
1. Introduction

The problem of locating/allocating customer to

distribution centres is one of the most studied

problems  in  logistics.  Usually,  after  decision

makers determine the locations to be installed,

the inventory policy is defined. However, this

sequential approach is sub-optimal in the sense

that  the  inventory  policy  is  restricted  by  the

network design determined in the previous step.

Thus,  integrating  location/allocation  decisions

and inventory policies lead to solutions that are

more  efficient  as  they  consider  the  entire

system as a whole. 

On the one hand, the location/allocation problem

consists  of  selecting specific sites  at  which to

install  plants,  warehouses  and/or  distribution

centres  while  assigning  customers  to  service

facilities  and  interconnecting  facilities  using

flow assignment decisions [6, 10]. 

On the other hand, inventory policies determine

tactical issues such as reorder point and order

size, among others. 

Figure 1 shows a schema of both the sequential

and the integrated approaches. On the left hand

side,  the sequential  approach is  presented.  As

we can see, the first decision to be made is the

location-allocation  one.  Once  this  decision  is

made, we can go to the next step which is to

decide among the different  inventory policies

that  are  able  to  be  implemented.  Once  this

tactical  decision  is  made,  other  operational

issues  are  addressed.  No  change  on  previous

decisions  is  allowed  in  this  sequential

approach.  Thus,  location-allocation  decisions

have a great impact on the final solution and, at

the  same  time,  both  tactical  and  operational

decisions  depend  on  the  distribution  network

that  is  defined  during  the  first  step  of  the

approach. On the right hand side of the Figure

1,  we have the integrated approach.  Here we

can  note  that  information  flow  from  one

decision level to the other.

Figure 1. Traditional sequential approach (on the

left) versus the integrated approach (on the right)

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro

Solving a Distribution Network Design Problem

by means of Evolutionary Algorithms

Guillermo CABRERA1, Stefanie NIKLANDER2,3, Enrique CABRERA4, Franklin JOHNSON5

1 Pontificia Universidad Católica de Valparaíso, Chile

guillermo.cabrera@ucv.cl

2 Universidad Autónoma de Chile, Chile

3 Universidad Científica del Sur, Peru

sniklander@gmail.com

4 Universidad de Valparaíso, CIMFAV, Chile

enrique.cabrera@uv.cl

5 Universidad de Playa Ancha, Chile

franklin.johnson@upla.cl

Abstract: In this paper a simple and efficient evolutionary algorithm is implemented to solve a Distribution Network

Design problem (DND). The DND problem that we address here integrates inventory policies with location/allocation

decision  making.  This  problem,  also  known  as  Inventory  Location  Modeling  problem,  is  a  complex  combinatorial

optimization problem that cannot be solved by exact methods as the number of decision variables increases. We compare

our algorithm to previously implemented algorithms. Our evolutionary approach is shown to be very competitive in terms

of both objective function value and execution time. 

Keywords: Evolutionary Algorithm, Distribution Network Design, Logistics, Combinatorial Optimisation.

21



This  means  that  strategic  decisions  are  made

taking  into  account  the  effects  that  such

decisions  provokes at  tactical  and operational

levels. As a consequence, the final solution is

more efficient in terms of its total system cost. 

The remaining of this paper is  as follows: In

Section  2  the  inventory  location  modelling

problem  that  is  addressed  in  this  paper  is

presented.  In  Section  3  we  introduce  the

evolutionary  algorithm  that  is  implemented

here.  In  Section  4,  the  computational

experiments  performed  in  this  paper  are

described  and  the  obtained  results  are

discussed.  Finally,  in  Section  5,  some

conclusions and the future work are outlined. 

2. Inventory-Location Modelling

Several inventory location models (ILM) have

been proposed in the literature. Unlike facility

location  models,  ILM  does  consider

interactions  between  the  facility  location

decision  making  process  and  the  inventory

policy to be implemented within each facility.

Several  authors  have  proposed  different

approaches  to  integrate  both  strategic  and

tactical  level  within  the  decision  making

process, see for instance [5, 11, 14, 17]. This

integration of strategic and tactical decisions is

very  important  as  allows  us  to  model  the

interactions that exist and the effect on the final

distribution  network  design.  One  of  these

effects is the risk pooling effect. It states that

the  safety  stock  required  by  the  whole

distribution  system  will  decrease  as  fewer

warehouses are installed [11, 10, 15]. 

