing  two  parameters
(Ac and Bc, since the rest depend on these) in
place of the classical standard case with just
one  parameter,  which  could  lead  to  a  high
gain for some processes.

3.3 LQT with unknown dynamics

Consider the LQT Q-function given by

with Q́  defined on (23). Then, this expression
is equivalent to

with symmetric H given by (44).

where

and  Hxx given  on  (46).  Based  on  (43),  by
finding the roots of its first derivative, it can
be seen that the control law in terms of  is  H
given by

 

Note that the Q -function on (42) satisfies the
Bellman equation

Then, let S[k] be

so (43) is equivalent to

with H́  given by

so now (48) becomes

Finally, (52) leads to Algorithm 3,which would
match the same terms in Algorithm shown on
[9],  if  we  change  our  stochastic  setup  for  a
deterministic one, and not consider the internal
state of the controller.
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4. Simulation Results

Consider the linear system given by

where  v [k ]  and  w[k] are  the  process  and
measurement  noise  respectively,  with  zero-
mean and unitary variance.

Let  the  generator  model  F for  the  reference
signal vary with time, set arbitrarily to

and r [0 ]=1 . Also, penalizing weights for the
performance index were set  to  Q1=5 ,Q 2=5
and R=1 , and the discount factor γ = 0.8.

Figure 2 shows the evolution of the generated
control  signal  during  the  learning  process,
with  u1 obtained  from  Algorithm  2  and  u2

obtained  from Algorithm 3,  where  the  prior
leads to parameters

For  Algorithm  3,  note  that  25  data  samples
were collected to perform least squares in each
iteration, since

(n
x
+n

xc

+n
u
+n

y
)⋅(n

x
+n

xc

+n
u
+n

y
+1)/2 ,

data tuples or more are needed. Then,  Huu and
Hux learned, which construct the control law on
(47) are,

leading to

which is similar to the final parameters found
by Algorithm 2.

It can be seen on Figure 2, that Algorithm 2 and
3  achieves  the  same  performance  when  the
learning process is finished, but the latter have
a  slower  convergence  rate  as  expected,  since
adding knowledge represents an advantage, but
it comes with a very high cost if the process is
too complex for obtaining an accurate model.

Figure 2. Control signal during learning process

In  order  to  compare  the  performance of  the
classical  state  feedback  controller  with  the
proposed  in  this  document,  consider  the
control law

and

such that  the eigenvalues  of  the  control  loop
when using the classical state feedback control
on  (60)  are  {0.5,  0.8},  and  when  using  the
proposed structure on (61) its eigenvalues are
{0.5,  0.59,  0.8}.  Despite  adding  as  many
eigenvalues  as  elements  have  the  controller
state  vector,  the  largest  eigenvalue  limits  the
speed of the control loop, so both control laws
have the same speed of convergence, but it is
shown  in  Figure  3,  with  parameters  already
learned,  that  an  appropriate  choice  on  the
parameters of the proposed controller can lead
to a better performance in terms of minimizing
the energy spent on the control signal.
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5. Conclusions

Two PI algorithms were presented, one for the
case when full knowledge on the model of the
process  to  be  controlled  is  assumed  to  be
available, and the other one when there is no
knowledge  at  all.  The former  is  especially
useful  for  not  having  to  tune  by  hand  four
parameters  at  a  time,  when  the  controller  is
allowed to have its own internal dynamics.

The  case  when  the  state  is  not  directly
measurable,  and  has  to  be  estimated  instead,
remains as future work. This case would be of
special  interest  for  a  model-free  control  over
plants  like  the  flywheel  inverted  pendulum,
which would represent an initial  step towards
generating a safe walk learning for a biped, or
legged robot.

Figure 3. Static and Dynamic Controller
Structures Comparison
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