
Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 39

1. Introduction

The Time Petri Net (TPN) is obtained from the
Petri Net by associating a time interval for each
transition. The TPN is considered as a perfect
tool to modelize a large class of time discrete
models. Therefore, several existing methods for
the TPN analysis used the enumeration of state
space. Besides, for highly competitive systems,
the size of state space grows exponentially.

To overcome this problem, several methods are
proposed such as partial order unfolding [5]
which are limited to safe TPN, and consist in
transforming a TPN to an acyclic Petri net, by
respecting on one hand the firing time constraints
and on the other hand the partial order of the
initial model. Our previous approach [7] is
ensured by a new structure so-called Discrete
Time Reachability Graph (DT-RG). Each node of
the DT-RG, called macro-state, represents a
particular marking of the T-BPN. Furthermore,
each macro-state integrates a set of timed micro-
states where each one corresponds to a particular
clock value associated to each transition enabled
by the marking.

A symbolic method can be used to relieve the
above constraints, by taking the advantage of
Binary Decision Diagrams (BDDs) capacity to

represent a large set of encoded data with small
data structure. The BDD structure is initially
used to generate Petri net state space by Pasteur
et al. [10]. This work develops an algorithm for
PN state space exploration by encoding each PN
place using a binary variable. Taking the
advantage of the BDD compact representation,
the exploration of reachable states is done within
hours [13]. With the same objective, [11]
introduced more useful coding using the place
invariants. However, the underlying logic is
always based on Boolean variables. A Multi-
Valued Decision Diagram (MDD) that is an
extension of BDD, have been used by [9] to
improve the running time of algorithm
previously given to state-space exploration.
However, the methods based on BDDs have
been successfully applied to untimed Petri nets,
but for the TPNs less progress has been made.

In this work, the key idea is to introduce firstly
a symbolic approach to compute the markings,
in discrete time, of Safe Time Petri Net (STPN)
that is composed of Time Binary Petri Nets set.
Next we introduce the temporal information to
the BDD tools, and we develop an algorithm
which allows us to model in each time slice the
reachable markings in a small data structure with
polynomial complexity space. The structure is
so-called Time Reduced Ordered Binary
Decision Diagrams (TROBDDs). The state

State Space Search for Safe Time Petri Nets Based on
Binary Decision Diagrams Tools: Application to

Air Traffic Flow Management Problem

Mohamed Ali KAMMOUN1, Nidhal REZG1,2, Zied ACHOUR1,2, Sadok REZIG1,2

1 Industrial Engineering and Production Laboratory of Maintenance,
Enim, Lorraine University, Metz, France.
mohamed-ali.kammoun@univ-lorraine.fr, nidhal.rezg@univ-lorraine.fr,
zied.achour@univ-lorraine.fr, sadok.rezig@univ-lorraine.fr

2 ICN Business School,
Metz-Nancy, France.

Abstract: The highly concurrent time discrete event systems modeled by Time Petri Net (TPN) suffer from the problem of
the state space explosion owing to a large number of accessible markings. To handle this problem, this paper proposes a
new solution based on modelling in discrete time the reachable markings of TPN using a new structure so-called Time
Reduced Ordered Binary Decision Diagrams (TROBDDs). In this work a new efficient methodology is presented to generate
and store a big state space to deal with the time execution and memory space constraints. This new approach is used to
resolve the Flight Rescheduling Problem (FRP) subject to capacity constraints due to adverse weather conditions. An
optimization algorithm is proposed to minimize the cost function and determine the optimal flight plan according to the new
capacity constraints. A number of instances on the FRP is presented in order to illustrate such approach, which allows us to
save the memory space and CPU requirements.
Keywords: Discrete event system, Time Petri Net, binary decision diagram, rescheduling problem.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 40

space is built by exploration of TROBDDs and
its storage into stacks. The intended application
concerns the Flight Rescheduling Problem
(FRP) due to a reduction of available capacity in
air traffic network. In air traffic management the
time slice is 15 minutes and the planning horizon
is one day for tactical decision. So, the time
study is limited to 96 time slices, which makes
practicable the use of a discrete-time model. Our
point of view on the FRP is focused on the
accessibility problem under capacity constraints
floating in time. We model the itineraries set of
rescheduled flights using the STPN. Therefore,
a cost function is associated to TROBDDs
model. Next one can develop an optimization
algorithm based on optimization criterion in
order to determine the optimal flight plan.

This paper is organized as follows; the section 2
describes the background of the time Petri nets
tools and binary decision diagrams. The section
3 depicts the symbolic approach to compute the
reachable makings. The Section 4 presents the
modeling reachable makings through
TROBDDs. The exploration of state space and
the storage technic is presented in Section 5. In
order to illustrate the application of our
approach, the FRP is presented in Section 6. We
report the experimental results and discussion in
Section 7. Finally, the conclusion and the future
work are presented in Section 8.

2. Backgrounds

2.1 Time Petri Net (ࡺ�ࢀ)

A Time Petri Net (ܶܲܰ) [2] is a tuple ܰ = ሺܲ, ܶ, ,݁ݎܲ ,ݐݏ݋ܲ �௦ሻ, where P is a finite set of

places; T is a finite set of transitions; ܲ݁ݎ: ܲ ×ܶ ℕ is the pre-incidence function that

determines weighted arcs from places to

transitions; ܲݐݏ݋: ܲ × ܶℕ is the post-

incidence function that determines weighted

arcs from transitions to places; ℕ is the set of

non-negative integers and �௦: ܶℕ × ℕ is a

function which affiliates to each transition a time

interval. For ݐ௜ ∈ ܶ, �௦ሺݐ௜ሻ = [ܽ௜ , ܾ௜] such that ܽ௜ , ܾ௜ ∈ ℕ and ܽ௜ܾ௜ ; Ͳ ܽ௜ <  ; Ͳ ܾ௜ < .

A marked ܶܲܰ is characterized by the couple ሺܰ,ܯ଴ሻ, where ܰ is a ܶܲܰ and ܯ଴ is the initial
marking. The state of ܶܲܰ is defined by a couple ሺܯ, �்ሻ, where ܯ is a marking and �் is the vector
which contains firing intervals of transitions.