One  key  difference  between  the  proposed

approaches  in  the  literature  regards  the

inventory  policy  that  is  included  within  the

decision making process. For instance, Daskin

et.  al.  [8]  and  Shen  et.  al.  [16]  consider  a

continuous inventory policy, namely (Q,  RP),

and  the  well  known  uncapacitated  facility

location problem. They consider a safety stock

at each facility, which does not interact with the

other  inventories  from  other  facilities.  A

Lagrangian  Relaxation  algorithm  is  used  to

solve the ILM in [8] while a column generation

approach  is  used  in  [16].  Using  the  same

inventory policy, Miranda et  al.  [11] consider

the  order  quantity  for  each  warehouse  as  a

decision  variable  and  the  capacitated  facility

location problem as a base framework. Finally,

in Miranda et al 2008 [13] and Ozsen et al. [15]

authors  handle  capacity  constraints  by  using

previous inventory-location models.

Unlike  all  the  approaches  mentioned  above,

Cabrera  et  al  [7]  have  proposed  a  periodic

review  policy,  known  as  (R,  s,  S).  In  their

model, capacity constraint as well as the order

size  are  handled  as  constraint  and  decision

variable, respectively.

Multi-objective ILMs have been also proposed

in the literature (see [1, 2]).

Since  in  general  both  continuous  and  integer

decision variables are part of the models above,

the  ILM  problem  to  be  solved  is  usually

described as a mixed integer one. Furthermore,

the  objective  function  that  combines  the

location/allocation cost with the inventory costs

is  usually  non-linear.  Thus,  solving  this

problem to optimality within a reasonable time

is  simply  not  possible  as  the  number  of

decision  variables  becomes  larger.  Thus,

several  authors  have  considered heuristic

methods to approximately solve this problem.

For  instance,  a Tabu search is  used in  [3]  to

solve  a  model  that  integrates  production  and

distribution  decisions  by  considering  the

capacity constraints of the plant. Evolutionary

algorithms  have  been  also  used  to  solve  the

ILM problem (see Askin et. al. [4]). Recently,

an  approach  that  combines  both  exact

algorithms  and  heuristic  methods  has  been

proposed [10]. This method belongs to the class

of matheuristic methods. 

In  this  paper,  we  solve  the  ILM  problem

introduced  by  Miranda  and  Garrido  [12]  by

means  of  a  simple  but  effective  evolutionary

algorithm.  To the  best  of  our  knowledge  no

evolutionary algorithm has been used to solve

such a problem in the literature before.

The mathematical model for the ILM that we

aim to solve in this paper is as follows [12].

Min∑
i=1

N

F i x i+∑
i=1

N

∑
j=1

M

C ij Y ij+

+∑
i=1

N

CS i √V i+

+∑
i=1

N

CL
i√D

i

(1)

Di=∑
j=1

M

d j Y ij , ∀ i=1,… , N (2)
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V i=∑
j=1

M

v j Y ij , ∀ i=1,… , N (3)

∑
j=1

M

d j Y ij= I i

cap
xi (4)

x
i
,Y

ij
={0,1} , ∀ i=1,…, N ,

∀ j=1,… ,M
(5)

Equation (1) represents the total system cost.

The first term is the cost of locating a specific

plant/warehouse i , also called setup cost. The

second term is the daily transport cost between

warehouse  and  customers,  where

C
ij
=TH (T C

ij
+ RC

i ) d j  and  TH  is  the

planning  horizon,  T C
ij  is  the  transport

allocation  cost  for  allocating  client  j  to

warehouse  i  and  RC
i  is  the transport  cost

associated to moving one unit of product from

i  to  j .  The  parameter  d
j  is  the  mean

demand  of  customer  j .  The  third  term

corresponds  to  the  cost  of  keeping  a  safety

stock which minimises the stock out so we can

guarantee a  service level  at  least  as  good as
Z

1−α .  Here  we  have  that

C S
i
=TH HC Z

1−α √LT
i  where  H C

i

corresponds to the holding cost of warehouse

i  and  L T
i  is  the time between an order is

placed  and the  products  are  available  in  our

inventory. This  time  is  also  called  leadtime.

