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1. Introduction 

The Time Petri Net (TPN) is obtained from the 
Petri Net by associating a time interval for each 
transition. The TPN is considered as a perfect 
tool to modelize a large class of time discrete 
models. Therefore, several existing methods for 
the TPN analysis used the enumeration of state 
space. Besides, for highly competitive systems, 
the size of state space grows exponentially.  

To overcome this problem, several methods are 
proposed such as partial order unfolding [5] 
which are limited to safe TPN, and consist in 
transforming a TPN to an acyclic Petri net, by 
respecting on one hand the firing time constraints 
and on the other hand the partial order of the 
initial model. Our previous approach [7] is 
ensured by a new structure so-called Discrete 
Time Reachability Graph (DT-RG). Each node of 
the DT-RG, called macro-state, represents a 
particular marking of the T-BPN. Furthermore, 
each macro-state integrates a set of timed micro-
states where each one corresponds to a particular 
clock value associated to each transition enabled 
by the marking.  

A symbolic method can be used to relieve the 
above constraints, by taking the advantage of 
Binary Decision Diagrams (BDDs) capacity to 

represent a large set of encoded data with small 
data structure. The BDD structure is initially 
used to generate Petri net state space by Pasteur 
et al. [10]. This work develops an algorithm for 
PN state space exploration by encoding each PN 
place using a binary variable. Taking the 
advantage of the BDD compact representation, 
the exploration of reachable states is done within 
hours [13]. With the same objective, [11] 
introduced more useful coding using the place 
invariants. However, the underlying logic is 
always based on Boolean variables. A Multi-
Valued Decision Diagram (MDD) that is an 
extension of BDD, have been used by [9] to 
improve the running time of algorithm 
previously given to state-space exploration. 
However, the methods based on BDDs have 
been successfully applied to untimed Petri nets, 
but for the TPNs less progress has been made.  

In this work, the key idea is to introduce firstly 
a symbolic approach to compute the markings, 
in discrete time, of Safe Time Petri Net (STPN) 
that is composed of Time Binary Petri Nets set. 
Next we introduce the temporal information to 
the BDD tools, and we develop an algorithm 
which allows us to model in each time slice the 
reachable markings in a small data structure with 
polynomial complexity space. The structure is 
so-called Time Reduced Ordered Binary 
Decision Diagrams (TROBDDs). The state 
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space is built by exploration of TROBDDs and 
its storage into stacks. The intended application 
concerns the Flight Rescheduling Problem 
(FRP) due to a reduction of available capacity in 
air traffic network. In air traffic management the 
time slice is 15 minutes and the planning horizon 
is one day for tactical decision. So, the time 
study is limited to 96 time slices, which makes 
practicable the use of a discrete-time model. Our 
point of view on the FRP is focused on the 
accessibility problem under capacity constraints 
floating in time. We model the itineraries set of 
rescheduled flights using the STPN. Therefore, 
a cost function is associated to TROBDDs 
model. Next one can develop an optimization 
algorithm based on optimization criterion in 
order to determine the optimal flight plan. 

This paper is organized as follows; the section 2 
describes the background of the time Petri nets 
tools and binary decision diagrams. The section 
3 depicts the symbolic approach to compute the 
reachable makings. The Section 4 presents the 
modeling reachable makings through 
TROBDDs. The exploration of state space and 
the storage technic is presented in Section 5. In 
order to illustrate the application of our 
approach, the FRP is presented in Section 6. We 
report the experimental results and discussion in 
Section 7. Finally, the conclusion and the future 
work are presented in Section 8. 

2. Backgrounds 

2.1 Time Petri Net (ࡺ�ࢀ) 

A Time Petri Net (ܶܲܰ) [2] is a tuple ܰ = ሺܲ, ܶ, ,݁ݎܲ ,ݐݏ݋ܲ �௦ሻ, where P is a finite set of 

places; T is a finite set of transitions; ܲ݁ݎ: ܲ ×ܶ ℕ is the pre-incidence function that 

determines weighted arcs from places to 

transitions; ܲݐݏ݋: ܲ ×  ܶℕ is the post-

incidence function that determines weighted 

arcs from transitions to places; ℕ is the set of 

non-negative integers and �௦: ܶℕ × ℕ is a 

function which affiliates to each transition a time 

interval. For ݐ௜ ∈ ܶ, �௦ሺݐ௜ሻ = [ܽ௜ , ܾ௜] such that ܽ௜ , ܾ௜ ∈ ℕ and ܽ௜ܾ௜ ; Ͳ ܽ௜ <  ; Ͳ ܾ௜ < . 

A marked ܶܲܰ is characterized by the couple ሺܰ,ܯ଴ሻ, where ܰ is a ܶܲܰ and ܯ଴ is the initial 
marking. The state of ܶܲܰ is defined by a couple ሺܯ, �்ሻ, where ܯ is a marking and �் is the vector 
which contains firing intervals of transitions.  

A ܶܲܰ is said bounded if the set of reachable 
marking from ܯ଴ is a finite set. A TPN is said k-

bounded if for any place in reachable marking 
from ܯ଴ does not exceed ݇. A ܶܲܰ is said safe 
if it is 1-bounded. In this paper, we focused on 
Safe TPN (STPN) which is constituted of a set 
of Time Binary Petri Nets (T-BPNs). 

Definition 1(Time Binary Petri Net) : A Time 

Binary Petri Net (T-BPN) is a STPN where  only 

one place among all places can be marked: 

 ∀ ݌  ܲ,ܯሺ݌ሻ ∈ {Ͳ,ͳ}; 
 ∀ ݌௜ , ௝݌ ∈ ܲ if ܯሺ݌௜ሻ = ͳ then ܯ(݌௝) = Ͳ; 

 ܲ :݁ݎ ܲܶ {Ͳ,ͳ} and ܲݐݏ݋: ܲ  ܶ  {Ͳ,ͳ}. 
The following properties emanate from 
definition 1. 