A ܶܲܰ is said bounded if the set of reachable
marking from ܯ଴ is a finite set. A TPN is said k-

bounded if for any place in reachable marking
from ܯ଴ does not exceed ݇. A ܶܲܰ is said safe
if it is 1-bounded. In this paper, we focused on
Safe TPN (STPN) which is constituted of a set
of Time Binary Petri Nets (T-BPNs).

Definition 1(Time Binary Petri Net) : A Time

Binary Petri Net (T-BPN) is a STPN where only

one place among all places can be marked:

 ∀ ݌  ܲ,ܯሺ݌ሻ ∈ {Ͳ,ͳ};
 ∀ ݌௜ , ௝݌ ∈ ܲ if ܯሺ݌௜ሻ = ͳ then ܯ(݌௝) = Ͳ;

 ܲ :݁ݎ ܲܶ {Ͳ,ͳ} and ܲݐݏ݋: ܲ  ܶ  {Ͳ,ͳ}.
The following properties emanate from
definition 1.

Property 1. Let ௜ܲ be the places set of T-BPNi

(respectively ௝ܲ for T-BPNj), then ௜ܲ ת ௝ܲ = ∅.

Property 2. Let ௜ܶ be the transitions set of T-
BPNi (respectively ௝ܶ for T-BPNj), then ௜ܶ ௝ܶת = ∅.

Property 3. ݐ௜,௝ ∈ ௜ܶ, Card (ݐ௜,௝) {0,1} and
Card (ݐ௜,௝) ∈ {Ͳ,ͳ}.
The properties 1 and 2 mean that each place or
transition belongs to a single T-BPN. The
property 3 ensures that each transition of a T-
BPN has at most one input place and at most one
output place. Indeed, the T-BPN is a state graph
that includes one or many elementary paths.

Definition 2. We define some notations for the
T-BPN as follows:

– If the T-BPNi is composed of a single
elementary path, we note ݌௜,௝ (respectively ݐ௜,௝) the place ݆ (respectively the transition ݆)
of T-BPNi;

– If the T-BPNi is composed at least of two
elementary paths, we note by ݌௜,௝ the
common place between the various
elementary paths and by ݌௜,௝௞ (respectively ݐ௜,௝௞) the places of path ݇ (respectively the
transitions of path ݇).

The connection transitions between the T-BPN
(have several places of input and/or several
places of output) are denoted by a single index.

Figure 1 shows a ܵܶܲܰ, which comprised of
four T-BPNs. Each T-BPN contains the
following places: ଵܲ = ,ଵ,ଵ݌} ,ଵ,ଶ݌ ,{ଵ,ଷ݌ ଶܲ ,ଶ,ଵ݌}= ଶ,ଶ} , ଷܲ݌ = ,ଷ,ଵ݌} ଷ,ଵଵ݌ , ଷ,ଵଶ݌ , ଷ,ଶ} and ସܲ݌ =

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 41

 Furthermore, the T-BPNs are related by .{ସ,ଵ݌}
the transitions ݐଵ and ݐଶ.

 In the rest of this paper, the methodology
exhibited is convenient for any class of STPN,
which comprises a set of T-BPNs.

Figure 1. Example of STPN

2.2 Binary Decision Diagrams (BDDs)
Formally, a binary decision diagram is a directed
acyclic graph with a set of vertices ܸ, which has
two types. Non-terminal vertices are indexed by
a Boolean variable, ݔ௜, denoted ݅݊݀݁ݔሺݒሻ = ݒ ,௜ݔ ∈ ܸ. Each vertex ݔ௜ has two children: a left
child and a right child, denoted respectively by ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ, ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻܸ. Terminal
vertices are indexed by the value 0 or 1 of the
Boolean function. The ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ is bound
to its parent by a dotted arrow where the value
affected to ݔ௜ is 0, and the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ is
bound to its parent by a continuous arrows
where the value assigned to ݔ௜ is 1.

The representation technique of the Boolean
functions using the BDD tool is based on the
expansion of Shannon [3]. An Ordered Binary
Decision Diagram (OBDD) is a BDD where the
variables respect a topological order ݔଵ < ଶݔ <

⋯ < ௡, whatever is the path of the root in theݔ
terminal vertices of BDD, [8]. A Reduced
Ordered Binary Decision Diagram (ROBDD) is
an OBDD where the size of the BDD is reduced
by the application of reduction rules, such as the
fusion of isomorphic sub-graphs [3, 14]. In the
rest of the paper, when no confusion is possible,
the size of the BDD corresponds to the number
of non-terminal vertices.

3. Computing the STPN Markings
using Symbolic Approach

In this section, we introduce a new symbolic
approach to compute in discrete time the
markings of STPN by a Boolean function.

Let ܯ�τ be the power set of STPN places set at
the time τ , with ݀ݎܽܥሺܲሻ = ݊. Let �ሺܯ�τሻ be
the power set of ܯ�τ. According to Boolean
algebra of a power set [3], the system ሺ�ሺܯ�τሻ,ת,׫, τሻሻ�ܯሺ�ሺ݀ݎܽܥ τሻ is a Boolean algebra with�ܯ,∅ = ʹଶ೙, where ∅ the empty set
and ת,׫ the union and the intersection laws.

Theorem of Stone [12]. Any finite Boolean
algebra is isomorphic to the Boolean algebra of
subsets of some finite set.

Based on the theorem of Stone, the system
(�ሺܯ��ሻ,⋃,ܯ,∅ ,ת��) is isomorphic to the algebra
of n-variables Boolean functions ሺܨ௡ሺℬሻ, +,·,Ͳ,ͳሻ, where ܨ௡ሺℬሻ is the set of n-variables
Boolean functions, ሺ+ሻ and ሺ∙ሻ the addition and
the multiplication of n-variables Boolean
functions. Also, ′Ͳ′ is the function zero ሺ ଴݂ሺݔଵ,ݔଶ … , ௡ሻݔ = Ͳ ∀ ݔ௜ ∈ ℬሻ and ′ͳ′ is the function
one ሺ ଵ݂ሺݔଵ, ଶݔ … , ௡ሻݔ = ͳ ∀ ݔ௜ ∈ ℬሻ, (for more
details see [4]).

