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1. Introduction 

Continuous time sliding mode controllers were 
introduced in Russia in late 1950s [1, 2]. Soon, 
they have proved to be computationally 
efficient, easy to tune and insensitive with 
respect to a class of external disturbances and 
model uncertainties [3]. These highly desirable 
properties made them very attractive for the 
control engineering community [4 – 7]. The 
classical method of designing a sliding mode 
controller consists of stating the control law 
and proving that it ensures stability of the 
sliding motion. However, digital 
implementation of this control may result in 
undesirable chattering, i.e. high frequency 
oscillations that may cause energy loss or plant 
damage. In order to prevent this effect, discrete 
time sliding mode controllers were developed 
in 1980s [8, 9]. 

The introduction of discrete time quasi-sliding 
modes led to many further advances in the field 
[10 – 21]. Furuta proposed an algorithm that 
drives the system state to a cone-like sector 
defined in the state space [10]. An alternative 
method introduced by Gao et. al. in [11] drives 
the state strictly to a vicinity of the sliding 
hyperplane, rather than to some sector. That 
work presents the switching type discrete time 
sliding mode control, i.e. it requires the control 
strategy to drive the system state to the other 

side of the switching surface in each 
consecutive sampling instant. On the other 
hand, the equivalent control method used by 
Bartolini et. al. [12] drives the state to a certain 
neighbourhood of the sliding hyperplane 
without the need to cross the manifold in every 
sampling instant. This non-switching type 
discrete time sliding mode control was then 
studied by Bartoszewicz [13]. The width of the 
boundary layer in this case was further 
considered by Su et. al. [14]. Afterwards, an 
integral sliding mode control strategy has also 
been proposed in order to eliminate the 
reaching phase in discrete time sliding mode 
control [15]. An exhaustive review of the 
discrete time sliding mode control literature can 
be found in paper [16]. 

One of the main drawbacks of the sliding mode 
control methodology is the need for full 
information about the system state at the 
moment of calculating the control signal. Since 
this requirement often limits the applicability of 
such strategies, various authors have worked on 
that problem. Corradini and Orlando utilized 
the concept of time-delay control to estimate 
the effects of uncertainties in the switching 
region [17]. Bandyopadhyay and Janardhanan 
proposed a novel method called multirate 
output feedback approach [18], in which each 
value of the control signal is calculated based 
on multiple output samples. The approach was 
further discussed in papers [19 – 21]. 
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In early years of sliding mode control, the 
design procedure included proving stability of 
the sliding motion by finding an appropriate 
Lyapunov function. However, that stage can be 
circumvented by utilizing an alternative method 
of sliding mode controller design called the 
reaching law approach. This approach, first 
proposed in [22] for continuous time systems 
and in [11] for discrete time ones (see [23] for 
further analysis), is based on stating the desired 
evolution of the sliding variable and applying 
the evolution to synthesize a feasible control 
law. Various authors have proposed new 
control methods based on the reaching law 
approach [24 – 28], which greatly improved 
upon the classic equivalent control or the 
constant-plus-proportional reaching law 
introduced by Gao et. al. [11]. The case of 
mismatched disturbance has also been 
considered in several works [29 – 31]. 

In recent years, the area of broadband 
connectivity has experienced rapid growth. 
Consequently, the increase of traffic intensity 
in data transmission networks highlighted the 
importance of efficient congestion control. 
Since the physical channel capacity does not 
grow as fast as the bandwidth demand, it 
became vital to implement new data transfer 
solutions. This area of research has been 
investigated by various authors [32 – 46]. An 
overview of earlier congestion control 
strategies is presented in [32]. Then, the 
problem of source rate synchronization present 
in several of the earlier algorithms has been 
tackled in [33]. Furthermore, an extensive new 
approach to flow rate controller design was 
proposed in [34]. In the same work, novel 
stochastic algorithms for data transmission 
networks have been proposed. Furthermore, 
various researchers at that time proposed 
strategies based on the classical PD controllers 
[35], PID controllers [36], adaptive methods 
[37] or fuzzy PID controllers [38]. 

