
1. Introduction

1.1 Wind energy resources 

In  the  last  years,  due  to  the  European
legislation  facilities  for  Renewable  Energy
Source (RES), the wind energy capacity in EU-
28 has been increasing, up to 128.8 GW [1]. In
2014,  11791  MW  were  installed,  with  an
estimated value between €13 bn and €18 bn.
The  wind  energy  share  in  total  energy
production  is  estimated  to  285  TWh,  which
represents approximatively 8% of the total EU
energy consumption.  Regarding  Romania,  the
same  source  reveals,  at  the  end  of  2014,  an
installed capacity of 2953.6 MW, having risen
with  354  MW,  when  compared  to  2013.
Concerning  the  installation  rate,  the  value  is
nearly  half  of  the  previous  year,  a  fact  that
could be explained by the reduction of energy
consumption and green certificates’ value. As a
whole,  the  National  System Operator  (NSO),
reported  for  1st  of  July,  2014  an  installed
capacity  of  24582  MW  with  with  the  next
composition  as  energy source:  Hydro  28.8%,
Coal  26.66%,  Hydrocarbon  22.57%,  Wind
12.10%,  Nuclear  5.74%,  Solar  5.15  and
Biomass  0.41%.  The  distribution  of  energy

sources may vary depending upon both on the
season  and  availability.  Anyway,  the  most
important  annual  growth  was  registered  in
China  [2],  43%,  with  a  total  wind  power
capacity of 369,597 MW.

1.2 The mechanism of the system 

The National Power System should balance in any
moment  the  energy consumption  to  production.
Because  of  the  hazardous  nature  of  wind,  it  is
difficult to estimate in terms of hours (as a time
scale),  the  wind  energy  production.  The  wind
power plant operator has to notify the NSO for the
next day hourly production. The wind power plant
operator  receives  a  subsidy  from  national
government, known as “green certificates”. 

The value of green certificates and the market
mechanism are  regulated by EU and national
laws [3, 4]. The actual estimation indicates an
accuracy of  70%  for  wind  power  prediction.
According  to  the  Commercial  Code,  if  the
production  is  lower  than  the  notification,  the
wind power plant operator has to pay for the
unbalance.  The  National  Dispatching  Centre
must  compensate  the  unbalance  by activating
Fast  Tertiary  Reserves.  The  higher  the
prediction  error  is,  the  higher  the  costs

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 77

A Two-step Forecasting Solution and Upscaling
Technique for Small Size Wind Farms Located in

Hilly Areas of Romania 

Ion LUNGU1, George CĂRUŢAŞU2, Alexandru PÎRJAN2,
Simona-Vasilica OPREA1, Adela BÂRA1

1 The Bucharest University of Economic Studies,
6 Romană Square, Bucharest, 010374, Romania
ion.lungu@ie.ase.ro; simona.oprea@csie.ase.ro; bara.adela@ie.ase.ro

2 Romanian-American University,
1B Expozitiei Blvd., Bucharest, 012101, Romania
carutasu.george@profesor.rau.ro; pirjan.alexandru@profesor.rau.ro

Abstract: Taking into account the well-known benefits of using renewable energy as an important energy source, some
practical aspects regarding operation must be underlined. In the specific case of wind power plants (WPP) forecasting the
generated wind power is the most important issue for assuring stability of Romania’s National Power System (NPS) and
economic  efficiency of  wind power  plant  operation.  The  wind power  plant  operator  should report  daily to  National
Dispatching Centre, the hourly energy production for the next day. In case of inaccurate energy production prediction, the
National System Operator must take additional measures in order to maintain the stability of NPS. The purpose of our
research is to develop a solution, based on Artificial Neural Networks, for forecasting the wind energy production of small
output power wind farms located in hilly areas of Romania, thus improving the accuracy of the hourly prediction. The
case study is based on two-year historical data for a wind power plant comprising two power production groups situated in
Tulcea County, in southeastern Romania.  By using this approach, we have also explored the possibility of algorithm
generalization, starting from the detailed model of the first production group and generalize it to the second one.

Keywords: renewable energy, wind power forecasting, upscaling technique, artificial neural network.



incurred. The wind power plant operators may
use  various  commercial  tools  (PredictWind,
WPPT, Wind Speed Predictor, WINDcast etc.)
developed  by  independent  commercial
providers  or  resulting  from  international
research projects [5]. Our obtained results are
part of an integrated system in development [6]
as  a  result  of  a  scientific  research  project
(Intelligent  system  for  predicting,  analysing
and  monitoring  performance  indicators  and
business  processes  in  the  field  of  renewable
energies  -  SIPAMER).  Due  to  the  field
relevance  in  Romania,  the  same  goal  of
developing an integrated system for renewable
energy sources management is  approached by
other research projects in progress [7]. 