Let � : �ሺܯ��ሻ ℬ be the temporal symbolic
function, which allows to express at every time � a marking in �ሺܯ��ሻ by a Boolean expression.
We define the temporal symbolic function � =Υ� ל µ� by the composition of the temporal
ciphering function µ�: �ሺܯ��ሻℬ௡ and
temporal indicator function Υ�: ℬ௡ ℬ.

The temporal ciphering function consists in
coding a marking ݉� by a summit Z௠� =ሺݔଵ, , ଶݔ . . . , ௡ሻݔ ∈ ℬ௡, with ݔ௜ the binary
variable representing the place ݌୧. µ�can be
represented as follows: µ�: �ሺܯ�τሻ ⟶ ℬ௡݉� ⟼ Z௠� = ሺݔଵ, , ଶݔ . . . , ௡ሻݔ

where:

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 42

∀݅ ∈ ͳ,…݊ ; ௜ݔ = { ͳ �f ݌୧ ∈ ݉�Ͳ ot�erw�se. (1)

The temporal indicator function Υ� takes as input Z௠� and returns a Boolean value as follows: Υ�: ℬ௡ ⟶ ℬZ௠� ⟼ ߱

where: ߱ = { ͳ ݉� ݅ݏ ܽ reac�able �ark��g Ͳ ot�erw�se.

Let ݉ଵ� and ݉ଶ� be two markings of �ሺܯ��ሻ such
as µ�ሺ݉ଵ�ሻ = µ�ሺ݉ଶ�ሻ. Since each place is coded
by a binary variable, every marking is
represented by a single argument. If µ�ሺ݉ଵ�ሻ = µ�ሺ݉ଶ�ሻ then ݉ଵ� = ݉ଶ� , so µ� is injective. As a
consequence � is injective. On the other hand,
the set of binary variables ℬ contains the binary
values {Ͳ,ͳ}. At each time �, there are: a non-
reachable marking ݉௡�� , such as Υ�ሺ݉௡�� ሻ = Ͳ,
and a reachable marking ݉�� , such as Υ�ሺ݉�� ሻ =ͳ. So, � is surjective. Consequently, the
function � is at the same time injective and
surjective, so it is bijective.

The temporal symbolic function � is a bijective
function and thereby an isomorphism from ሺ�ሺܯ�τሻ,ת,׫, ,௡ሺℬሻܨτሻ to ሺ�ܯ,∅ +,· ,Ͳ,ͳሻ.
Therefore, each marking in �ሺܯ��ሻ is
represented by a Boolean function. Let ݉ଵ�, ݉ଶ�
be two markings such as µ(݉ଵ�) = Z௠భ� and
µ(݉ଶ�) = Z௠మ� . The union (respectively the
intersection) of Z௠భ� and Z௠మ� is represented by

Z೘భ�׫Z೘మ� = Z೘భ� + Z೘మ� (respectively
Z೘భ�תZ೘మ� = Z೘భ� ∙ Z೘మ�).

We consider the reachable markings of ܵܶܲܰ in
Figure1 at  = ͳ corresponds to ݉ଵ ={{Pଵ,ଵ}, {Pଵ,ଶ}}. The image of ݉ଵ by the
ciphering function is represented by two
arguments: ሺͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳሻ and ሺͲ,ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳሻ ∈ ℬଵ଴ which corresponds
respectively to {݌ଵ,ଵ} and {݌ଵ,ଶ}, with ݀ݎܽܥሺܲሻ = ͳͲ. The symbolic function of ݉ଵ is
ଵ = ଵ,ଵݔ ∙ X̅{xభ,భ} + ଵ,ଶݔ ∙ �̅{�భ,మ}. With �̅{�೔,ೕ}
the Cartesian product of complement to all
variables except ݔ௜,௝.

For example, �̅{�భ,భ} ଵ,ଶݔ = ∙ ଵ,ଷݔ ∙ ଶ,ଵݔ ∙ ଶ,ଶݔ ଷ,ଵݔ ∙ ∙ ଷ,ଵଵݔ ∙ ଷ,ଵଶݔ ∙ ଷ,ଶݔ ∙ .ସ,ଵݔ

4. The Modelling of the Reachable
Markings

4.1 Explicit representation of STPN
markings by OBDDs

This section presents a new modeling method of

the reachable markings of STPN by OBDDs in

discrete time. By using the ordinary Depth-First

Search (DFS) of OBDD, the different paths are

explored. According to the value of terminal

vertex, one can classify the paths explored in

two sets, as follows:

– The set of paths, which ends with a terminal
vertex indexed by ‘1’, model the reachable
markings, denoted by ܵݐ݌ଵ.

– The set of paths, which ends with a terminal
vertex indexed by ‘0’ corresponds to
unreachable markings denoted by ܵݐ݌଴.

A path ݐ݌ଵ modelizes a reachable marking ሺݐ݌ଵ ∈ ,ଵሻ of ܵTPN composed of ݇ T-BPNsݐ݌ܵ
is described by the proposition 1.

Proposition 1. Each path ݐ݌ଵ in ܵݐ݌ଵ includes at
most ݇ non-terminal vertices, which each one
has a right child.

Proof. Let a ܵTPN be consisted of ݇ T-BPN.
Besides, a vertex corresponds to a marked place
that has only a right child in a given path ݐ݌ଵ. As
a T-BPN has at most one marked place, a ݐ݌ଵ ଵ of a STPN contains at most ݇ non-terminalݐ݌ܵ∋
vertices whose each one has a right child.

Figure 2 shows the OBDD presenting the
function ଵ = ଵ,ଵݔ ∙ X̅{xభ,భ} + ଵ,ଶݔ ∙ �̅{�భ,మ}
which models the marking ݉ଵ = {{Pଵ,ଵ}, {Pଵ,ଶ}}.
For a simplified representation, only the
variables of T-BPN1 are considered regardless
the T-BPN2 and T-BPN3 are not marked in τ = ͳ.
The full representation of OBDD contains two
paths of ܵݐ݌ଵ. Each one models a reachable
marking. If we take the example of the path ݐ݌ଵ
modeling the reachable marking {݌ଵ,ଵ}כ; it has
one vertex indexed by ݔଵ,ଵ which has a right
child, and the other vertices have each one a left
child. The topological order used of variables is: ݔଵ,ଵ < ଵ,ଶݔ < .ଵ,ଷݔ

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 43

Figure 2. OBDD of the symbolic function ଵ

4.2 TROBDDs construction

The full OBDD size is equal to ሺʹ௡ − ͳሻ [6].
Therefore, the size of reserved memory space
increases exponentially with the number of
STPN places. Its complexity order is �ሺʹ௡ሻ.
Obviously, it is important to conceive an
OBDD representation method with a reduced
memory size.