An important issue that arises in congestion 
control of data transmission networks is the 
presence of long propagation delays. To 
address this problem, many authors have 
employed control schemes based on a Smith 
predictor. First, Mascolo introduced an 
algorithm that uses the difference between the 
queue length and its demand value as well as 
the number of ‘in flight’ packets to calculate 
the flow rate. This method was initially applied 
to a simplified case with a single virtual 
connection [39] and then extended to networks 

consisting of multiple connections [40]. Then, a 
method combining the Smith predictor with the 
PI controller was proposed [41] and shown to 
reduce the average bottleneck queue length. 
The idea of combining the Smith predictor with 
a proportional controller with saturation was 
further explored by De Cicco et. al. [42]. 

In recent years, several researchers have 
utilized sliding mode control to regulate the 
data flow in communication networks. 
Bartoszewicz and ĩuk proposed to model the 
data transmission networks as discrete time 
systems with the available bandwidth acting as 
the disturbance [43]. In the same work, an 
algorithm ensuring a finite time response of  
the system was presented. Afterwards, various 
authors utilized discrete-time integral              
sliding mode control [44, 45], which offers 
good robustness at the price of relative 
complexity  of controller design. Baburaj and 
Bandyopadhyay further proposed a simplified 
approach based on deriving a first order model 
of the network and applying a method based on 
equivalent sliding mode control [46]. An 
extensive review of congestion control 
techniques can be found in [30]. 

In this paper, data flow in communication 
networks will be regulated by means of 
reaching law based sliding mode control. The 
main contribution of such an approach is 
providing good robustness with respect to 
unpredictable bit rate variations and packet 
losses, while ensuring a computationally 
efficient controller operation. In contrast to a 
similar approach proposed in [30], the method 
introduced in this paper does not require the 
packet losses to be a priori known or constant. 
The networks considered in this work consist 
of several data sources and a common 
bottleneck link. Data sent from the sources is 
queued at the bottleneck link up to a certain 
maximum value determined by the buffer 
capacity. The objective of the control strategy 
is to ensure that the buffer capacity is never 
exceeded and that the available bandwidth is 
always fully utilized. Furthermore, the control 
signal should neither require the sources to 
send a negative amount of data, nor to exceed 
their maximum transmission capabilities.           
The upper and lower bounds of the control 
signal and the bottleneck queue length will         
be ensured by an appropriate choice of the 
design parameters. This will be achieved in 
the presence of mismatched uncertainty, 
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which appears in the discrete model of                
the network. 

2. Communication Network Model 

In this paper, connection oriented 
communication networks consisting of multiple 
data sources, intermediate nodes and 
destinations are considered. Data from all m 
sources is queued at a common bottleneck link 
up to a certain amount determined by the buffer 
capacity. The bottleneck queue length is 
denoted by y(kT), where T is the sampling 
period. It is assumed that the queue is empty 
prior to the beginning of the control process, 
i.e. y(kT) = 0 for k ≤ 0. Function d(kT) 
represents the available bandwidth. In this 
paper, best-effort networks with variable bit 
rate are considered, which means that the value 
of d(kT) is a priori unknown, but for any k it is 
upper bounded by a certain constant dmax. The 
amount of data that actually leaves the 
bottleneck link at a given time is represented by 
h(kT), where 

max0 ( ) ( ) .h kT d kT d     (1) 

Control signal u(kT) is calculated based on the 
current queue length and past control signals (it 
is assumed that u(kT < 0) = 0). Then, the signal 
is distributed among all data sources according 
to their maximum transmission rates. If the 
maximum admissible transmission rate of the j-
th source is ujmax, then the control signal 
allocated to the source 

max

max

( ) ( ) ,j

j

u
u kT u kT

u
   (2) 

where  umax is the sum of all ujmax. Signal (2) 
arrives at the j-th source after a backward delay 
TjB. Then, data is sent from the source to the 
bottleneck link with a forward delay TjF. The 
round trip time for each source is denoted as 

F B.j j jRTT T T   (3) 