Property 1. Let ௜ܲ be the places set of T-BPNi 

(respectively ௝ܲ for T-BPNj), then ௜ܲ ת ௝ܲ = ∅. 

Property 2. Let ௜ܶ be the transitions set of T-
BPNi (respectively ௝ܶ for T-BPNj), then ௜ܶ ௝ܶת = ∅. 

Property 3. ݐ௜,௝ ∈ ௜ܶ, Card (ݐ௜,௝) {0,1} and 
Card (ݐ௜,௝) ∈ {Ͳ,ͳ}. 
The properties 1 and 2 mean that each place or 
transition belongs to a single T-BPN. The 
property 3 ensures that each transition of a T-
BPN has at most one input place and at most one 
output place.  Indeed, the T-BPN is a state graph 
that includes one or many elementary paths.  

Definition 2. We define some notations for the 
T-BPN as follows: 

– If the T-BPNi is composed of a single 
elementary path, we note ݌௜,௝ (respectively ݐ௜,௝) the place ݆  (respectively the transition ݆ ) 
of T-BPNi;  

– If the T-BPNi is composed at least of two 
elementary paths, we note by ݌௜,௝ the 
common place between the various 
elementary paths and by ݌௜,௝௞ (respectively ݐ௜,௝௞ ) the places of path ݇ (respectively the 
transitions of path ݇). 

The connection transitions between the T-BPN 
(have several places of input and/or several 
places of output) are denoted by a single index.  

Figure 1 shows a ܵܶܲܰ, which comprised of 
four T-BPNs. Each T-BPN contains the 
following places: ଵܲ = ,ଵ,ଵ݌} ,ଵ,ଶ݌ ,{ଵ,ଷ݌ ଶܲ ,ଶ,ଵ݌}= ଶ,ଶ} , ଷܲ݌ = ,ଷ,ଵ݌} ଷ,ଵଵ݌ , ଷ,ଵଶ݌ , ଷ,ଶ} and ସܲ݌ =
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 Furthermore, the T-BPNs are related by .{ସ,ଵ݌}
the transitions ݐଵ and ݐଶ.  

 In the rest of this paper, the methodology 
exhibited is convenient for any class of STPN, 
which comprises a set of T-BPNs. 

 

Figure 1. Example of STPN  

2.2 Binary Decision Diagrams (BDDs) 
Formally, a binary decision diagram is a directed 
acyclic graph with a set of vertices ܸ, which has 
two types. Non-terminal vertices are indexed by 
a Boolean variable, ݔ௜, denoted ݅݊݀݁ݔሺݒሻ = ݒ ,௜ݔ ∈ ܸ. Each vertex ݔ௜ has two children: a left 
child and a right child, denoted respectively by ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ, ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻܸ. Terminal 
vertices are indexed by the value 0 or 1 of the 
Boolean function. The ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ is bound 
to its parent by a dotted arrow where the value 
affected to ݔ௜ is 0, and the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ is 
bound to its parent by a continuous arrows 
where the value assigned to ݔ௜ is 1. 

The representation technique of the Boolean 
functions using the BDD tool is based on the 
expansion of Shannon [3]. An Ordered Binary 
Decision Diagram (OBDD) is a BDD where the 
variables respect a topological order  ݔଵ < ଶݔ <

⋯ <  ௡, whatever is the path of the root in theݔ
terminal vertices of BDD, [8]. A Reduced 
Ordered Binary Decision Diagram (ROBDD) is 
an OBDD where the size of the BDD is reduced 
by the application of reduction rules, such as the 
fusion of isomorphic sub-graphs [3, 14]. In the 
rest of the paper, when no confusion is possible, 
the size of the BDD corresponds to the number 
of non-terminal vertices. 

3. Computing the STPN Markings 
using Symbolic Approach 

In this section, we introduce a new symbolic 
approach to compute in discrete time the 
markings of STPN by a Boolean function.  

Let ܯ�τ be the power set of STPN places set at 
the time τ , with ݀ݎܽܥሺܲሻ = ݊. Let  �ሺܯ�τሻ be 
the power set of ܯ�τ. According to Boolean 
algebra of a power set [3], the system ሺ�ሺܯ�τሻ,ת,׫, τሻሻ�ܯሺ�ሺ݀ݎܽܥ τሻ is a Boolean algebra with�ܯ,∅ =  ʹଶ೙, where ∅ the empty set 
and ת,׫ the union and the intersection laws.  

Theorem of Stone [12]. Any finite Boolean 
algebra is isomorphic to the Boolean algebra of 
subsets of some finite set.  

Based on the theorem of Stone, the system 
(�ሺܯ��ሻ,⋃,ܯ,∅ ,ת��) is isomorphic to the algebra 
of n-variables Boolean functions ሺܨ௡ሺℬሻ, +,·,Ͳ,ͳሻ, where ܨ௡ሺℬሻ is the set of n-variables 
Boolean functions, ሺ+ሻ and ሺ∙ሻ the addition and 
the multiplication of n-variables Boolean 
functions. Also, ′Ͳ′ is the function zero ሺ ଴݂ሺݔଵ,ݔଶ … , ௡ሻݔ = Ͳ ∀ ݔ௜ ∈ ℬሻ and ′ͳ′ is the function 
one ሺ ଵ݂ሺݔଵ, ଶݔ … , ௡ሻݔ = ͳ ∀ ݔ௜ ∈ ℬሻ, (for more 
details see [4]). 