In this paper, the behind construction of reduced
OBDD at every time aims to represent only ܵݐ݌ଵ. Therefore, one can only represent the
variables storing the marked places.

Definition 3. The new structure proposed is so-
called Time Reduced Ordered Binary Decision
Diagrams ሺܴܱܶܦܦܤ௦ሻ that model the reachable
markings in discrete time. We denote by ܴܱܶܦܦܤ the modeling of reachable markings
at the time .

The principle of a TROBDD construction is
illustrated by the algorithm in Figure 3; we begin
by creating temporarily (can be deleted) the
vertex. It is definitively created where does not
annul the Boolean function and has a right child,
i.e. For a current vertex, indexed by ݔ௜, is
definitively created only when ߰�ሺݔଵ ௜ݔ… = ͳሻ is
not null.

The vertex ݔ௜ is definitively constructed and its
children are temporarily constructed as shown in

Figure 4.a. The second iteration consists in the
calculation of the Boolean function where ݔ௜+ଵ = ͳ, and decides to delete or not each
vertex ݔ௜+ଵ.

As shown in figure 4.b, one can eliminate the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ = ௜+ଵ is done because theݔ
Boolean function is equal to zero. Then the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ = ௜+ଶ is temporaryݔ
constructed which corresponds to the left child
of ݔ௜+ଵ. The ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ = ௜+ଵ isݔ
definitively constructed where Ȳ�ሺݔଵ, … , ௜ݔ =Ͳ, ௜+ଵݔ = ͳሻ! = Ͳ. Then the children of ݔ௜+ଵ are
temporarily created.

The application of reduction algorithm on the
example of STPN (Figure 1) is illustrated in the

a) b)

Figure 4. Construction principle

ଵݔሺ�߰)�ܦܦܤܱܴܶ_݊݋݅ݐܿݑݎݐݏ݊݋ܥ (௡ሻݔ…

 Create temporarily the vertex ݔଵ

 For each variable ݔ௜, ݅ = ͳ,… , ݊ do

 For each ݔ௜ temporarily Construction do

 If ሺ߰�ሺݔଵ ௜ݔ… = ͳሻ! = Ͳሻ

 Create definitively the vertex ݔ௜
 Create temporarily ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ = ௜+ଵݔ

 If ሺ߰�ሺݔଵ ௜ݔ… = Ͳሻ! = Ͳሻ

 Create temporarily ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ = ௜+ଵݔ

 End If

 Else If

 Delete the vertex ݔ௜
 Create temporarily the vertex ݔ௜+ଵ

 End If

 End For

 ݅ = ݅ + ͳ

 End For

End.

Figure 3. Construction Algorithm of ܴܱܶܦܦܤ

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 44

following Figure 5. Every ܶ  defines theܦܦܤܱܴ
reachable markings at . The depth first search
in a given ܴܱܶܦܦܤ allows us to determine the
different reachable markings.

Proposition 2: The ܴܱܶܦܦܤ size resulting by
the application of the algorithm1 has in the worst
case a complexity order of Ȫሺ݊ሻ; ݊ is the number
of STPN places.

Proof. Let us consider an STPN with n places.
As in a given time , the TROBDD models
only the marked place. Then, in the worst case
the TROBDD size is equal to the number of
STPN places.

5. TROBDDs Exploration

In this section, we discuss the states space
generation by manipulating the ܴܱܶܦܦܤ௦
structures, and the technique of storage.

5.1 The structure of vertex

The state space generation requires the respect
of some constraints that must be recorded in
each vertex of ܴܱܶܦܦܤ௦; the temporal
constraints to move from a vertex to another, and
the precedence constraints that allows to define
the next vertex. Therefore, the vertex in ܴܱܶܦܦܤ௦ is declared as follows:

 .(௜,௝ݔ) is the binary variable :�ࢋࢊ�࢏ –
 is the Lower Residual Remaining :࢐,࢏ࢀ��ࡸ –

Time (ܴܴܶܮ).
 is the Upper Residual Remaining :࢐,࢏ࢀ��ࢁ –

Time (ܷܴܴܶ).
 .௜,௝ݔ is the list of the next vertices of : ��ࢋࡺ –

For example, the vertex in ܴܱܶܦܦܤ଴ (Figure 5)
has the following information: ݅݊݀݁ݔሺݒሻ ܴܴܮ ,ଵ,ଵݔ= ଵܶ,ଵ = ͳ, ܷܴܴ ଵܶ,ଵ = ʹ and ܰ݁ݐݔ and ܷܴܴܶ are ܴܴܶܮ The value of .{ଵ,ଶݔ}=
updated at each incrementing of time .

5.2 The storage stacks and ࡱࡹࡳࡲࢀ�

We use two types of stacks to store the state
space: The independents stacks ሺ ܵ݇ܿܽݐ� , � ∈ℕሻ and a global stack ܵீ݇ܿܽݐ . Each independent
stack stores in order the sates generated from the
initial state to the final state. Each element of
global stack points to an independent stack.
Evidently, the state is determined by a depth-
first search of ܴܱܶܦܦܤ� during the run through ܴܱܶܦܦܤ௦. A state at time � is defined as
follows: ܧሺ�ሻ = ,௜భ,௝భሺ�ሻݔ] … , [௜ೖ,௝೘ሺ�ሻݔ
where ݇ is the number of T-BPN and ݉ is the
index of the marked place of T-BPNk.

Figure 5. The ܴܱܶܦܦܤ௦ of STPN in Figure 1

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 45

The modeling and analysis of real system should
be taken into account the specification which
float in time. For this specification types, one
can introduce the Time Floating General Mutual
Exclusion constraints ሺܶܥܧܯܩܨሻ [1], which is
a GMEC considered only in a time interval [�௠௜௡, �௠��]. We introduce a new formulation of ܶܥܧܯܩܨ suitable of the definition of state: ⃗⃗ܧ் ݓ[�೘೔೙,�೘��] ≤ ℷ (3)

Where w⃗⃗⃗ is a binary vector and ℷ is an

integer constant.