Discretization period T is selected to ensure 
that for each j = 1, …, m, RTTj is a multiple of 
T. Some of the data packets can be lost during 
transmission to the bottleneck link. Therefore, 
the amount of data from the j-th source that 
arrives at the destination at a given time kT is 
equal to the control signal u(kT – RTTj) 
multiplied by αj(kT)  [αjmin, αjmax]. Naturally, 
αjmin > 0 and αjmax ≤ 1 for each j = 1, …, m. It is 

assumed that the amount of data that can reach 
the bottleneck link at any moment is always 
strictly greater than the amount of data that can 
leave it, i.e.  

min max max
1

.
m

j j

j

u d


  (4) 

This assumption is made to guarantee that it is 
always possible to maintain positive values of 
bottleneck queue length. It is a necessary 
(albeit not sufficient) condition for ensuring 
full utilization of the available bandwidth. The 
queue length at any sampling instant 

1 1

0 1 0

( )

( ) ( ) ( ).
k m k

j j j

l j l

y kT

lT u lT RTT h lT
 

  

      (5) 

In order to simplify the model, all connections 
with equal round trip times are first grouped 
together and expressed as a single virtual 
connection. The amount of data arriving at the 
bottleneck from each virtual connection at the 
moment kT is βr(kT)u(kT – rT), where 

max

:
max

( ) ( ) .
j

j

r jj RTT rT

u
kT kT

u
 


    (6) 

for r = 1, …, max(RTTj /T). When there are no 
sources such that RTTj /T = r for a given r, then 
βr(kT) = 0. Denoting n = max(RTTj /T) + 1, one 
can express the queue length y as 

1 1 1

0 1 0

( )

( ) ( ) ( ).
k n k

r

l r l

y kT

lT u lT rT h lT
  

  

   
 (7) 

For each r = 1, …, n – 1, coefficients 

min max r, , ,r r r     are defined in the 

following way 

 
 

max
min min:

max

max
max max:

max

max min

max min

,

,

/ 2,

/ 2.

j

j

j

r jj RTT rT

j

r jj RTT rT

r r r

r r r

u

u

u

u

 

 

  

  





 

 

 

 



   (8) 

Next, the following representation of the 
considered network is obtained. System 
dynamics are expressed in the state space as 
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T

[( 1) ] ( ) ( ) ( )

( ) ( )

( ) ( ).

k T kT kT kT

u kT h kT

y kT kT

  
 



x Ax A x

b p

q x



  (9) 

The first state variable of the n dimensional 
state vector x(kT) is the queue length y(kT). The 
remaining variables represent delayed control 
signals. In other words, for any i = 1, …, n 

( ) for 1
( )

[( 1) ] for 1i

y kT i
x kT

u k n i T i


     

  (10) 

The n × n dimensional state matrix 

1max 2max 1max1

0 0 1 0

0 0 0 1

0 0 0 0

n n    
 
 
 
 
 
  

A



  



  (11) 

and matrix representing parameter uncertainties 

1 10 ( ) ( )

0 0 0
( ) ,

0 0 0

na kT a kT

kT

 
 
 
 
 
 

A

 


  



 (12) 

where for every i = 1, …, n – 1 

max( ) ( ) .i i ia kT kT     (13) 

Moreover, n × 1 dimensional vectors b, p, q are 

0 1 1

0 0
, , .

0

1 0 0

     
     
       
     
     
     

b p q


 
  (14) 

Finally, h(kT)  [0, dmax] is an a priori unknown 
scalar function representing the disturbance. A 
diagram illustrating the considered class of 
networks is shown in Figure 1. In the next 
section, this model will be utilized to design a 
congestion controller for the network. 

3. Control Strategy 

The goal of the control strategy is to ensure the 
following properties of the system: 

- Control signal u must be non-negative and 
upper bounded due to limited data             
transfer rate. 

- Queue length y must be upper bounded 
for all time instants due to the limited 
data buffer size capacity. 

- After max(RTTj /T) initial steps, queue 
length y must be strictly positive to ensure 
that the available bandwidth is fully 
utilized. 