The variable V
i  determines the total variance

of the demand for warehouse  i .  Finally, the

forth  term  in  the  objective  function  is  the

inventory  cost,  that  is  the  cost  of  keeping

products in stock and the administrative costs

of  putting  an  order  to  the  suppliers,  with

C L
i
=TH √ 2 H C

i
O C

i .  Here  O C
i  is  the

order cost of warehouse i  and D
i  is the total

demand  of  warehouse  i .  Constraint  (4)

ensures  the  capacity  constraint  of  plant  i ,

I
i

cap
, will never be violated. As pointed out in

[11],  this  is  a  very hard  constraint  that  was

relaxed  in  [12].  Finally,  Equation  (5)  states

integrality  (0-1)  for  the  binary variables  Y
ij

and x
i . 

3. Proposed Approach

Heuristic methods are a common approach to

solve hard combinatorial optimisation problems

such  as  the  ILM.  In  spite  of  the  fact  that

heuristics  do  not  guarantee  optimality,  the

solutions provided by them can be considered

good  sub-optimal  ones.  In  contrast  exact

methods  guarantee  optimality;  however,  they

usually  fail  when  dealing  with  medium-  and

large-  sized  problems.  In  this  paper,  an

evolutionary algorithm is  considered  to  solve

the problem from Equations (1-5). 

3.1 Evolutionary algorithm

As  mentioned  earlier,  in  this  paper  an

evolutionary algorithm [9]  is  implemented  to

solver  the  ILM  presented  in  the  previous

section.  The  evolutionary  algorithm

implemented here makes use of both crossover

and mutation operators, and the fitness of each

individual is set to be the same as the objective

function value. 

As  in  any  other  evolutionary  algorithm,  the

individual  representation needs to  be defined.

In this paper we represent an individual I
z as a

vector of integer of the form

1 2 … M _ 1 M

where  I
i  ranges  from  1  to  N ,  and

corresponds  to  the  warehouse  assigned  to

customer  i .  Then  a  mutation  operator  will

consist  on  changing  one  gene I
i  to  a  new

warehouse  which  could  be  either  open  or

closed.  Figure  2  shows  an  example  of  the

mutation operator used in this paper.

5 4 4 5 1 1 3

`

5 4 4 2 1 1 3

Figure 2. Example of the mutation operator used by

the evolutionary algorithm.

As we can see in  Figure 2,  all  but  one gene

keep their  original  value,  while  the  customer
i=4  is moved from warehouse 5 to warehouse

2, which was previously closed. 

The crossover operator considered in this paper

is  as  follows.  Given  two  parents,  we  choose

randomly a  crossover  point  γ ,  which ranges

from 2 to M −1 . Then, the first offspring will

have genes from 1 to γ  equal to parent 1, and

genes  from  γ+1  to  M  equal  to  parent  2.

Offspring 2 will have genes from 1 to γ  equal

to parent 2 and genes from γ+1  to M  equal

to parent 2. Figure 3 shows this situation. 
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Figure 3. Example of the crossover operator used

by the evolutionary algorithm.

Algorithm 1 shows the main steps of our approach.

Algorithm 1: Evolutionary Algorithm

Begin

  t=0 ;

  P
t
=initPopulation() ;

  evalPopulation (P
t
) ;

  s
best

=getBest ( P t ) ;

  while not termination criterion do

     P
t+1

=nextGeneration(P
t
) ;

     evalPopulation(P
t +1

) ;

     if s
best

> getBest (P
t +1

)
         s

best
=getBest (P

t +1
) ;

     End

     t=t+1 ;

  End

End

End

The evolutionary algorithm starts by generating

the  initial  population  (initpopulation()in

algorithm  1).  For  each  individual  within  the

population the ILM is solved (evalPopulation()

in  algorithm  1).  Then,  the  best  individual

within  the  population  is  saved  as  the  best

individual  found  so  far  by  the  evolutionary

algorithm (getBest() in algorithm 1). After that,

the  next  generation  is  created  by  using  both

algorithm (getBest() in algorithm 1). After that,

the  next  generation  is  created  by  using

bothmutation and crossover operators.  A 90%

of  the  individuals  of  the  next  generation  are

obtained by using crossover operator, while the

remaining  10%  is  generated  by  using  the

mutation  operator  (nextGeneration()  in

algorithm 1). Parents in the crossover process

are chosen by means of the tournament method,

while  the  top  10%  of  the  population  is

considered  to  be  mutated.  Once  the  next

generation  has  been  generated,  we  evaluate

each individual. Sometimes individuals become

infeasible. In such cases, a restoration phase is

applied so the individual can be evaluated by

the algorithm. If the best individual of the new

population  is  better  than  the  best  individual

found so far, then the best individual is updated

and the new best individual is saved for next

iterations. Termination criterion is the number

of generation the algorithm must generate. At

the end of the algorithm the individual with the

best  fitness  found  during  the  algorithm

execution is set as the best solution found by

the evolutionary algorithm.