5.3 The generation and storage algorithm
The generation and storage algorithm consists of
three steps, as is shown in Figure 6.

In the first step, from a current state ܧሺ�ሻ, one
can finds the set of indexes ሺ�ሻ which allows us
to move to the next state. Then, either by the
next (ݔ௜,௝ሺ�ሻ. and / or by evolving the (ݐݔ݁ܰ
time ቀݔ௜,௝ሺ� + ͳሻቁ, the set ܵ of successors is
calculated according to the value of the lower
residual remaining time of each ݔ௜,௝ሺ�ሻ in �.

The second step involves the determination of
the successor’s state ܧ௦ of ܧሺ�ሻ. Once the set ܧ௦
is determined, an analysis is performed to
eliminate the forbidden states that does not
respect the ܶ Therefore, the result is the .ܥܧܯܩܨ
set of legal states ܧ௦ which guarantees the
desired behavior. The ሺ݀ݎܽܥሺܧ௦ሻ − ͳሻ is the
number of created stacks. The covered states are
duplicated in current stack (step 3).
Subsequently, the exploration of the global stack ሺܵீ݇ܿܽݐሻ and the selection of the first
independent stack are realized in step 4; note
that the current state of first independent stack is
not a final state.

As an example, we consider the ܴܱܶܦܦܤ௦ in
Figure 5. The DFS of ܴܱܶܦܦܤ଴ give the initial
state [ݔଵ,ଵሺͲሻ], that is stored in ܵ݇ܿܽݐଵ, where
its temporal constraints ܴܴܮ ଵܶ,ଵ = ͳ and ܷܴܴ ଵܶ,ଵ = ʹ. Obviously, the successor is ݔଵ,ଵሺͳሻ that leads a new state [ݔଵ,ଵሺͳሻ]
generated from ܴܱܶܦܦܤଵ and stored in ܵ݇ܿܽݐଵ
with an update of the temporal constraints that
are ܴܴܮ ଵܶ,ଵ = Ͳ and ܷܴܴ ଵܶ,ଵ = ͳ. By applying
the step 2 of algorithm, the successor set is ܵ that leads to two successors { ଵ,ଵሺʹሻݔ ;ଵ,ଶሺͳሻݔ}=

Step 1: Calculate the successors index:

 Let a current state ܧሺ�ሻ = ,௜భ,௝భሺ�ሻݔ] … , �݇ܿܽݐܵ ௜೙,௝೘ሺ�ሻ] stored in theݔ

1.1
Determine ȱ = ௜,௝ሺ�ሻݔ} ∈ |ሺ�ሻܧ � = ���௜,௝ ܴܶܮ) ௜ܶ,௝) , ݅ = ݅ଵ … ݅௡, ݆ = ݆ଵ … ݆௠} ܵ = ௌܧ ; ∅ = ∅

1.2 For each ݔ௜,௝ሺ�ሻ ∈ ȱ

 If � = Ͳ

 If ܷܴܶ ௜ܶ,௝ = Ͳ then ܵ = ܵ ׫ .௜,௝ሺ�ሻݔ} {ݐݔ݁ܰ
 Else then ܵ = ܵ ׫ .௜,௝ሺ�ሻݔ} {ݐݔ݁ܰ ׫ �௜,௝ሺݔ} + ͳሻ}
 Else ܵ = ܵ ׫ �௜,௝ሺݔ} + ͳሻ}
Step 2 : Calculate the successor states of the trajectory and update the list of trajectories to be analyzed.

2.1. Generate the set ܧ௦ = ,ଵܧ} ,ଶܧ … , .ሺ�ሻܧ ௌ|} of successor states of the current state|ܧ
2.2.

Eliminate the states that not respecting the ܶ[ݔܽ݉�,݊݅݉�]ܧܶ ݓ⃗⃗⃗ ܥܧܯܩܨ ≤ ℷ

For each ܧ௥ ∈ ݎ ,௦ܧ = ͳ,… , |ݏ|
 If ∑ ௜,௝ሺ�ሻ௜,௝ݔ > ℷ then // � ∈ [�݉݅݊, ௦ܧ [ݔܽ݉� = ௦ܧ ך ,௥ܧ

Step 3: Update the independents stacks

 If ܧ௦ = ∅ go to Step 4

Else

 Update the ܵ݇ܿܽݐ�:

 Choose ܧ௜ ∈ �݇ܿܽݐܵ ௦ܧ = �݇ܿܽݐܵ ׫ ௦ܧ {௜ܧ} = ௜ܧ \௦ܧ
 While ܧ௦ ≠ ∅

Create a new independent stack and duplicate the covered states in ܵ݇ܿܽݐ� \ {ܧ௜}
Added the successor state ܧ௥ ∈ .௦ܧ

Step 4 : Determine the next independent stack to be analyzed.

Explore the ܵீ݇ܿܽݐ and select the first independent stack which the current state is not a final state.

If such an independent stack exists, go to Step 1.

Figure 6. Algorithm for generation and storage of state space

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 46

states. The state [ݔଵ,ଶሺͳሻ] is stored in ܵ݇ܿܽݐଵ
and [ݔଵ,ଵሺʹሻ] is also stored in a new stack ܵ݇ܿܽݐଶ. The predecessors states of [ݔଵ,ଶሺͳሻ] and [ݔଵ,ଵሺʹሻ] are the same as shown in Figure 7.
Next, in the step 4 the ܵ ଵ is selected to carry݇ܿܽݐ
the generating and the storing procedure. When
we reach the state [ݔଶ,ଵሺ͵ሻ, ଵ݇ܿܽݐܵ ଷ,ଵሺ͵ሻ], inݔ
the successors of each one index are: ܵ ቀݔଶ,ଵሺ͵ሻቁ = ;ଶ,ଶሺ͵ሻݔ} ܵ ଶ,ଵሺͶሻ} andݔ ቀݔଷ,ଵሺ͵ሻቁ = ͳͳ,͵ݔ} ሺ͵ሻ;ݔ͵,ͳʹ ሺ͵ሻ}.
The exploration step of ܴܱܶܦܦܤ௦ generates the
set of successors of [ݔଶ,ଵሺ͵ሻ, ௦ܧ :[ଷ,ଵሺ͵ሻݔ = ,ଶ,ଶሺ͵ሻݔ]} ଷ,ଵଵݔ ሺ͵ሻ]; [ݔଶ,ଶሺ͵ሻ, ଷ,ଵଶݔ ሺ͵ሻ];[ݔଶ,ଵሺͶሻ, ଷ,ଵଵݔ ሺͶሻ]; ,ଶ,ଵሺͶሻݔ] ଷ,ଵଶݔ ሺͶሻ] },

Thus, one can apply the following ܶܥܧܯܩܨ: ቀݔଶ,ଵሺ�ሻ + ଶ,ଶሺ�ሻݔ + ଷ,ଵଶݔ ሺ�ሻቁ[ଷ,଺] ≤ ͳ.