To that end, the strategy will lead the system 
state x(kT) to a certain desired value xd. Vector 
xd is defined as [yd 0 … 0]T, where yd is a 
positive constant selected by the designer. The 
choice of yd will be discussed in greater detail 
later in this paper. Let the sliding surface be 
defined as 

T T T
1

( )

( ) ( ) 0.d d

s kT

kT c y kT    c x c x c x
 (15) 

Vector c in relation (15) is selected to ensure a 
finite time response of the discrete system [43], 
which means it must satisfy 

 T 1 Tdet ( ) ,n

n nz z    I I b c b c A   (16) 

where cT
b ≠ 0. Substituting parameters (11) and 

(14) into (16), we obtain elements of vector c  

1

max
1

1 for 1

for 2, ..., .
i

i

n r

r

i

c
i n







  


  (17) 

In this paper, a new sliding mode control 
strategy for communication networks (9) will 
be obtained by means of reaching law 
approach. In other words, the desired 
evolution of the sliding variable s(kT) will 
first be defined in the form of a reaching law, 
and then the control signal will be calculated 
from the law. 

3.1 Proposed reaching law based strategy 

We propose the following original reaching law 
for the considered network 

T

0

[( 1) ] ( ) ( ) ( )

( ) [ ( )]sgn[ ( )],

s k T s kT kT kT

h kT F s f s kT s kT

  
  

c A x
  (18) 
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where s0 is the design parameter, f is a               
non-negative upper bounded by 1 function 
expressed as 

2

2
0

( )
[ ( )] 1 exp

s kT
f s kT

s

 
   

 
  (19) 

and F is a positive constant 

1
max

max
1

.
2

n

r

r

d
F u 





     (20) 

It is easy to notice that if |s(kT)| is relatively 
large, the absolute value of the sliding variable 
will decrease by approximately s0 in the next 
step. Thus, the proposed reaching law ensures a 
fast convergence of the sliding variable to the 
vicinity of 0. On the other hand, for small 
values of |s(kT)|, the term s0f[s(kT)] decreases, 
which in turn reduces the sliding variable rate 
of change when the variable is in the vicinity of 
0. In order to derive the control signal from the 
proposed reaching law, s[(k + 1)T] is first 
substituted from (15) into (18) 

T T

0

[( 1) ] ( ) ( ) ( )

( ) [ ( )]sgn[ ( )],
dy k T s kT kT kT

h kT F s f s kT s kT

   
  

c x c A x
 (21) 

Further substituting x[(k + 1)T] from (9) into 
(21) and solving for u(kT), one obtains 




T 1

T
0

( ) ( ) ( )

[ ( )]sgn[ ( )] ( ) .

du kT s kT y F

s f s kT s kT kT

   

 

c b

c Ax
  (22) 

The obtained control law can be simplified 
taking the known system parameters into 
account. To that end, the following fact will be 
brought up in the form of a lemma. 

 

Lemma 1: If matrix A and vector c are defined 
by (11) and (17) respectively, then cT

Ax = cT
x 

for each state x. 

Proof: For the sake of clarity, proof is given in 
Appendix 1. 

Taking Lemma 1 and relations (14) and (17) 
into account, control law (22) can be rewritten 
in the following way 

 
11

max 0
1

( )

[ ( )]sgn[ ( )] .
n

r

r

u kT

s f s kT s kT F




 
  
 


  (23) 

Since total data transmission capabilities of all 
m sources are limited by umax, parameter s0 in 
relation (23) should be selected in a way that 
imposes a global upper bound umax on the 
control signal. The following theorem provides 
the parameter which satisfies this criterion. 

Theorem 1: If 

11

0 max max
1

,
n

r

r

s u F




   
 
   (24) 

then for any time kT the control signal u(kT) is 
not greater than umax. Furthermore, s0 selected 
in such a way is always strictly greater than F. 