Let � : �ሺܯ��ሻ ℬ be the temporal symbolic 
function, which allows to express at every time � a marking in �ሺܯ��ሻ by a Boolean expression. 
We define the temporal symbolic function � =Υ� ל µ� by the composition of the temporal 
ciphering function µ�: �ሺܯ��ሻℬ௡ and 
temporal indicator function Υ�: ℬ௡ ℬ.  

The temporal ciphering function consists in 
coding a marking ݉� by a summit Z௠� =ሺݔଵ, , ଶݔ . . . , ௡ሻݔ ∈ ℬ௡, with ݔ௜ the binary 
variable representing the place ݌୧. µ�can be 
represented as follows: µ�: �ሺܯ�τሻ ⟶ ℬ௡݉� ⟼ Z௠� = ሺݔଵ, , ଶݔ . . . ,  ௡ሻݔ

where: 
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∀݅ ∈ ͳ,…݊ ; ௜ݔ  = { ͳ      �f ݌୧ ∈ ݉�Ͳ      ot�erw�se. (1) 

The temporal indicator function Υ� takes as input Z௠� and returns a Boolean value as follows: Υ�: ℬ௡ ⟶ ℬZ௠� ⟼ ߱  

where: ߱ = { ͳ      ݉� ݅ݏ ܽ reac�able �ark��g Ͳ                                     ot�erw�se.   

Let ݉ଵ� and ݉ଶ�  be two markings of �ሺܯ��ሻ such 
as µ�ሺ݉ଵ�ሻ = µ�ሺ݉ଶ�ሻ. Since each place is coded 
by a binary variable, every marking is 
represented by a single argument. If µ�ሺ݉ଵ�ሻ = µ�ሺ݉ଶ�ሻ then ݉ଵ� = ݉ଶ�  , so µ� is injective. As a 
consequence � is injective. On the other hand, 
the set of binary variables ℬ contains the binary 
values  {Ͳ,ͳ}.  At each time �, there are: a non-
reachable marking ݉௡�� , such as Υ�ሺ݉௡�� ሻ = Ͳ, 
and a reachable marking ݉�� , such as Υ�ሺ݉�� ሻ =ͳ. So, � is surjective. Consequently, the 
function � is at the same time injective and 
surjective, so it is bijective. 

The temporal symbolic function � is a bijective 
function and thereby an isomorphism from ሺ�ሺܯ�τሻ,ת,׫, ,௡ሺℬሻܨτሻ to ሺ�ܯ,∅ +,· ,Ͳ,ͳሻ. 
Therefore, each marking in �ሺܯ��ሻ is 
represented by a Boolean function. Let ݉ଵ�, ݉ଶ�  
be two markings such as µ(݉ଵ�) = Z௠భ�  and 
µ(݉ଶ�) = Z௠మ� . The union (respectively the 
intersection) of Z௠భ�  and  Z௠మ�  is represented by 

Z೘భ�׫Z೘మ�  = Z೘భ� + Z೘మ� (respectively 
Z೘భ�תZ೘మ�  = Z೘భ� ∙ Z೘మ� ). 

We consider the reachable markings of ܵܶܲܰ in 
Figure1 at  = ͳ corresponds to ݉ଵ ={{Pଵ,ଵ}, {Pଵ,ଶ}}. The image of ݉ଵ by the 
ciphering function is represented by two 
arguments: ሺͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳሻ and ሺͲ,ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳ,Ͳሻ ∈ ℬଵ଴ which corresponds 
respectively to {݌ଵ,ଵ} and {݌ଵ,ଶ}, with ݀ݎܽܥሺܲሻ = ͳͲ. The symbolic function of  ݉ଵ is 
ଵ = ଵ,ଵݔ ∙ X̅{xభ,భ}   + ଵ,ଶݔ  ∙ �̅{�భ,మ}. With �̅{�೔,ೕ} 
the Cartesian product of complement to all 
variables except ݔ௜,௝. 

For example, �̅{�భ,భ} ଵ,ଶݔ = ∙ ଵ,ଷݔ  ∙ ଶ,ଵݔ ∙ ଶ,ଶݔ ଷ,ଵݔ ∙ ∙ ଷ,ଵଵݔ ∙ ଷ,ଵଶݔ ∙ ଷ,ଶݔ ∙  .ସ,ଵݔ

 

 

4. The Modelling of the Reachable 
Markings 

4.1 Explicit representation of STPN 
markings by OBDDs 

This section presents a new modeling method of 

the reachable markings of STPN by OBDDs in 

discrete time. By using the ordinary Depth-First 

Search (DFS) of OBDD, the different paths are 

explored. According to the value of terminal 

vertex, one can classify the paths explored in 

two sets, as follows: 

– The set of paths, which ends with a terminal 
vertex indexed by ‘1’, model the reachable 
markings, denoted by ܵݐ݌ଵ. 

– The set of paths, which ends with a terminal 
vertex indexed by ‘0’ corresponds to 
unreachable markings denoted by ܵݐ݌଴.  

A path ݐ݌ଵ modelizes a reachable marking ሺݐ݌ଵ ∈  ,ଵሻ of ܵTPN composed of ݇ T-BPNsݐ݌ܵ
is described by the proposition 1. 

Proposition 1. Each path ݐ݌ଵ in ܵݐ݌ଵ includes at 
most ݇ non-terminal vertices, which each one 
has a right child. 

Proof. Let a ܵTPN be consisted of ݇ T-BPN. 
Besides, a vertex corresponds to a marked place 
that has only a right child in a given path ݐ݌ଵ. As 
a T-BPN has at most one marked place, a ݐ݌ଵ  ଵ of a STPN contains at most ݇ non-terminalݐ݌ܵ∋
vertices whose each one has a right child. 