Therefore, the states [ݔଶ,ଶሺ͵ሻ, ଷ,ଵଶݔ ሺ͵ሻ] and [ݔଶ,ଵሺͶሻ, ଷ,ଵଶݔ ሺͶሻ] are forbidden from ܧ௦ and a
new stack ሺܵ݇ܿܽݐଷሻ is created.

The ܴܱܶܦܦܤ௦ exploration stored in ݇ܿܽݐݏଵ is
shown with bold arrows (i.e. see Figure 5).

6. Application to Air Traffic Flow
Management Problem

The worldwide demand of air traffic is
expanding that has continued to grow. However
the capacity of Air Traffic Network (ATN)
elements such as the airports, sectors and
itineraries are not changed. Moreover, the ATN
capacity is reduced for any adverse weather
conditions and makes some scheduled flight
plan unrealizable.

In this application, we focus on the flights before
their take-off (uncommitted flight), where the
scheduled flight plan is affected due to adverse

weather condition and become unrealizable.
Therefore, the Flight Rescheduling Problem
(FRP) is involved in order to minimize the impact
of unforeseen disruptions on the schedule
planning. This is an accessibility control problem
under safety constraints with floating temporal
windows through time caused by adverse weather
condition. In this context, we propose an
optimization algorithm to calculate a new optimal
flight plan by minimization the cost function.

6.1 Notations and modeling

6.1.1 Notations

The flights rescheduling problem includes a set
of flights ܨ = {ͳ, ʹ. . . which uses a set of {|ܨ|
ATN during a time window (a day for example).
Each flight has a departure airport ݀�, ݂ ∈ of ,ܨ
the set of airports ܦ = {݀ଵ, ݀ଶ . . . ݀|�|} and a
landing airport ܽ�, ݂ ∈ of the set of ,ܨ
destination airports ܣ = {ܽଵ, ܽଶ . . . ܽ|�|}. A set of
air sectors which will be used by the flights is
denoted by ܵ = ,ଵݏ} ,ଶݏ . . . ௌ|}. The itinerary for|ݏ
the flights that connects the departure to the
arrival airport are numbered and defined by the
set � = {ͳ, ʹ . . . |�|}.
Definition 4: A Flight Itinerary Set (ܨ� �ܵሻ of
flight ݂ ∈ is the succession of ATN elements ܨ
according to the flight time constraint of each
one. We denoted it by ܨ� �ܵ = {Π�௜ | ݂ ∈ ,ܨ ݅ ∈�}, with Π�௜ = ݀௜,dሺ�dሻ, ,௜,ଵሺ�୪ଵሻݏ … s௜,୩′(�୪୩′),a௜,aሺͲሻ. For example, ݏ௜,ଵሺ�୪ଵሻ models the flight ݂ following the itinerary ݅ by overflying the
sector ݏଵ, and needs �୪ଵ time unit. The available
capacity of each ATN element ݁௞ ∈ at ܣ⋃ܵ⋃ܦ
the time interval [�ଵ, �ଶ], is denoted by ݌ܽܥሺ݁௞ , [�ଵ, �ଶ]ሻ, and expressed by a ܶܥܧܯܩܨ.

We admit that all the flights can have the similar
flight time slice. We suppose that the flight
duration for a given sector with an airport takes
one time slice while it takes twice as long if the
sector hasn’t an airport. Note that a scheduled

Figure 7. Example of storage in stacks

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 47

flight plan is considered as the shortest path
connecting two airports.

The Figure 8 depicts an example of air traffic
networks, which is composed of three
departures airports (݀ଵ, ݀ଶ and ݀ଶ), an arrival
airport ܽଵ and ͳͻ sectors. The arcs connecting a
pair of airports are the possible itineraries for a
given flight, where their number is presented by
a circle. We consider three flights, which each
one departs from an airport, and have a common
destination. For instance, the flight number ′ͳ′
from the airport ݀ଵ can follow one of three
itineraries of ܨ� ଵܵ = {ȫଵଵ, ȫଵଶ, ȫଵଷ}. Moreover,
the scheduled flight itineraries set is {ȫଵଶ, ȫଶହ, ȫଷ଼}, where their itineraries are
delineated by dotted lines.

6.1.2 Modeling a FIS by STPN

The key idea is to consider the air traffic system
as a discrete events system for the flight
rescheduling problem. We model all flights
itinerary set; ܨ�ܵ = ⋃ �ܨ �ܵ� by a STPN where
each ܨ� �ܵ is modeled by a T-BPN, noted T-
BPNf.

Relevant to the elements notation of a STPN
compound of a T-BPN set (definition2), the
places indicate the plane location in ATN, are
denoted as follows:

ೕ: the departure airport ௝݀�,�݌ – of flight f;

 ௜�,sj: the flight f crossing the sector s୨݌ –

following the itinerary i ;

 .aj: the arrival airport ܽ୨ of flight f,�݌ –

The temporal constraint associated to the
transitions indicates either the delay time
tolerated by the flight in the departure airport ቀݐ୧�,djቁ, or the time for a flight to overfly a

sector ቀݐ�,௦ೕ௜ ቁ.