The majority of wind farms in Romania have a
small  output  power  and  are  situated  on  hilly
terrain  [8].  Therefore,  in  this  paper,  we  are
developing a solution for forecasting the wind
energy production and the consumed energy for
these types  of  wind power  plants.  We aim to
improve  the  forecast  accuracy  of  the  existing
forecasting software, used by a small wind park
located in Baia, in Tulcea County, in South East
Romania, by developing a two-step forecasting
technique that is best suited for hilly terrain that
causes a change of the wind direction from one
turbine  to  another  when  situated  at  different
altitudes.  We  also  develop  an  upscaling
technique  by  starting  from  one  turbine  and
forecasting  the  energy  production  for  six
turbines  grouped  into  two  production  groups,
located on hilly terrain, in close proximity. We
focus on obtaining a forecasting solution with an
improved  accuracy  prediction  for  small  wind
farms located on hilly terrain and also a solution
that  can  be  useful  for  potential  investors  that
want to build these types of wind farms. 

2. Wind Energy Production Forecast

2.1 State of the art

The actual efforts are focused on improving the
accuracy of  the wind power  prediction.  Some
research  literature  is  dedicated  to  wind  speed
forecasting [9, 10, 11] and the time scale differs
depending  on  the  prediction  objective.  By
analysing  these  papers,  we  can  distinguish  a
short-term  prediction  (hours,  called  intraday
forecasting), used for safety operation in case of
severe  weather  and  also  for  the  unbalanced
situation; a medium-term prediction (days), used
for production notification and maintenance;  a

long-term prediction (months), used for capacity
planning, opportunity studies etc. 

The  prediction  of  wind  generated  power  is
dependent  on the time scale.  For  instance,  in
the  case  of  short-term  prediction,  stochastic
methods  (persistence,  autoregressive  models
[12] and generalized equivalent Markov model
[13])  are  recommended.  Furthermore,  other
research  [14]  has  used  the  Kalman  filter
integrated  with  support  vector  regression
(SVR)  to  obtain  a  10%  prediction
improvement,  comparing  the  obtained  data
with  Artificial  Neural  Network  (ANN)  and
autoregressive (AR). 

Regarding the next day prediction, which is the
purpose of this paper, a consistent approach is
given by using ANN for wind energy production
forecasting.  In  the  case  of  ANN,  various
algorithms  are  explored  [15,  16].  In  the
presented  case  study,  the  Bayesian
Regularization [17], Scalar Conjugate Gradient
[18] and Levenberg–Marquardt [19] algorithms
are  explored.  For  ANN,  the  literature
investigates the Back Propagatio neural network
based on Particle Swarm Optimization [20, 21].

The studies [22 ,23, 25] reveal that a significant
percentage  of  the  energy  forecasting  error  is
given  by  the  meteorological  data  input.  The
operational numerical weather prediction (NWP)
models  having  relevance  for  wind  power
prediction  in  Europe  are  presented  by  the
ANEMOS  Plus  project  [5].  Furthermore,  for
meteorological  forecasting,  the  wind  speed
prediction model and software (ENFOR, Forecast
PRO,  PredictWind)  are  presented  in  detail  in
[22,23,24]. The same studies reveal also that the
error of these wind forecasting models, remains
within  2.5%  (in  the  case  of  large  up-scaled
German wind farms) or 15% MSE in the case of
USA day-ahead forecasting and RMSE of 10% in
the  case  of  Ireland.  Anyway,  the  forecasting
accuracy of wind speed depends on time scale
and  resolution.  In  Romania,  according  to  the
official website of the National Administration for
Meteorology, it uses global models (ECMWF and
ARPEGE)  as  well  as  short  range  numerical
weather  prediction  models  (ALADIN,  ALARO
and COSMO) in its forecasts. According to the
technical description of the Limited Area Models
(LAM), the resolution varies from 2.8 km to 10
km, the forecast horizon is up to 76 hours and the
sampling frequency ranges from 1 to 3 hours. The
presented ANN energy forecasting models must
have a sampling frequency of 1 hour. The error
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types introduced by NWP are amplitude errors
(the production time is  correctly estimated,  but
the  value  of  wind  speed  is  underestimated  or
overestimated) and phase error (the value of the
wind speed is accurate forecasted but the timing
is  not).  The  next  chart  shows  the  production-
forecasting series for our case study, in the 10
MW wind production group,  from 1st to 3rd of
October 2015.

Figure 1. Production vs. forecasting Baia 10MW in
the period 1st-3rd of October 2015

The  computed  errors  of  the  on-site  existing
prediction system,  provided by the Romanian
company Wind Power Energy [24] for October
2015 is highlighted in the next figure.

Figure 2. Error distribution for Baia 10MW in the
period 1st-31st of October 2015

The upscaling algorithms are also explored by
[5,23],  general  design  principles  and  case
studies, being depicted, mainly for off-shore or
on-shore wind farms on flat terrain. According
to [5], for hilly terrain, the energy forecast has
the  broader  error  dispersion  when  using
existing  software  products.  The  paper
emphasizes in the next sections, the Baia 5 MW
and the Baia  10  MW case  studies,  that  were
conducted  in  collaboration  with  the  Baia
operator, in  order  to  obtain a  custom tailored
forecasting  solution  of  the  produced  energy.
The forecasting solution took into account the
influence of the hilly terrain (with 22.8 m level
difference) and wind deflection (caused by the
front hill, the distance between turbines being

under  the NWP resolution),  over  the turbines
position. In the case of Baia 10 MW, we have
forecasted  using  the  upscaling  algorithm
applied to Baia 5 MW, aiming to obtain a better
forecast accuracy than in [24].