Figure 2 shows the OBDD presenting the 
function ଵ = ଵ,ଵݔ ∙ X̅{xభ,భ}   + ଵ,ଶݔ  ∙ �̅{�భ,మ} 
which models the marking ݉ଵ = {{Pଵ,ଵ}, {Pଵ,ଶ}}. 
For a simplified representation, only the 
variables of T-BPN1 are considered regardless 
the T-BPN2 and T-BPN3 are not marked in τ = ͳ. 
The full representation of OBDD contains two 
paths of ܵݐ݌ଵ. Each one models a reachable 
marking. If we take the example of the path ݐ݌ଵ 
modeling the reachable marking {݌ଵ,ଵ}כ; it has 
one vertex indexed by ݔଵ,ଵ which has a right 
child, and the other vertices have each one a left 
child. The topological order used of variables is: ݔଵ,ଵ < ଵ,ଶݔ <   .ଵ,ଷݔ
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Figure 2. OBDD of the symbolic function ଵ 

4.2 TROBDDs construction 

The full OBDD size is equal to ሺʹ௡ − ͳሻ [6]. 
Therefore, the size of reserved memory space 
increases exponentially with the number of 
STPN places. Its complexity order is �ሺʹ௡ሻ. 
Obviously, it is important to conceive an 
OBDD representation method with a reduced 
memory size.  

In this paper, the behind construction of reduced 
OBDD at every time aims to represent only ܵݐ݌ଵ. Therefore, one can only represent the 
variables storing the marked places.  

Definition 3. The new structure proposed is so-
called Time Reduced Ordered Binary Decision 
Diagrams ሺܴܱܶܦܦܤ௦ሻ that model the reachable 
markings in discrete time. We denote by ܴܱܶܦܦܤ the modeling of reachable markings 
at the time .   

The principle of a TROBDD construction is 
illustrated by the algorithm in Figure 3; we begin 
by creating temporarily (can be deleted) the 
vertex. It is definitively created where does not 
annul the Boolean function and has a right child, 
i.e. For a current vertex, indexed by ݔ௜, is 
definitively created only when ߰�ሺݔଵ ௜ݔ… = ͳሻ is 
not null.   

The vertex ݔ௜ is definitively constructed and its 
children are temporarily constructed as shown in 

Figure 4.a. The second iteration consists in the 
calculation of the Boolean function where ݔ௜+ଵ = ͳ, and decides to delete or not each 
vertex ݔ௜+ଵ.  

As shown in figure 4.b, one can eliminate the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ =  ௜+ଵ is done because theݔ
Boolean function is equal to zero. Then the ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ =  ௜+ଶ is temporaryݔ
constructed which corresponds to the left child 
of ݔ௜+ଵ. The ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ =  ௜+ଵ isݔ
definitively constructed where Ȳ�ሺݔଵ, … , ௜ݔ =Ͳ, ௜+ଵݔ = ͳሻ! = Ͳ. Then the children of ݔ௜+ଵ are 
temporarily created. 

The application of reduction algorithm on the 
example of STPN (Figure 1) is illustrated in the 

 

a)      b) 

Figure 4. Construction principle 

ଵݔሺ�߰)�ܦܦܤܱܴܶ_݊݋݅ݐܿݑݎݐݏ݊݋ܥ  (௡ሻݔ…

 Create temporarily the vertex ݔଵ 

 For each variable ݔ௜, ݅ = ͳ,… , ݊ do  

    For each ݔ௜ temporarily Construction do  

   If ሺ߰�ሺݔଵ ௜ݔ… = ͳሻ! = Ͳሻ 

    Create definitively the vertex  ݔ௜ 
    Create temporarily ܴ݅݃ℎܥݐℎ݈݅݀ሺݔ௜ሻ =  ௜+ଵݔ

   If ሺ߰�ሺݔଵ ௜ݔ… = Ͳሻ! = Ͳሻ 

    Create temporarily ܥݐ݂݁ܮℎ݈݅݀ሺݔ௜ሻ =  ௜+ଵݔ

   End If 

   Else If 

    Delete the vertex  ݔ௜ 
    Create temporarily the vertex ݔ௜+ଵ 

   End If 

    End For 

 ݅ = ݅ + ͳ 

 End For 

End. 

Figure 3. Construction Algorithm of ܴܱܶܦܦܤ 
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following Figure 5. Every ܶ    defines theܦܦܤܱܴ
reachable markings at . The depth first search 
in a given ܴܱܶܦܦܤ allows us to determine the 
different reachable markings. 

Proposition 2: The ܴܱܶܦܦܤ size resulting by 
the application of the algorithm1 has in the worst 
case a complexity order of Ȫሺ݊ሻ; ݊  is the number 
of STPN places.  

Proof. Let us consider an STPN with  n places. 
As in a given time , the TROBDD models 
only the marked place. Then, in the worst case 
the TROBDD size is equal to the number of 
STPN places. 

5. TROBDDs Exploration  

In this section, we discuss the states space 
generation by manipulating the ܴܱܶܦܦܤ௦ 
structures, and the technique of storage. 

5.1 The structure of vertex 

The state space generation requires the respect 
of some constraints that must be recorded in 
each vertex of ܴܱܶܦܦܤ௦; the temporal 
constraints to move from a vertex to another, and 
the precedence constraints that allows to define 
the next vertex. Therefore, the vertex in ܴܱܶܦܦܤ௦ is declared as follows: 

  .(௜,௝ݔ) is the binary variable :�ࢋࢊ�࢏ –
 is the Lower Residual Remaining :࢐,࢏ࢀ��ࡸ –

Time (ܴܴܶܮ).  
 is the Upper Residual Remaining :࢐,࢏ࢀ��ࢁ –

Time (ܷܴܴܶ). 
     .௜,௝ݔ is the list of the next vertices of : ��ࢋࡺ –

For example, the vertex in ܴܱܶܦܦܤ଴ (Figure 5) 
has the following information: ݅݊݀݁ݔሺݒሻ ܴܴܮ ,ଵ,ଵݔ= ଵܶ,ଵ = ͳ, ܷܴܴ ଵܶ,ଵ = ʹ and  ܰ݁ݐݔ  and ܷܴܴܶ are ܴܴܶܮ The value of .{ଵ,ଶݔ}=
updated at each incrementing of time . 