Proof: First it will be shown that the control 
signal u(kT) is upper bounded by umax. Since for 
any s(kT) function f is upper bounded by 1, it 
follows from (23) that 

 
11

max 0
1

( ) ,
n

r

r

u kT s F




 
  
 
  (25) 

Substituting s0 from (24) into (25), one obtains 
u(kT) ≤ umax, which proves the first part of the 
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theorem. Next, it will be shown that the 
selected s0 is strictly greater than F. Indeed 

 
1

0 max min max min
1

1 1

max min max
1 1

1

min max max
1 1

2

2 .

n

r r r

r

n n

r r

r r

m n

j j r

j r

s u F

u u F

u u F

  

 

 





 

 



 

   

  

  



 

 

  (26) 

Furthermore, taking relation (4) into account, 
one obtains 

1

0 max max
1

2

2 .

n

r

r

s d u F

F F F






  

  


 (27) 

3.2 Properties of the strategy 

It will be shown that reaching law (18) ensures 
that once the system state enters a certain band 
around the sliding plane, it will remain inside 
the band for all future sampling instants. 
Furthermore, when the state is out of the band, 
it will approach the band at least 
asymptotically. In order to prove those 
properties, a helpful fact in the form of a 
lemma is first demonstrated. 

Lemma 2: If s1 ≤ s2 (s1, s2  R), then for any 
s0 > 0 the following inequality is satisfied 

1 0 1 1

2 0 2 2

( )sgn( )

( )sgn( )

s s f s s

s s f s s


 

  (28) 

Proof: For the sake of clarity, proof is given in 
Appendix 2. 

It will first be shown that the sliding variable is 
always lower bounded. To that end, the 
following theorem will be proven. 

Theorem 2: If s0 is selected according to (24), 
then for any k 

0
0

0

( ) ln .
s

s kT q s
s F

 
      

 (29) 

Proof: The proof is based on the principle of 
strong mathematical induction. If s(0) ≥ –q and 
the implication 

0,..., ( ) [( 1) ]l k s lT q s k T q         (30) 

holds for any k ≥ 0, then one can conclude from 
strong mathematical induction that s(kT) ≥ –q 
for all k. Relation (14) gives s(kT) = yd –
 cT

x(kT). Since for the considered class of 
systems x(0) is always equal to 0, one gets 
s(0) = yd > 0 > –q. It is therefore sufficient to 
show that (30) is true for each k. Let k be an 
arbitrarily selected natural number and let 
s(lT) ≥ –q for l = 0, …, k. Since s(kT) ≥ –q, 
Lemma 2 implies 

0

0

( )

( ) [ ( )]sgn[ ( )].

q s f q

s kT s f s kT s kT

  
 

  (31) 

Consequently, relation (18) gives 

T

0

[( 1) ] ( ) ( )

( ) ( ).

s k T q kT kT

h kT F s f q

   
   

c A x
  (32) 

From (19) it can be seen that 

2

0 0 2
0

( ) 1 exp .
q

s f q s F
s

  
      

  
  (33) 

Substitution of (33) into (32) yields 

T[( 1) ] ( ) ( )

( ).

s k T q kT kT

h kT

   


c A x
 (34) 

As stated in (10), state variables x2, …, xn 
represent delayed control signals. Therefore, 
relations (12) and (17) give 

 

T

1

max
1

( ) ( )

( ) [( ) ],
n

r r

r

kT kT

kT u k r T 




   

c A x

  (35) 

where βr(kT) – βrmax ≤ 0 for each r. Since 
s(lT) ≥ –q for l = 0, …, k and function 
f[s(kT)]sgn[s(kT)] is strictly increasing with 
respect to s(kT), relation (23) implies 

 

 

11

max 0
1

11

max
1

( ) ( )

0

n

r

r

n

r

r

u lT s f q F

F F













     
 

     
 




  (36) 

for l = 0, …, k. Furthermore, it has already    
been stated that u(kT < 0) = 0. Consequently, 
relation (35) gives 
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T ( ) ( ) 0.kT kT c A x   (37) 

Moreover, for any k relation (1) implies 
h(kT) ≥ 0. Taking that fact and inequality (37) 
into account, (34) becomes 

[( 1) ] 0 0 .s k T q q        (38) 