2.2 A solution for wind energy production
forecasting using the ANN approach

In  our  research  project  Intelligent  system  for
predicting,  analyzing  and  monitoring
performance indicators and business processes in
the  field  of  renewable  energies  (SIPAMER)  a
computer based information system that targets
the Romanian renewable energy market is to be
developed.  The system integrates data gathered
from renewable power plants devices into a cloud
computing database on top of which a forecast
and  analytical  model  that  offers  support  for
strategic business decisions is built (Figure 3):

Figure 3. The SIPAMER system’s components

The SIPAMER system is going to be developed
on  Java  platform  with  business  intelligence
components  for  analyzing  and  reporting
activities. The forecast model aims to minimize
the prediction error and load the predictions into
the  analytical  model  to  support  the  trading
activities on the energy market. In order to build
a suitable forecasting component for SIPAMER,
we have developed, trained, validated and tested
a series of artificial  neural  networks based on
three  algorithms:  Levenberg-Marquardt  (LM),
Bayesian  Regularization  (BR)  and  Scalar
Conjugate  Gradient  (SCG),  using  the  Neural
Network  Toolbox  from  the  development
environment  MatlabR2015a.  After  testing  the
solution,  we  have  integrated  the  Matlab
networks into SIPAMER by generating callable
functions  that  incorporate  the  neural  networks
functionality  that  were  further  compiled  as  a
Java package. Thus, the system can be accessed
through a Java API, classes and interfaces being
built  for  the  analytics  and  reporting  modules.
Thus, wind power plants operators will use the
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web  page  interfaces  having  also  export
capabilities into various formats.

We have  first  identified  the  input  parameters
(the temperature, the absolute direction of the
wind, the average wind speed) and the outputs
(the wind energy production and the consumed
energy)  in  order  to  develop  our  proposed
forecasting solution. We have collected for the
input  and  output  parameters  a  number  of
17,491  samples,  obtained  through  direct
measurements that were conducted hourly, over
a two-year period (since 1st January 2013 to 31st

December  2014),  in  a  wind  park  located  in
Baia, in Tulcea County, in Romania. 

The wind park where the measurements have
been  conducted  comprises  two  types  of
turbines, Vestas V90 2MW /3MW IEC IA/IIA
with a hub height  of  90 meters,  designed for
high  and  medium  wind  sites  with  high
turbulence.  The  cut-in  wind speed for  V90 2
MW is 4 m/s, while for V90 3 MW it is 3,5
m/s..  Taking  into  account  the  fact  that  the  5
MW production group comprises two turbines,
we had to develop the neural networks taking
into  account  6  input  parameters  (the
temperature, the absolute direction of the wind
and the average wind speed for each turbine).

The  17,491  data  samples  that  we  have  used
when developing our forecasting solution have
been accurately measured using the sensors of
the turbines'  equipment.  However, in order to
forecast  both the wind energy production and
the  consumed energy, the wind park  receives
only a single  set  of  NWP forecasted weather
data  from  the  National  Administration  for
Meteorology that we are to use as data inputs
for  the  2MW-WEA01  turbine.  Therefore,  our
neural  networks  solution  must  forecast  at  an
initial stage the weather data corresponding to
the 3MW-WEA02 turbine, located at a distance
of 0.5189 km from the first turbine.

For  this  purpose,  we  have  first  developed,
trained,  validated  and  tested  three  neural
networks for weather forecasting. These are the
following:  one  network  for  each  of  the
algorithms being used (LM, BR, SCG), with 3
weather data sets recorded by the sensors of the
first  turbine,  as  inputs  (the  temperature,  the
absolute  direction  of  the  wind,  the  average
wind speed) and 3  weather data sets recorded
by the sensors of the second turbine as outputs. 

For  each  of  the  algorithms,  we  have  used  a
sequential approach, in order to determine the

optimal number of neurons in the hidden layer
and  after  having  performed  several
experimental tests (with the number of neurons
ranging from 3 to 50), we have noticed that the
best results were obtained by using 15 neurons
in the hidden layer. 

Thus,  we  have  developed  the  weather
forecasting  neural  networks  based  on  the
architecture that has offered the best prediction
accuracy: 3 neurons for the Input data, 15 in the
Hidden layer, 3 in the Output layer and 3 for
the Output data (Figure 4). 