5.2 The storage stacks and ࡱࡹࡳࡲࢀ� 

We use two types of stacks to store the state 
space: The independents stacks ሺ ܵ݇ܿܽݐ� , � ∈ℕሻ and a global stack ܵீ݇ܿܽݐ . Each independent 
stack stores in order the sates generated from the 
initial state to the final state. Each element of 
global stack points to an independent stack. 
Evidently, the state is determined by a depth-
first search of ܴܱܶܦܦܤ� during the run through ܴܱܶܦܦܤ௦. A state at time � is defined as 
follows:  ܧሺ�ሻ = ,௜భ,௝భሺ�ሻݔ] … ,  [௜ೖ,௝೘ሺ�ሻݔ
where ݇ is the number of T-BPN and ݉ is the 
index of the marked place of T-BPNk. 

 

 

Figure 5. The ܴܱܶܦܦܤ௦ of STPN in Figure 1 
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The modeling and analysis of real system should 
be taken into account the specification which 
float in time. For this specification types, one 
can introduce the Time Floating General Mutual 
Exclusion constraints ሺܶܥܧܯܩܨሻ [1], which is 
a GMEC considered only in a time interval [�௠௜௡, �௠��]. We introduce a new formulation of ܶܥܧܯܩܨ suitable of the definition of state: ⃗⃗ܧ் ݓ[�೘೔೙,�೘��] ≤ ℷ (3) 

Where w⃗⃗⃗  is a binary vector and ℷ is an           

integer constant.  

5.3 The generation and storage algorithm  
The generation and storage algorithm consists of 
three steps, as is shown in Figure 6.  

In the first step, from a current state ܧሺ�ሻ, one 
can finds the set of indexes ሺ�ሻ which allows us 
to move to the next state. Then, either by the 
next (ݔ௜,௝ሺ�ሻ.  and / or by evolving the (ݐݔ݁ܰ
time ቀݔ௜,௝ሺ� + ͳሻቁ, the set ܵ of successors is 
calculated according to the value of the lower 
residual remaining time of each ݔ௜,௝ሺ�ሻ in �.   

The second step involves the determination of 
the successor’s state ܧ௦ of ܧሺ�ሻ. Once the set ܧ௦  
is determined, an analysis is performed to 
eliminate the forbidden states that does not 
respect the ܶ  Therefore, the result is the .ܥܧܯܩܨ
set of legal states ܧ௦ which guarantees the 
desired behavior. The ሺ݀ݎܽܥሺܧ௦ሻ − ͳሻ is the 
number of created stacks. The covered states are 
duplicated in current stack (step 3). 
Subsequently, the exploration of the global stack ሺܵீ݇ܿܽݐሻ and the selection of the first 
independent stack are realized in step 4; note 
that the current state of first independent stack is 
not a final state.  

As an example, we consider the ܴܱܶܦܦܤ௦ in 
Figure 5. The DFS of ܴܱܶܦܦܤ଴ give the initial 
state [ݔଵ,ଵሺͲሻ], that is stored in ܵ݇ܿܽݐଵ, where 
its temporal constraints ܴܴܮ ଵܶ,ଵ = ͳ and ܷܴܴ ଵܶ,ଵ = ʹ. Obviously, the successor is  ݔଵ,ଵሺͳሻ that leads a new state [ݔଵ,ଵሺͳሻ] 
generated from ܴܱܶܦܦܤଵ and stored in ܵ݇ܿܽݐଵ 
with an update of the temporal constraints that 
are ܴܴܮ ଵܶ,ଵ = Ͳ and ܷܴܴ ଵܶ,ଵ = ͳ. By applying 
the step 2 of algorithm, the successor set is ܵ  that leads to two successors { ଵ,ଵሺʹሻݔ ;ଵ,ଶሺͳሻݔ}=

Step 1: Calculate the successors index: 

 Let a current state ܧሺ�ሻ = ,௜భ,௝భሺ�ሻݔ] … ,   �݇ܿܽݐܵ ௜೙,௝೘ሺ�ሻ] stored in theݔ

1.1 
Determine ȱ = ௜,௝ሺ�ሻݔ} ∈ |ሺ�ሻܧ � = ���௜,௝ ܴܶܮ) ௜ܶ,௝) , ݅ = ݅ଵ … ݅௡, ݆ = ݆ଵ … ݆௠} ܵ = ௌܧ ; ∅ = ∅ 

1.2 For each ݔ௜,௝ሺ�ሻ ∈ ȱ 

  If � = Ͳ 

   If ܷܴܶ ௜ܶ,௝ = Ͳ then ܵ = ܵ ׫ .௜,௝ሺ�ሻݔ}  {ݐݔ݁ܰ
   Else then ܵ = ܵ ׫ .௜,௝ሺ�ሻݔ} {ݐݔ݁ܰ ׫ �௜,௝ሺݔ} + ͳሻ} 
  Else ܵ = ܵ ׫ �௜,௝ሺݔ} + ͳሻ} 
Step 2 : Calculate the successor states of the trajectory and update the list of trajectories to be analyzed. 