The Figure 9 illustrates the STPN modeling the FISଵ ׫ FISଶ ׫ FISଷ of the air traffic example in
the Figure 8. The T-BPNs model the ܨ� ଵܵ, ܨ�ܵଶ
and ܨ�ܵଷ. The maximal delay tolerated for the
three flights before their cancellation is
considered of 2 t.s (time slice). For example, for
the flight 1, the necessary time following the
itinerary ȫଵଶ is 1 t.s to overfly the sector sଵ, 2 t.s

Figure 8. Example of air traffic network

Figure 9. STPN modelling the ܨ�ܵ

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 48

to cross the sector sସ and a time slice to overfly
the sector sଽ in order to reach at the airport aଵ.

Before the take-off of three flights an adverse
weather condition affected the sectors ݏସ, ݏହ and ݏଵଶ in time interval [ʹ,Ͷ] when the scheduled
flights cross the sectors and reduce its capacity
to zero: ݌ܽܥሺݏସ, [ʹ,Ͷ]ሻ = ,ହݏሺ݌ܽܥ [ʹ,Ͷ]ሻ ,ଵଶݏሺ݌ܽܥ= [ʹ,Ͷ]ሻ = Ͳ. Then, the rescheduling is
unavoidable to decrease the perturbation impact
on the scheduled flights. The rescheduled flight
plan will respect the new constraints that is
formulated by TFGMEC as follows: ቀݔଵ,௦రଶ ሺ�ሻ + ଶ,௦రସݔ ሺ�ሻ + ଵ,௦ఱଵݔ ሺ�ሻ+ݔଶ,௦ఱହ ሺ�ሻ+ ଷ,௦భమ଼ݔ ሺ�ሻቁ[ଶ,ସ] ≤ Ͳ

6.2 TROBDD of the set of flight plans and
optimal rescheduled flight plan

This section describes how the ܴܱܶܦܦܤ௦
structure, the generation and storage approaches
are defined in flight rescheduling problem.

The admissible markings in discrete time
modeled by a ܴܱܶܦܦܤs structure allows us to
record at every time the possible geographical
locations of the rescheduled flights in a small
data structure. The TROBDDτ size is
proportional to the number of possible locations
of rescheduled flights at time τ (proposition 2).

The algorithm of generation and storage of state
space takes into account a given ܶܥܧܯܩܨ and
allows to determine the set of rescheduled flights
plans regarding the constraints capacity. Each
independent stack memorizes a possible
rescheduled flight plan. The rescheduled flight
plan is a flight itinerary Π�௜ , with a fixed take-off
time. To calculate its cost, we associate a cost
structure to ܴܱܶܦܦܤௌ such as the penalty fee of
ground delay and the cost of consumed kerosene
(for more details see our previous work [7]). In
the course of the generation and storage, the
addition of a new state from ܧ௦ (step 3) is
accompanied by the update of its economic
performance by adding the cost associated with
the recently integrated state. The cost associated
to the final state is the total cost of the
rescheduled flight plan.

To determine the optimal flight plan among all
rescheduled flights plans in a minimal CPU
time, we propose an optimization criterion
which allows us to find the optimal plan without
generating all solutions (see proposition 3).

Proposition 3. The economic analysis of air
traffic show that the ground delay is negligible
to airlines compared to the consumed kerosene
cost during the flight. Indeed, for the reschedule
flight plan it is better to delay the aircraft on the
ground instead of changing its initial itinerary
which is longer. Therefore, the generation and
storage algorithm explores in the first time the
solutions with the minimum flight distance, if
the generation doesn’t lead to a final state, then
the second criterion that ground delay is
adopted. Otherwise, we look for a flight plan
solution with longer distance.

Remark. Based on the proposition 3, we note
that it is not necessary to generate all the
solutions. Once a solution is found, it is
systematically the optimal.

7. Numerical Application

and Discussion

In this section we expose the results of a set of
computational experiments. We compare the
efficiency of the ܴܱܶܦܦܤ௦ structure to our
previous TD-RG structure in [7]. Also, the
performances calculation of the algorithm
determines the optimal rescheduled flight plan.

For this purpose, we distribute equally each
instance |ܨ| between the three departure airports
presented in the Figure 8. For each case, we
increase the flight number at every airport by 10
as indicated by the first column of Table 1. The
maximal ground delay time is based on the
profitability function [15]. The flight annulation
takes 4 hours in the ground delay. Given that the
time slice in air traffic is 15 minutes, the study
time is equal to ʹʹ time slices; where the
tolerated ground delay is θd = ͳ͸ time slices
and the longest flight time takes ͸ t.s.

Before the take-off of flights, an adverse
weather condition, reduces the capacity of some
sectors and makes the scheduled flight plan
infeasible. As shown in column 2, the capacity
constraints in the specific time interval are
formulated by the ܶܥܧܯܩܨ. For example, the
capacity of sector ݏହ where the flights departures
from ݀ଵ ቀ݂ = ͳ… |ி|ଷ ቁ and ݀ଶ ቀ݂ = |ி|ଷ +ͳ…ʹ × |ி|ଷ ቁ is reduced to one-fifteenth of the
scheduled flights through the time interval [ͳ, ͳ͸] that is formulated by the first ܶܥܧܯܩܨ.

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 49

The adverse weather condition also annul the
capacity of the sector ݏଵଶ in the interval of [Ͳ, ͺ] ,ͳͲ]׫ ͳͶ], defined by the last two ܶܥܧܯܩܨ.

For each instance, the column 4 reports the ܴܱܶܦܦܤ௦ size by the application of the
construction algorithm presented in Figure 3. We
can notice that the reduction rules allow to reduce
considerably the ܴܱܶܦܦܤ௦ size. More than ͺͲ % of vertices are eliminated for all instances.
The new ܴܱܶܦܦܤ௦ structure leads to decreases
drastically the size of memory space, compared
to TD-RG structure that has previously been
proposed [7], as shown in Table 1.

Besides, the ܴܱܶܦܦܤ௦ modeled in a small data
structure leads necessarily to an efficient
manipulation to generate the optimal solution.
The exploration of the optimal flight plan from
the model ܴܱܶܦܦܤ௦ is implemented in C++
under Windows 7 and the tests were realized on
a PC with 2.1 GHz processor speed and 8Go of
RAM. The last column of table I show the
performance of the generation algorithm based
on the optimization criterion to determine the
optimal solution. For example, the optimization
algorithm solves a flight rescheduling problem
for 195 flights modeled by a ܴܱܶܦܦܤ௦ with the
size of Ͷ͸ʹͳͷ vertices, with a time resolution
less than 8 seconds.