Figure 4. The architecture of the developed weather
forecasting neural networks

In  order  to  train,  validate  and test  the  neural
networks that we have developed based on the
three algorithms, we have divided the data set
as  follows:  70%  was  used  for  training  the
networks  and  15%  for  testing  purposes.  The
remaining  15%  of  data  was  used  for  the
validation process in the cases of the LM and
SCG algorithms,  and  it  remained  unallocated
for  the  BR  algorithm,  as  the  validation  step
does not occur in the case of this algorithm.

We have decided to divide the data sets in this
manner  in  order  to  obtain  comparable  sized
data  sets  in  all  of  the cases  so that  the  final
comparison of the obtained results becomes of
outmost  relevance.  Also,  this  method  of
dividing  the  data  sets  has  provided  the  best
results for all of the developed networks. The
contents of the data samples that make up each
of  the  above-mentioned  percentages  were
chosen randomly. We have tried to forecast the
weather data by dividing beforehand the data
set  according  to  the  months  or  seasons,  thus
obtaining  monthly  or  seasonal  weather
forecasting neural  networks,  but  the networks
had a lower degree of prediction accuracy than
a  global  weather  forecasting  neural  network,
obtained using the entire data set. 

Comparing  the  performance  plots
corresponding  to  the  networks  (developed
using  the LM,  BR and SCG algorithms),  the
error  histograms and the  regressions  between
the  network  targets  and  network  outputs,  we
have  concluded  that  the  best  results  were
achieved  when  using  the  weather  forecasting
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neural  network  based  on  the  BR  algorithm
(NetBaia5MWBRMeteoT2) (Table 1). 

This network has provided the minimum value
of the Mean Square Error (MSE), the best value
of the correlation coefficient R, the narrowest
interval in which most of the errors fall and has
also  the advantage  that  avoids  the overfitting
process.

We  have  used  the  NetBaia5MWBRMeteoT2
weather  forecasting  neural  network  and  we
have  predicted  the  temperature,  the  absolute
direction of the wind, the average wind speed
for  the  3MW-WEA02 turbine.  We have  used
the predicted data set in order to reconstruct the
initial  input  data  set  that  now  contains  the
initial  data  for  the  first  turbine  and  the
predicted data for the second one. 

Having obtained the reconstructed data set over
a two-year period (since 1st January 2013 to 31st

December  2014),  we proceeded to the second
stage of developing our forecasting solution. We
have developed, trained, validated and tested 3
global  energy  forecasting  neural  networks
(covering  the  2-year  period),  based  on  the  3
algorithms,  using the reconstructed data set  as
inputs and  the wind energy production and the
consumed  energy as  outputs.  Through  this
method,  we  have  obtained  good  prediction
results. As we wanted to improve the obtained
accuracy, we have divided the reconstructed data
set into 4 smaller data sets,  based on the four
seasons  specific  to  the  temperate  zone  of
Romania. We have used these seasonal data sets
in order to develop 4  energy forecasting neural
networks per each algorithm (LM, BR, SCG),
resulting  in  a  total  number  of  12  energy
forecasting neural networks. By developing the

seasonal  solution,  we  have  obtained
improvements in the prediction results compared
to the global  approach,  consisting in  a  simple
energy forecasting neural network for the entire
reconstructed data set.

Using an iterative testing procedure,  we have
determined  for  each  of  the  algorithms,  the
appropriate  number  of  neurons  in  the  hidden
layer. We have obtained the best results when
using 12 neurons in the hidden layer. Thus, we
have  developed the energy forecasting  neural
networks  based  on  the  architecture  that  has
offered the best results: 6 neurons for the Input
data, 12 in the Hidden layer, 2 in the Output
layer and 2 for the Output data (Figure 5).

Figure 5. The architecture of the developed energy
forecasting neural networks

We  have  divided  the  data  set  used  for
developing,  validating  and  testing  the  energy
forecasting neural networks in the same manner
as in the case of the weather forecasting neural
networks,  developed  in  the  first  stage  of  the
solution,  as this approach proved to offer  the
best results. 

The  obtained  results  are  summarized  below,
where  MSE represents  the  value  of  the  Mean
Square Error and  R the  value of the correlation
coefficient (Table 2). 

Analysing Table 2,  we have observed that  the
obtained results are comparable and highlight a
high  level  of  accuracy  when  forecasting  the
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Table 1. The performance indicators obtained when developing the weather forecasting neural networks

No. The developed network The used algorithm MSE R 
The intervals in which most

of the errors fall
1 NetBaia5MWLMMeteoT2 LM 0.090774 0.88623 [-65.31; 67.97]
2 NetBaia5MWBRMeteoT2 BR 0.082041 0.89369 [-31.62; 35.16]
3 NetBaia5MWSCGMeteoT2 SCG 0.083352 0.8921 [-69.46; 93.48]

Table 2. The comparison between the results obtained using the LM, BR and SCG algorithms

The prediction period
MSE R

LM BR SCG LM BR SCG
2 Years 0.060908 0.057898 0.066406 0.9333 0.93474 0.92819
Spring 0.048176 0.036081 0.050792 0.96637 0.96722 0.96195

Summer 0.066927 0.059701 0.059853 0.95493 0.95735 0.94918
Autumn 0.073134 0.068371 0.11224 0.94789 0.93749 0.95076
Winter 0.059272 0.055915 0.063179 0.9603 0.96192 0.95458



wind  energy  production  and  the  consumed
energy. Another important remark is that in most
of the cases, the best results are provided by the
seasonal approach and when using the networks
developed based on the BR algorithm.