2.1.  Generate the set ܧ௦ = ,ଵܧ} ,ଶܧ … ,  .ሺ�ሻܧ ௌ|} of successor states of the current state|ܧ
2.2. 

Eliminate the states that not respecting the ܶ[ݔܽ݉�,݊݅݉�]ܧܶ ݓ⃗⃗⃗ ܥܧܯܩܨ ≤ ℷ 

For each  ܧ௥ ∈ ݎ ,௦ܧ = ͳ,… ,  |ݏ|
  If ∑ ௜,௝ሺ�ሻ௜,௝ݔ  >  ℷ then       // � ∈  [�݉݅݊, ௦ܧ [ݔܽ݉� = ௦ܧ ך   ,௥ܧ

Step 3:   Update the independents stacks 

 If ܧ௦ =  ∅ go to Step 4  

Else    

  Update the ܵ݇ܿܽݐ�: 

   Choose ܧ௜ ∈ �݇ܿܽݐܵ ௦ܧ  = �݇ܿܽݐܵ ׫ ௦ܧ  {௜ܧ} =  ௜ܧ \௦ܧ
  While ܧ௦ ≠ ∅  

Create a new independent stack  and duplicate the covered states  in ܵ݇ܿܽݐ� \ {ܧ௜} 
Added the successor state ܧ௥ ∈   .௦ܧ 

Step 4 : Determine the next independent stack to be analyzed. 

Explore the ܵீ݇ܿܽݐ  and select the first independent stack which the current state is not a final state. 

If such an independent stack exists, go to Step 1.  

Figure 6. Algorithm for generation and storage of state space 
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states. The state [ݔଵ,ଶሺͳሻ] is stored in ܵ݇ܿܽݐଵ 
and [ݔଵ,ଵሺʹሻ] is also stored in a new stack ܵ݇ܿܽݐଶ. The predecessors states of [ݔଵ,ଶሺͳሻ] and [ݔଵ,ଵሺʹሻ] are the same as shown in Figure 7. 
Next, in the step 4 the ܵ  ଵ is selected to carry݇ܿܽݐ
the generating and the storing procedure.  When 
we reach the state [ݔଶ,ଵሺ͵ሻ,  ଵ݇ܿܽݐܵ ଷ,ଵሺ͵ሻ], inݔ
the successors of each one index are: ܵ ቀݔଶ,ଵሺ͵ሻቁ = ;ଶ,ଶሺ͵ሻݔ} ܵ ଶ,ଵሺͶሻ} andݔ ቀݔଷ,ଵሺ͵ሻቁ = ͳͳ,͵ݔ} ሺ͵ሻ;ݔ͵,ͳʹ ሺ͵ሻ}. 
The exploration step of ܴܱܶܦܦܤ௦ generates the 
set of successors of [ݔଶ,ଵሺ͵ሻ, ௦ܧ :[ଷ,ଵሺ͵ሻݔ = ,ଶ,ଶሺ͵ሻݔ]} ଷ,ଵଵݔ ሺ͵ሻ]; [ݔଶ,ଶሺ͵ሻ, ଷ,ଵଶݔ ሺ͵ሻ];[ݔଶ,ଵሺͶሻ, ଷ,ଵଵݔ ሺͶሻ]; ,ଶ,ଵሺͶሻݔ] ଷ,ଵଶݔ ሺͶሻ] }, 

Thus, one can apply the following  ܶܥܧܯܩܨ: ቀݔଶ,ଵሺ�ሻ + ଶ,ଶሺ�ሻݔ + ଷ,ଵଶݔ ሺ�ሻቁ[ଷ,଺] ≤ ͳ. 

Therefore, the states [ݔଶ,ଶሺ͵ሻ, ଷ,ଵଶݔ ሺ͵ሻ] and [ݔଶ,ଵሺͶሻ, ଷ,ଵଶݔ ሺͶሻ] are forbidden from ܧ௦ and a 
new stack ሺܵ݇ܿܽݐଷሻ is created.   

The ܴܱܶܦܦܤ௦ exploration stored in ݇ܿܽݐݏଵ is 
shown with bold arrows (i.e. see Figure 5). 

6. Application to Air Traffic Flow 
Management Problem 

The worldwide demand of air traffic is 
expanding that has continued to grow. However 
the capacity of Air Traffic Network (ATN) 
elements such as the airports, sectors and 
itineraries are not changed. Moreover, the ATN 
capacity is reduced for any adverse weather 
conditions and makes some scheduled flight 
plan unrealizable.  

In this application, we focus on the flights before 
their take-off (uncommitted flight), where the 
scheduled flight plan is affected due to adverse 

weather condition and become unrealizable. 
Therefore, the Flight Rescheduling Problem 
(FRP) is involved in order to minimize the impact 
of unforeseen disruptions on the schedule 
planning. This is an accessibility control problem 
under safety constraints with floating temporal 
windows through time caused by adverse weather 
condition. In this context, we propose an 
optimization algorithm to calculate a new optimal 
flight plan by minimization the cost function. 