4. Computational Experiments

In  this  subsection,  we  present  the

computational  experiments  carried  out  in  this

work. We use an Intel Core Duo processor CPU

T2700, 2.33 GHz with 6 GB of RAM to run our

experiments.  Linux  14.02  was  the  operating

system. The evolutionary algorithm was coded

in JAVA 8 language using NetBeans IDE. The

instance  set  used  in  this  work  was  the  same

used in [12].

Four  approaches  are  considered  in  the

experiments.  The  first  one  is  the  sequential

approach,  denoted  by  SDND.  This  approach

solves  the  corresponding  capacity  location

problem  and  then  implements  the  inventory

policy in  the  obtained  network  configuration.

The second and third approaches are the ones

implemented  in  [12].  These  approaches  are

denoted by Lingo and LR, respectively. Finally,

the last approach is our evolutionary algorithm,

denoted by EA. 

The  base  instance  that  is  presented  in  the

results  section  is  denoted  by  X .  Just  as  in

[12],  we  create  four  additional  instances  that

are  based  on  instance  X .  These  additional

instances are denoted by X −50 %HC ,  X −25%HC ,

X +25%HC  and  X +50 %HC .  These  instances

modify the  holding  cost  of  the original  X ❑

instance.  For  instance,  X −50 %HC  means

holding cost HC  has been reduced in 50%. 

4.1 Results

In  this  section  we  present  a  summary of  the

obtained results. Table 1, 2, 3 and 4 show the

obtained results when the service level, Z
1−α  is

set to 50%, 75%, 90% and 97.5%, respectively.

First column denotes the instance name. Then,

for each approach the cost and the comparison

with  the  best  solution  found  for  the

corresponding instance are shown. 
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As  we  can  see  in  Table  1,  as  the  problem

becomes  more  complex  (the  number  of

customers  increases)  our  approach  obtains

better results. Moreover, as highlighted by [12],

as  the  holding  costs  HC  become  more

important,  the  integrated  approach  obtains

better results than the sequential approach. 

When the service level is set to 0.5, that is the

probability of stock-out is 50%, the importance

of the integration is not much. As Table 1 shows,

the best average value is obtained by the exact

algorithm  lingo and, in the second position we

can find our evolutionary algorithm. 

Although  a  good  result  if  compared  to  the

Lagrangean  relaxation  or  SDND approaches,

the  evolutionary  algorithm does  not  find  the

best  solution  in  any  of  the  instances  when
Z

1−α
=0.5 .

In  Table  2,  the  results  obtained  when  the

service level is set to Z
1−α

=0.75  are presented.

As we can see,  deficiencies  of  the sequential

approach become more evident  as the service

level  is  higher.  Moreover,  in  this  case,  the

evolutionary algorithm finds, in average, better

solutions than all the other algorithms, finding

a better solution than all  the other algorithms

for two of the instances. It is interesting to note

than  the  exact  algorithm  (lingo)  consistently

finds better solutions for those instances where

the holding cost are more important.
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Table 1. Obtained results for Z
1−α

=0.5  

SDND Lingo LR EA

Instance Cost Save (%) Cost Save (%) Cost Save (%) Cost Save (%)

X −50 HC  600891 0,00% 600891 0,00% 605891 0,83% 605716 0,80%

X −25 HC 624418 0,00% 624418 0,00% 624521 0,02% 625370 0,15%

X 644260 0,76% 639400 0,00% 644260 0,76% 641784 0,37%

X +25 HC 661725 1,19% 653912 0,00% 661725 1,19% 656315 0,37%

X +50 HC 677493 1,57% 667009 0,00% 677297 1,54% 669454 0,37%

Average 0,71% 0,00% 0,87% 0,41%

Table 2. Obtained results for Z
1−α

=0.75  

SDND Lingo LR EA

Instance Cost Save (%) Cost Save (%) Cost Save (%) Cost Save (%)