In  the  following,  we  present  some  of  the
experimental results and we analyse the obtained
performance.  As  the  seasonal  approach  has
provided  improved  results  compared  to  the
global one, we present one of the seasonal sets
of  results,  which  takes  into  account  the
variations  and  particularities  of  the  weather,
during the different periods of the year. 

The summer season has been randomly chosen
together  with  the  energy  forecasting  neural
network based on the BR algorithm. In order to
analyse the performance of this neural network,
we have generated several plots that represent
the best training performance (and the epoch at
which  it  has  been  obtained),  the  errors
histogram and also the regressions between the
network targets and network outputs. 

We have first analysed the training performance
of the energy forecasting neural network based
on  the  BR  algorithm,  developed  for  the
Summer season, "NetBaiaVaraBR".

In  the  performance  plot  we  have  represented
the  train  and  test  curves  for  the
"NetBaiaVaraBR" network.  We have obtained
the  best  training  performance  at  the  102th

epoch, when the value of  MSE was 0.059701.
In this case, the training and the test functions
almost overlap and thus, the graphic highlights
a high level of performance for this network. 

A very important aspect that must be taken into
account for is the overfitting phenomenon that
produces  large  errors  when  new  outputs  are
forecasted based on a new input data set. These
errors occur even if the training of the network
has been completed with very small errors. In
this  case,  the  network  predicts  very well  the
training set, but forecasts and generalizes very
poor new input elements (Figure 6). 

In order to overcome the overfitting issue and
to improve the generalization process, we have
implemented two solutions:  the regularization
and the early stopping. 

The first technique, the regularization, is based
on choosing a performance function as a linear
combination  between the  sum of  the  squared
errors and the sum of the squared weights. The
second  technique  for  improving  the

generalization is useful in the case of the LM
and  SCG  algorithms  and  consists  in
partitioning the data set into three subsets for
training, validation and testing purposes. 

Figure 6. The training performance of the energy
forecasting neural network based on the BR
algorithm, developed for the Summer season

The training subset is useful for computing the
gradient  and for updating the network's  biases
and  weights  while  the  validation  set  helps  in
monitoring  the  error  of  the  training  process.
When the  training  of  the  network  begins,  the
validation error  typically decreases  along with
the  training  set  error.  If  the  overfitting
phenomenon does occur, the validation set error
increases  considerably.  When  the  validation
error has been increasing for a certain number of
training epochs,  the whole process  is  stopped,
the local minimum of the validation error being
represented  by  the  last  value  recorded  before
these  iterations.  The  weights  and  biases  that
correspond  to  the  local  minimum  of  the
validation error are being returned.

The testing subset is useful for verifying that the
data set has been divided correctly. The test set
error is obtained and it is checked if the epoch in
which  it  was  recorded  differs  with  a  large
margin  from the  one  that  corresponds  to  the
minimum  of  the  validation  set  error.We have
configured  the  training  process  to  stop  if  the
mean square error has  been increasing for six
consecutive epochs in the case of the LM and
SCG algorithms. For the BR algorithm, we have
set  the  training  process  to  continue  until  the
convergence  is  reached.  This  means  that  the
sum-squared weights, the sum-squared error and
the number of parameters have become constant.

In  the  case  of  the  "NetBaiaVaraBR"  network,
when we have verified the test and the validation
curves, we have noticed that the test curve does
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not  increase  significantly  before  the  training
curve does  and thus  we can conclude that  an
overfitting  process  did  not  occur.  This  fact
shows an appropriate partitioning of the data sets
and an efficient training of the network. 

Then  we  have  represented  and  analysed  the
error  histogram  for  the  energy  forecasting
neural  network  based  on  the  BR  algorithm,
developed for the summer season (Figure 7).

Figure 7. The error histogram for the energy
forecasting neural network based on the BR

algorithm, developed for the Summer season.

In  the  histogram,  we  have  represented  the
testing  data  through  the  red  bars  and  the
training  data  through  the  blue  bars.  This
representation  is  useful  for  obtaining
information about the outliers (data points that
do not fit as well as the majority of data). In the
analysed case, most of the errors fall between 
-0.2558 and 0.1779, but there are a few points
whose errors fall outside this range.