6.1 Notations and modeling 

6.1.1 Notations 

The flights rescheduling problem includes a set 
of flights ܨ =  {ͳ, ʹ. . .  which uses a set of {|ܨ|
ATN during a time window (a day for example).  
Each flight has a departure airport ݀�, ݂ ∈  of ,ܨ
the set of airports ܦ = {݀ଵ, ݀ଶ . . . ݀|�|} and a 
landing airport ܽ�, ݂ ∈  of the set of ,ܨ
destination airports ܣ = {ܽଵ, ܽଶ . . . ܽ|�|}. A set of 
air sectors which will be used by the flights is 
denoted by ܵ = ,ଵݏ} ,ଶݏ . . .  ௌ|}. The itinerary for|ݏ
the flights that connects the departure to the 
arrival airport are numbered and defined by the 
set � =  {ͳ, ʹ . . . |�|}.  
Definition 4: A Flight Itinerary Set (ܨ� �ܵሻ  of 
flight ݂ ∈  is the succession of ATN elements ܨ
according to the flight time constraint of each 
one. We denoted it by  ܨ� �ܵ = {Π�௜  |  ݂ ∈ ,ܨ ݅ ∈�}, with Π�௜ = ݀௜,dሺ�dሻ, ,௜,ଵሺ�୪ଵሻݏ … s௜,୩′(�୪୩′),a௜,aሺͲሻ. For example, ݏ௜,ଵሺ�୪ଵሻ models the flight ݂ following the itinerary ݅ by overflying the 
sector ݏଵ, and needs �୪ଵ time unit. The available 
capacity of each ATN element ݁௞ ∈  at ܣ⋃ܵ⋃ܦ
the time interval [�ଵ, �ଶ], is denoted by ݌ܽܥሺ݁௞ , [�ଵ, �ଶ]ሻ, and expressed by a ܶܥܧܯܩܨ.  

We admit that all the flights can have the similar 
flight time slice. We suppose that the flight 
duration for a given sector with an airport takes 
one time slice while it takes twice as long if the 
sector hasn’t an airport. Note that a scheduled 

 

Figure 7. Example of storage in stacks 
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flight plan is considered as the shortest path 
connecting two airports.  

The Figure 8 depicts an example of air traffic 
networks, which is composed of three 
departures airports (݀ଵ, ݀ଶ and ݀ଶ), an arrival 
airport ܽଵ and ͳͻ sectors. The arcs connecting a 
pair of airports are the possible itineraries for a 
given flight, where their number is presented by 
a circle. We consider three flights, which each 
one departs from an airport, and have a common 
destination. For instance, the flight number ′ͳ′ 
from the airport ݀ଵ can follow one of three 
itineraries of ܨ� ଵܵ = {ȫଵଵ, ȫଵଶ, ȫଵଷ}. Moreover, 
the scheduled flight itineraries set is {ȫଵଶ, ȫଶହ, ȫଷ଼}, where their itineraries are 
delineated by dotted lines. 

6.1.2 Modeling a FIS by STPN 

The key idea is to consider the air traffic system 
as a discrete events system for the flight 
rescheduling problem. We model all flights 
itinerary set; ܨ�ܵ = ⋃ �ܨ �ܵ�  by a STPN where 
each ܨ� �ܵ is modeled by a T-BPN, noted T-
BPNf.  

Relevant to the elements notation of a STPN 
compound of a T-BPN set (definition2), the 
places indicate the plane location in ATN, are 
denoted as follows: 

ೕ: the departure airport ௝݀�,�݌ –  of flight f; 

 ௜�,sj: the flight f  crossing the sector s୨݌ –

following the itinerary i ; 

 .aj: the arrival airport ܽ୨ of flight f,�݌ –

The temporal constraint associated to the 
transitions indicates either the delay time 
tolerated by the flight in the departure airport ቀݐ୧�,djቁ, or the time for a flight to overfly a 

sector ቀݐ�,௦ೕ௜ ቁ.   

The Figure 9 illustrates the STPN modeling the FISଵ ׫ FISଶ ׫ FISଷ of the air traffic example in 
the Figure 8. The T-BPNs model the ܨ� ଵܵ, ܨ�ܵଶ 
and ܨ�ܵଷ. The maximal delay tolerated for the 
three flights before their cancellation is 
considered of 2 t.s (time slice). For example, for 
the flight 1, the necessary time following the 
itinerary ȫଵଶ is 1 t.s to overfly the sector sଵ, 2 t.s 

 

Figure 8. Example of air traffic network 

 

Figure 9. STPN modelling the ܨ�ܵ 
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to cross the sector sସ and a time slice to overfly 
the sector sଽ in order to reach  at the airport aଵ.  

Before the take-off of three flights an adverse 
weather condition affected the sectors ݏସ, ݏହ and ݏଵଶ in time interval [ʹ,Ͷ] when the scheduled 
flights cross the sectors and reduce its capacity 
to zero: ݌ܽܥሺݏସ, [ʹ,Ͷ]ሻ = ,ହݏሺ݌ܽܥ [ʹ,Ͷ]ሻ ,ଵଶݏሺ݌ܽܥ= [ʹ,Ͷ]ሻ = Ͳ. Then, the rescheduling is 
unavoidable to decrease the perturbation impact 
on the scheduled flights. The rescheduled flight 
plan will respect the new constraints that is 
formulated by TFGMEC as follows:  ቀݔଵ,௦రଶ ሺ�ሻ + ଶ,௦రସݔ ሺ�ሻ + ଵ,௦ఱଵݔ  ሺ�ሻ+ݔଶ,௦ఱହ  ሺ�ሻ+ ଷ,௦భమ଼ݔ ሺ�ሻቁ[ଶ,ସ] ≤ Ͳ 

6.2 TROBDD of the set of flight plans and 
optimal rescheduled flight plan  

This section describes how the ܴܱܶܦܦܤ௦ 
structure, the generation and storage approaches 
are defined in flight rescheduling problem.  

The admissible markings in discrete time 
modeled by a ܴܱܶܦܦܤs structure allows us to 
record at every time the possible geographical 
locations of the rescheduled flights in a small 
data structure. The TROBDDτ size is 
proportional to the number of possible locations 
of rescheduled flights at time τ (proposition 2). 