8. Conclusion

In this paper a new approach so-called Time
Reduced Ordered Binary Decision Diagrams
 is proposed which permit us to (ݏܦܦܤܱܴܶ)
model in a small data the reachable markings in
discrete time. It is founded on the decomposition
of a Safe Time Petri Net (STPN) to a time binary
Petri nets (T-BPN) set. Our new structure
complexity order is polynomial compared to the
initial size that is exponential. Indeed, a new

technique is presented for the generation and
storage of the state space of a STPN.

The application of our results has envisaged the
Flight Rescheduling Problem (FRP). The set of
rescheduled flights itineraries are modeled by a
STPN compound of T-BPNs. Each one model
the set of flight itineraries. Besides, a cost
function is added to ܴܱܶܦܦܤ௦, and an
optimization criterion is adopted to generate the
optimal flight plan. The computational results
approve that our new approach is able to solve
efficiently several instances of FRP. Also, one
can deduce that a large set of reachable markings
of STPN can be represented with a small data
structure compared to our previous developed
TD-RG structure.

Finally, to increase the applicability of the
presented approach, our work prospects deals
with the flight rescheduling problem for
continues flights where the aircraft performs
several flights on one day.

REFERENCES

1. ACHOUR, Z., N. REZG, Time Floating
General Mutual Exclusion Constraints,
Studies in Informatics and Control, vol. 16,
no. 1, 2007, pp. 57-66.

2. BERTHOMIEU, B., F. VERNADAT, State
Class Constructions for Branching
Analysis of Time Petri Nets, Tools and
Algorithms for the Construction and
Analysis of Systems. Springer Berlin
Heidelberg, 2003. pp. 442-457.

3. BRYANT, R.E, Symbolic Boolean
Manipulation with Ordered Binary
Decision Diagrams, ACM Computing
Surveys, vol. 24, no. 2, 1992, pp. 293-318.

Table 1. Computational results

 |ࡲ|

TFGMEC

 Structure size FRP

 TD-RG

nodes,[7]

TROBDDs

size
 CPU

15
 ∑ ቀݔ�,௦ఱଶ ሺ�ሻቁ[ଵ,ଵ଺] + ∑ ቀݔ�,௦ఱସ ሺ�ሻቁ[ଵ,ଵ଺] ≤ |ி|ଵହଶ×|�|య�=|�|య + ଵ|�|య�=ଵ

 ∑ ቀݔ�,௦రଶ ሺ�ሻቁ[ଶ,ଵସ] + ∑ ቀݔ�,௦రସ ሺ�ሻቁ[ଶ,ଵସ] ≤ |ி|ଵହଶ×|�|య�=|�|య + ଵ|�|య�=ଵ

 ∑ ቀݔ�,௦భమ଼ ሺ�ሻቁ[଴,଼]|ி|�=ଶ×|�|య +ଵ ≤ Ͳ

 ∑ ቀݔ�,௦భమ଼ ሺ�ሻቁ[ଵ଴,ଵସ]|ி|�=ଶ×|�|య +ଵ ≤ Ͳ

 1,81 ͳͲଶ 3555 0.36

45 2,37 ͳͲହ 10665 1.26

75 1,41 ͳͲ଼ 17775 2.46

90 3,02 ͳͲଵହ 21330 2.62

105 9,19 ͳͲଶଵ 24885 3.56

135 7,87 ͳͲଷସ 31995 5.05

165 6,02 ͳͲ଺଼ 39105 6.36

195 4,09 ͳͲଵ଴ଽ 46215 7.39

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016 50

4. BROWN, F. M, Boolean Reasoning,
Dordrecht: Kluwer Academic, 1990.

5. CHATAIN, T., C. JARD, Complete Finite
Prefixes of Symbolic Unfoldings of Safe
Time Petri Nets, In Petri Nets and Other
Models of Concurrency-ICATPN Springer
Berlin Heidelberg, 2006, pp. 125-145.

6. FUJITA, M., Y. MATSUNAGA., T.
KAKUDA, On Variable Ordering of
Binary Decision Diagrams for the
Application of Multi-level Logic
Synthesis, in: Proceedings of the
Conference on European Design
Automation, 1991, pp. 50-54.

7. KAMMOUN, M. A., N. REZG, Z.
ACHOUR, New Approach for Air Traffic
Management based on Control Theory,
International Journal of Production
Research (IJPR), vol. 52, no.6, 2014,
pp.1711-1727.

8. LIAW, H. T., C. S. LIN, On the OBDD-
Representation of General Boolean
Functions, IEEE Transactions on
Computers, vol. 41(6) , 1992, pp. 661-664.

9. MINER, A. S., G. CIARDO, Efficient
Reachability Set Generation and Storage
using Decision Diagrams, Application and
Theory of Petri Nets Springer Berlin
Heidelberg, 1999, pp. 6-25.

10. PASTOR, E., O. ROIG., J.
CORTADELLA., R. M. BADIA, Petri Net

Analysis using Boolean Manipulation,
Application and Theory of Petri Nets,
Springer Berlin Heidelberg, 1994,
pp. 416-435.

11. PASTOR, E., J. CORTADELLA, Efficient
Encoding Schemes for Symbolic Analysis
of Petri Nets, Proceedings of the
Conference on Design, Automation and Test
in Europe. IEEE Computer Society, 1998.
pp. 790-795.

12. PASTOR, E., J. CORTADELLA., O. ROIG,
Symbolic Analysis of Bounded Petri Nets,
IEEE Transactions on Computers, vol. 50,
no. 5, 2001, pp. 432-448.

13. ROIG, O., J. CORTADELLA., E. PASTOR,
Verification of Asynchronous Circuits by
BDD-based Model Checking of Petri
Nets, In Application and Theory of Petri
Nets, 1995, pp. 374-391.

14. RUDELL, R, Dynamic Variable Ordering
for Ordered Binary Decision Diagrams,
In Proceedings of IEEE/ACM International
Conference on Computer-aided Design,
1993, pp. 42-47.

15. TOKTAS,B, Addressing Capacity
Uncertainty in Resource-Constrained
Assignment Problems, PhD Thesis,
University of Washington, 2003.