The error histogram for the energy forecasting
neural  network  based  on  the  BR  algorithm,
developed for the summer season, confirms the
fact that the obtained results are very good. We
need to take into account the fact that our neural
network forecasts two output  parameters,  with
different orders of magnitude: the wind energy
production  varies  between 0  and 5.007 MWh
and the consumed energy varies between 0 and
0.053 MWh. The above-depicted results confirm
the efficiency and usefulness of a normalization
process  that  we  have  applied.  This  process  is
useful when having to forecast multiple output
parameters,  having  different  orders  of
magnitude.  If  the  network  has  not  been
submitted  to  a  normalization  process,  it  will
forecast the first output element very well, while
the  other  output  elements  will  be  poorly
forecasted. In order to overcome this problem,

we  have  applied  a  normalization  process  by
programming  the  'standard'  value  to  the
normalization  performance  parameter  of  the
network. As a consequence, all the errors were
computed  as  if  the  values  of  all  the  output
parameters  were  ranging  in  the  interval  [-1,1]
and  therefore,  all  the  output  elements  were
predicted  with  high  accuracy.  Afterwards,  we
have  represented  and  analysed  the  regression
plots between the network targets and network
outputs,  for  the  energy  forecasting  neural
network based on the BR algorithm, developed
for the summer season.

For  the  BR  algorithm,  we  have  represented
three  regression  plots  that  highlight  the
regressions for the training, the testing and the
whole data set. In these plots, the dashed lines
represent an ideal, perfect fit, when the targets
and the outputs coincide,  while the solid line
corresponds to the best linear regression. The
regression  plot  shows  that  the  correlation
coefficient  is  greater  than  0.95695,  in  all  the
cases  (the  regressions  for  the  training,  the
testing and the whole data set) (Figure 8).

Figure 8. The regressions between the network
targets and network outputs for the energy

forecasting neural network based on the BR
algorithm, developed for the summer season

Analysing the performance plots corresponding
to the "NetBaiaVaraBR" neural  network based
on the BR algorithm, developed for the summer
season,  its  error  histogram  and  the
corresponding regressions between the network
targets and network outputs, we have concluded
that the developed network has proved to offer a
very good forecasting accuracy. This fact suits
perfectly  to  our  purpose,  namely  to  obtain  a
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forecasting solution for small  size  wind farms
located  on hilly terrain  in  Romania,  based  on
artificial  neural  networks,  using  as  input
parameters  the  temperature,  the  absolute
direction of the wind, the average wind speed
and as outputs, the wind energy production and
the  consumed  energy.  Analyzing  all  the  other
global or seasonal networks, we have detected
the  same  advantages,  with  minor  differences
regarding the provided performance.

3.  The  Upscaling  Process  from  5
MW to 10 MW

The Wind Power Plant (WPP) data is analyzed
using SAS Enterprise Guide. We have analyzed
17491 records  of  hourly measured  values  for
several  months,  such  as:  wind  speed,  wind
direction, temperature for each wind generator. 

The correlation coefficient between wind speed
and  output  of  WPP 10  MW is  0.77  and  the
correlation coefficient between wind speed and
output of WPP 5 MW is 0.83. The correlation
coefficients between generated energy of WPP
and  temperature  or  wind  direction  are  lower
than 0.1. 

Comparatively, the two sites where the WPPs
are  located  are  in  the  same  meteorological
resolution  area  and  the  maximum  distance
between  the  turbines  is  less  than  the
meteorological resolution. When we compared
the output of both WPPs (Table 3), we noticed
similarities  between  the  operation  of  WPP 5
MW and WPP 10 MW.

Analyzing  the  recorded  data  during  several
months, we have observed that WPPs operate
20% of the time with 50% of installed power
(Pi)  and  20%  of  the  time  the  WPPs  do  not
operate. Only 2,8% of the time, WPPs operate
at  95%  of  installed  power.  The  correlation
between the output of the WPP 10 MW and the
output  of  the  WPP  5  MW  is  very  strong
(0.83632) mainly due to the location of WPPs
(Figure 9). 

Based on the strong correlation between the two
WPPs,  we proposed to forecast  the output  for
the WPP 10 MW based on the estimated output
of the WPP 5 MW. Therefore, we built a neural
network with two hidden layers, the first layer
with 30 neurons and the second with 20 neurons.
The  input  data  set  contains  records  for  the
average wind speed for the two turbines of WPP

5 MW and for  the  corresponding output.  Our
target is to estimate the output for WPP 10 MW.

Figure 9. Scatter plot – correlation between WPP 5
MW and WPP 10 MW

After  training  the  neural  network,  we  have
obtained a  high  level  of  performance,  with a
mean  square  error  of  0.091754.  Taking  into
account that the results have a good accuracy,
we conclude that using an upscaling technique
based  on  the  data  of  one  WPP,  one  can
precisely forecast the output of the other WPP,
because  they are  located  in  the  proximity  of
each other. 