The algorithm of generation and storage of state 
space takes into account a given ܶܥܧܯܩܨ and 
allows to determine the set of rescheduled flights 
plans regarding the constraints capacity. Each 
independent stack memorizes a possible 
rescheduled flight plan. The rescheduled flight 
plan is a flight itinerary Π�௜ , with a fixed take-off 
time.  To calculate its cost, we associate a cost 
structure to ܴܱܶܦܦܤௌ such as the penalty fee of 
ground delay and the cost of consumed kerosene 
(for more details see our previous work [7]).  In 
the course of the generation and storage, the 
addition of a new state from ܧ௦ (step 3) is 
accompanied by the update of its economic 
performance by adding the cost associated with 
the recently integrated state. The cost associated 
to the final state is the total cost of the 
rescheduled flight plan.   

To determine the optimal flight plan among all 
rescheduled flights plans in a minimal CPU 
time, we propose an optimization criterion 
which allows us to find the optimal plan without 
generating all solutions (see proposition 3).  

Proposition 3. The economic analysis of air 
traffic show that the ground delay is negligible 
to airlines compared to the consumed kerosene 
cost during the flight. Indeed, for the reschedule 
flight plan it is better to delay the aircraft on the 
ground instead of changing its initial itinerary 
which is longer. Therefore, the generation and 
storage algorithm explores in the first time the 
solutions with the minimum flight distance, if 
the generation doesn’t lead to a final state, then 
the second criterion that ground delay is 
adopted. Otherwise, we look for a flight plan 
solution with longer distance. 

Remark. Based on the proposition 3, we note 
that it is not necessary to generate all the 
solutions.  Once a solution is found, it is 
systematically the optimal. 

7.  Numerical Application 

and Discussion 

In this section we expose the results of a set of 
computational experiments. We compare the 
efficiency of the ܴܱܶܦܦܤ௦ structure to our 
previous TD-RG structure in [7]. Also, the 
performances calculation of the algorithm 
determines the optimal rescheduled flight plan. 

For this purpose, we distribute equally each 
instance |ܨ| between the three departure airports 
presented in the Figure 8. For each case, we 
increase the flight number at every airport by 10 
as indicated by the first column of Table 1. The 
maximal ground delay time is based on the 
profitability function [15]. The flight annulation 
takes 4 hours in the ground delay. Given that the 
time slice in air traffic is 15 minutes, the study 
time is equal to ʹʹ time slices; where the 
tolerated ground delay is θd = ͳ͸ time slices 
and the longest flight time takes ͸ t.s. 

Before the take-off of flights, an adverse 
weather condition, reduces the capacity of some 
sectors and makes the scheduled flight plan 
infeasible. As shown in column 2, the capacity 
constraints in the specific time interval are 
formulated by the ܶܥܧܯܩܨ.  For example, the 
capacity of sector ݏହ where the flights departures 
from ݀ଵ ቀ݂ = ͳ… |ி|ଷ ቁ and ݀ଶ ቀ݂ = |ி|ଷ +ͳ…ʹ × |ி|ଷ ቁ is reduced to one-fifteenth of the 
scheduled flights through the time interval [ͳ, ͳ͸] that is formulated by the first ܶܥܧܯܩܨ. 
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The adverse weather condition also annul the 
capacity of the sector ݏଵଶ in the interval of [Ͳ, ͺ] ,ͳͲ]׫ ͳͶ], defined by the last two ܶܥܧܯܩܨ. 

For each instance, the column 4 reports the ܴܱܶܦܦܤ௦ size by the application of the 
construction algorithm presented in Figure 3. We 
can notice that the reduction rules allow to reduce 
considerably the ܴܱܶܦܦܤ௦ size. More than ͺͲ % of vertices are eliminated for all instances. 
The new ܴܱܶܦܦܤ௦ structure leads to decreases 
drastically the size of memory space, compared 
to TD-RG structure that has previously been 
proposed [7], as shown in Table 1.  

Besides, the ܴܱܶܦܦܤ௦ modeled in a small data 
structure leads necessarily to an efficient 
manipulation to generate the optimal solution. 
The exploration of the optimal flight plan from 
the model ܴܱܶܦܦܤ௦ is implemented in C++ 
under Windows 7 and the tests were realized on 
a PC with 2.1 GHz processor speed and 8Go of 
RAM.  The last column of table I show the 
performance of the generation algorithm based 
on the optimization criterion to determine the 
optimal solution.  For example, the optimization 
algorithm solves a flight rescheduling problem 
for 195 flights modeled by a ܴܱܶܦܦܤ௦ with the 
size of Ͷ͸ʹͳͷ vertices, with a time resolution 
less than 8 seconds. 

8. Conclusion  

In this paper a new approach so-called Time 
Reduced Ordered Binary Decision Diagrams 
 is proposed which permit us to (ݏܦܦܤܱܴܶ)
model in a small data the reachable markings in 
discrete time. It is founded on the decomposition 
of a Safe Time Petri Net (STPN) to a time binary 
Petri nets (T-BPN) set. Our new structure 
complexity order is polynomial compared to the 
initial size that is exponential. Indeed, a new 

technique is presented for the generation and 
storage of the state space of a STPN.  

The application of our results has envisaged the 
Flight Rescheduling Problem (FRP). The set of 
rescheduled flights itineraries are modeled by a 
STPN compound of T-BPNs. Each one model 
the set of flight itineraries. Besides, a cost 
function is added to ܴܱܶܦܦܤ௦, and an 
optimization criterion is adopted to generate the 
optimal flight plan. The computational results 
approve that our new approach is able to solve 
efficiently several instances of FRP. Also, one 
can deduce that a large set of reachable markings 
of STPN can be represented with a small data 
structure compared to our previous developed 
TD-RG structure.  

Finally, to increase the applicability of the 
presented approach, our work prospects deals 
with the flight rescheduling problem for 
continues flights where the aircraft performs 
several flights on one day.  
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