X −50 HC  719798 5,07% 702188 2,50% 719552 5,04% 685035 0,00%

X −25 HC 757348 5,14% 733394 1,81% 754136 4,69% 720337 0,00%

X 795126 3,96% 764802 0,00% 776477 1,53% 768528 0,49%

X +25 HC 832805 3,62% 803743 0,00% 809202 0,68% 811317 0,94%

X +50 HC 870593 4,46% 833453 0,00% 843010 1,15% 852687 2,31%

Average 4,45% 0,86% 2,62% 0,75%



In  Table  3,  the  results  obtained  when  the

service  level  is  set  to  Z
1−α

=0.90  are

presented.  Again,  the  sequential  approach

obtains the worst values while, in average, the

lingo algorithm is the best approach. In second

place  we  find,  again,  our  evolutionary

algorithm.  In  this  case,  our  algorithm found

better  results  than  lingo for  those  instances

where  the  holding  costs  are  reduced.

Furthermore,  Lagrangean  relaxation

outperforms  our  evolutionary  algorithm  for

the last two instances, where the holding costs

are amplified. 

Finally,  we  present  in  Table  4,  the  results

obtained  when  the  service  level  is  set  to
Z

1−α
=0.975  are presented.

As  in  previous  experiments,  the  sequential

approach  is  outperformed  by  all  the  other

approaches.  Our  evolutionary algorithm finds

better  solutions  than  all  the  other  approaches

for  the  first  two  instances,  while  lingo

algorithm  finds  better  solutions  for  the  last

three  instances.  Unlike  in  the  case  where
Z

1−α
=0.90  (see  Table  3),  in  this  case  our

evolutionary  algorithm  found  consistently

better solutions than the Lagrangean relaxation

approach for all the instances.

Unlike  exact  methods,  the  performance  of

the  evolutionary  algorithm  implemented  in

this  paper  is  not  impaired  as  the  problem

size get larger. 
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Table 3. Obtained results for Z
1−α

=0.90  

SDND Lingo LR EA

Instance Cost Save (%) Cost Save (%) Cost Save (%) Cost Save (%)

X −50 HC 787831 5,99% 767490 3,25% 783668 5,43% 743304 0,00%

X −25 HC 859201 7,08% 818078 1,95% 832812 3,79% 802420 0,00%

X ❑ 931003 5,68% 880998 0,00% 898893 2,03% 882627 0,18%

X +25 HC 1002618 6,97% 937329 0,00% 961110 2,54% 971854 3,68%

X +50 HC 1074440 8,11% 993807 0,00% 1025370 3,18% 1055849 6,24%

Average 6,76% 1,04% 3,39% 2,02%

Table 4. Obtained results for Z
1−α

=0.975  

SDND Lingo LR EA

Instance Cost Save (%) Cost Save (%) Cost Save (%) Cost Save (%)

X −50 HC 863872 6,72% 828161 2,31% 860043 6,25% 809453 0,00%

X −25 HC 973042 6,82% 914062 0,35% 935273 2,68% 910895 0,00%

X ❑ 1082874 8,24% 1000429 0,00% 1032900 3,25% 1028371 2,79%

X +25 HC 1192421 9,74% 1086592 0,00% 1130880 4,08% 1119760 3,05%

X +50 HC 1302283 11,02% 1172978 0,00% 1218510 3,88% 1213294 3,44%

Average 8,51% 0,53% 4,03% 1,86%
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As future work, other evolutionary algorithms,

such  as  e.g.  cultural  algorithms,  can  be

implemented  to  solve  the  ILM  problem

addressed in this paper. 

Moreover, the problem can be converted into a

multi-objective one and other ILM might be also

considered  to  be solved with the evolutionary

algorithm that is implemented here. 

4. Conclusions and Future Work

In  this  paper  we  solve  an  ILM  problem  by

means of a simple evolutionary algorithm. The

evolutionary  algorithm  is  shown  to  be

competitive  when  compared  to  both  exact

methods and other heuristic methods. Moreover,

distribution network designs obtained by solving

the integrated ILM are consistently better than

those obtained when solving the problem using

the sequential approach in terms of the objective

function value. 
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