Finally,  using  the  same  forecasted  NWP, we
have  compared  our  solution  to  existing
software  [24],  using  the  principle  of
comparison  stated  in  [23],  and  we  have
obtained  better  results  (decreasing  standard
error with 3,78% and lowering sample variance
with  2.59%)  for  BAIA 5MW. In  the  case  of
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Table 3. Hourly average output of WPPs 5MW
(10 MW)

Mean 1.455076831
(2.54726788)

Standard Error 0.011388065
(0.02163513)

Median 0.88
(1.411)

Standard Deviation 1.507316958
(2.86361237)

Sample Variance 2.272004413
(8.20027583)

Kurtosis -0.209085348
(0.0929462)

Skewness 0.994940625
(1.1043044)

Range 5.007
(9.954)

Minimum 0
(0)

Maximum 5.007
(9.954)

Sum 25491.491
(44625.5860

Count 17491



BAIA  10MW,  the  prediction  accuracy  is
slightly  increased  with  an  improvement  of
0.78% regarding the MSE.

4. Conclusions

This paper presented the state of the art in wind
energy production. The above-developed ANN
model  is  part  of  the  SIPAMER  software
product,  designed  for  the  wind  power  plant
operator,  in  order  to  forecast  the  next  day
hourly energy production. Besides this feature,
SIPAMER  offers  other  various  statistics  and
forecasts  that  could  be  used  by  existing
operators and potential investors. 

Our contribution to the state of the art consists in
the improved forecasted results for small wind
farms  (BAIA 5MW),  in  comparison  with  the
existing used software [24]. This improvement is
the  result  of  a  two-step  forecast  technique,
which best covers the situation of hilly terrain,
with  the  wind  direction  changing  from  one
turbine to another and the turbines being situated
at different altitudes. Also, another contribution
is the upscaling technique study case, which is
slightly described in the literature. 

We  started  from  one  turbine  and  we  have
forecasted the energy production for six turbines
grouped into two production groups, located in
hilly  terrain  conditions.  The  Romanian  wind
power  energy  market  is  characterised  by  the
large number of small wind farms, most of them
being located in hilly terrain. 

The developed solution is  also useful  for  the
potential  investors  that  intend  to  assess  the
potential of wind energy production in a certain
geographical area that features hilly terrain. 

Our  proposed  solution  implies  the  costs  of
obtaining historical  weather data for a certain
area, but these costs are minor if compared to
the extent of such an investment. After having
being  developed  entirely,  the  SIPAMER
information system will  be offered for sale to
the producers of renewable energy and will also
be  filed  for  a  copyright  registration  to  the
Romanian Copyright Office. 

The particularities for Romania derive from the
dispatching  and  balancing  system  that  is
specific  to  the  Romanian  legislation.  The
reporting module of the SIPAMER information
system is specific to the Romanian market and
the technical prediction module can be used for

any  small  production  capacities  situated  on
hilly terrain geographic areas.

Acknowledgements

This  paper  presents  results  of  the  research
project:  Intelligent  system  for  predicting,
analyzing  and  monitoring  performance
indicators and business processes in the field of
renewable  energies  (SIPAMER),  research
project,  PNII  –  Collaborative  Projects,  PCCA
2013, code 0996, no. 49/2014 funded by NASR.

REFERENCES

1. THE  EUROPEAN  WIND  ENERGY
ASSOCIATION  Wind  in  power  2014
European  Statistics,  2015
(http://www.ewea.org/fileadmin/files/librar
y/publications/statistics/EWEA-Annual-
Statistics-2014.pdf).

2. GLOBAL ENERGY COUNCIL,  Wind in
Number,  2015  (http://www.gwec.net/wp-
content/uploads/2015/03/GWEC_Global_
Wind_2014_Report_LR.pdf).

3. COMMISSION  DECISION  C  (2011)
4938/2011  Green  Certificates  Promotion
Scheme of Energy Produced from Renewable
Energy Sources, European Commission.

4. LAW 220/2008,  Law for Establishing the
System  for  Promoting  Energy  from
Renewable Sources, Romanian Parliament.

5. GIEBEL,  G.,  R.  BROWNSWORD,  G.
KARINIOTAKIS,  M.  DENHARD,  C.
DRAXL,  The  State-of-the-art  in  Short-
Term  Prediction  of  Wind  Power:  A
Literature  Overview, ANEMOS  plus,
2010  (http://www.anemos-
plus.eu/images/pubs/deliverables/aplus.deli
verable_d1.2.stp_sota_v1.1.pdf).

6. BÂRA, A., I.  LUNGU, S. V. OPREA, G.
CĂRUŢAŞU,  C.  P.  BOTEZATU,  C.
BOTEZATU, Design Workflow for Cloud
Service  Information  System  for
Integration  and  Knowledge
Management  Based  in  Renewable
Energy, Journal of Information Systems &
Operations  Management,  Volume  8,
No.2/2014, pp. 230-237.

7. STĂNESCU,  I.  A.,  V.  ŞTEFAN,  G.
NEAGU,  C.  E.  CÎRNU,  Renewable
Energy  Decision Support  Systems:  The

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 85



Challenge of Data Integration, Studies in
Informatics and Control, Vol. 24 (2), 2015,
pp. 191-200.

8. http://www.transelectrica.ro/documents/101
79/32316/7productie19.pdf/3fd49432-
1dd5-46ea-bbd1-02964fe0b6c4,  official
website, accessed on 21.11.2015.

9. D’AMICO,  G.,  F.,  PETRONI,  F.,
PRATTICO,  Wind  Speed  and  Energy
Forecasting at Different Time Scales: A
Nonparametric  Approach,  Physica  A:
Statistical Mechanics and its Applications,
Volume 406, 2014, pp. 59-66.

10. SHI, J., J. GUO, S., ZHENG,  Evaluation
of  Hybrid  Forecasting  Approaches  for
Wind Speed and Power Generation Time
Series, Renewable and Sustainable Energy
Reviews, vol. 16(5), 2012, pp. 3471-3480.

11. LEI, M., L. SHIYAN, J. CHUANWEN, L.,
HONGLING,  Z.  YAN,  A Review on the
Forecasting  of  Wind  Speed  and
Generated  Power, Renewable  and
Sustainable  Energy  Reviews,  Volume  13,
Issue 4, 2009, pp. 915-920.

12. MAATALLAH, O. A., A. ACHUTHAN, K.
JANOYAN,  P.  MARZOCCA,  Recursive
Wind  Speed  Forecasting  Based  on
Hammerstein  Auto-Regressive  Model,
App. Energy, vol. 145, 2015, pp. 191-197.

13. COSTA, A.,  A.,  CRESPO, J.  NAVARRO,
G. LIZCANO, H. MADSEN, E. FEITOSA,
A Review on the Young History of The
Wind  Power  Short-Term  Prediction,
Renewable  and  Sustainable  Energy
Reviews, vol. 12(6), 2008, pp. 1725-1744.

14. CHEN,  K.,  J.  YU,  Short-Term  Wind
Speed  Prediction  Using  an  Unscented
Kalman  Filter  Based  State-Space
Support  Vector  Regression  Approach,
App. Energy, vol. 113, 2014, pp. 690-705.

15. LIU,  H.,  H.  Q.,  TIAN,  Y. F.  LI,  H.  L.
ZHANG,  Comparison of Four Adaboost
Algorithm  Based  Artificial  Neural
Networks  in  Wind  Speed  Predictions,
Energy  Conversion  and  Management,
Volume 92, 2015, pp. 67-81.

16. CHITSAZ,  H.,  N.  AMJADY,  H.
ZAREIPOUR,  Wind  Power  Forecast
Using Wavelet Neural Network Trained
by Improved Clonal Selection Algorithm,

Energy  Conversion  and  Management,
Volume 89, 2015, pp. 588-598.

17. BLONBOU,  R.,  Very  Short-Term Wind
Power  Forecasting  with  Neural
Networks  and  Adaptive  Bayesian
Learning, Renewable Energy, Volume 36,
Issue 3, 2011, pp. 1118-1124.

18. LI,  G.,  SHI,  J.,  On  Comparing  Three
Artificial  Neural  Networks  for  Wind
Speed  Forecasting, Applied  Energy,
Volume 87, Issue 7, 2010, pp. 2313-2320.

19. OLAOFE,  Z.  O.,  A 5-Day  Wind  Speed
&Amp; Power Forecasts Using a Layer
Recurrent  Neural  Network  (LRNN),
Sustainable  Energy  Technologies  and
Assessments, Vol. 6, 2014, pp. 1-24.

20. REN, C., N. AN, J. WANG, L. LI, B. HU,
D.  SHANG,  Optimal  Parameters
Selection for BP Neural Network Based
on Particle Swarm Optimization: A Case
Study  of  Wind  Speed  Forecasting,
Knowledge-Based  Systems,  Volume  56,
2014, pp. 226-239.

21. YEH, W. C., Y. M. YEH, P. C. CHANG, Y.
C.  KE,  V.  CHUNG,  Forecasting  Wind
Power  in  the  Mai  Liao  Wind  Farm
Based  on  the  Multi-Layer  Perceptron
Artificial  Neural  Network  Model  with
Improved  Simplified  Swarm
Optimization, Intl. J. of El. Power & En.
Sys., vol. 55, 2014, pp 741-748.

22. FOLEY,  A.  M.,  P.  G.  LEAHY,  A.
MARVUGLIA, E. J. MCKEOGH, Current
Methods and Advances in Forecasting of
Wind  Power  Generation,  Renewable
Energy, Volume 37, no. 1, 2012, pp. 1-8.

23. KARINIOTAKIS,  G.,  I.  MARTÍ,  D.
CASAS,  et  al.,  What  Performance  Can
Be Expected by Short-Term Wind Power
Prediction  Models  Depending  on  Site
Characteristics, In Proc. of the European
Wind Energy Conference EWEC 2004.

24. Wind  Power  Energy,  official  website,
www.wpe.ro, accessed on 13.11.2015.

25. MONTEIRO,  C.,  R.  BESSA,  V.
MIRANDA,  A.,  BOTTERUD,  A.  J.
WANG, G. CONZELMANN, Wind Power
Forecasting:  State-of-the-art  2009.,  No.
ANL/DIS-10-1.  Argonne  National
Laboratory. (ANL), 2009.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 201686