Therefore, implication (30) holds for the 
selected k. Since k was chosen arbitrarily, one 
can conclude that (30) is always true. 
Moreover, since s(0) > –q, the principle of 
strong mathematical induction gives s(kT) ≥ –q 
for any k. ฀   

Remark 1: Theorem 2 has shown that s(kT) 
≥ –q for all k ≥ 0. Therefore, relation (36) will 
remain true for any k and consequently, the 
obtained lower bound of the control signal 
becomes global. That fact, together with 
Theorem 1, imply that the control signal 
generated by the proposed strategy will always 
be non-negative and upper bounded by umax. 
Therefore, the strategy will never require the 
sources to send a negative amount of data or to 
exceed their transmission capabilities. 

It has been demonstrated that the sliding 
variable is always lower bounded. It will             
now be shown that if the variable enters a 
certain band around the switching plane, it will 
remain inside the band for all subsequent 
sampling instants. 

Theorem 3: If s0 is chosen as stated in (24) and 

0
0

0

( ) ln
s

s kT q s
s F

 
    

 (39) 

for a certain k, then s[(k + 1)T] ≤ q. 

Proof: Let s(kT) be not greater than q.               
Lemma 2 gives 

0

0

( ) [ ( )]sgn[ ( )]

( ).

s kT s f s kT s kT

q s f q


 

 (40) 

Since function f is even, (33) implies  
s0f(q) = s0f(–q) = F. Furthermore, Remark 1 and 
Theorem 1 state that the control signal is 
always non-negative and upper bounded by 
umax. Consequently, the expression on the right 
hand side of (35) will always be non-positive. 
Thus, relations (8) and (35) give 

   

 

1T
max 1

1

max1

1

max 1
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max max1

1

max 1

1

max 1

( ) ( )

( ) ( )

( )
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r rr
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u
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  

 





























   



  

   

 









c A x

 (41) 

Moreover, relation (1) implies 

max max( ) / 2 / 2.d kT d d    (42) 

Taking inequalities (40), (41) and (42) into 
account, substitution of (20) into (18) yields 

T
0

1T
max 1

max

1

max max1

[( 1) ]

( ) ( ) ( ) ( )

( ) ( )

( ) / 2

/ 2

n

rr

n

rr

s k T

q kT kT h kT F s f q

q kT kT u

h kT d F

q u d F















    

  

  

   





c A x

c A x



  (43) 

.q F F q    ฀    

Taking Theorem 2 and Theorem 3 into 
consideration, one concludes that if the system 
state enters a quasi-sliding mode band  

T 0
0

0

: lnd

s
y q s

s F

          
x c x  (44) 

then it will remain inside the band in all 
subsequent sampling instants. Furthermore, 
Theorem 2 states that the sliding variable can 
never assume values smaller than –q. 
Consequently, if the system state is out of the 
band, then the sliding variable must be greater 
than q. The following theorem will demonstrate 
that if s(kT) > q, then the state will approach the 
band (44) at least asymptotically. 

Theorem 4: If x(kT) is such a state that 
s(kT) > q, then the system state will reduce its 
distance from the band (44) in every 
subsequent step and either enter the band in 
finite time or approach it asymptotically. 

Proof: Let s(kT) be greater than q. Then, 
relation (19) implies f[s(kT)] > f(q). 
Furthermore, from (41) and (42) one obtains 
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1

0 max max 1

[( 1) ]

( ) ( ) / 2

( ) ( ).

n

rr

s k T

s kT s f q d u

s kT F F s kT







   

   
  (45) 

Therefore, when s(kT) is greater than q, the 
system state will approach the band (44) in the 
next step. Consequently, the state will either 
enter the band in finite time or converge 
asymptotically to a certain positive value. 
Theorem 3 states that if the state enters the 
band, it will remain inside it for all future steps. 
On the other hand, if s(kT) asymptotically 
approaches a certain value q+ > 0, then 

 0

0

lim [( 1) ]

lim ( ) [ ( )]

( ) .

k

k

s k T

s kT s f s kT F

q s f q F


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 



  

  

 (46) 

As s[(k + 1)T] also converges to q+, (46) gives 

0 ( ) .q q s f q F      (47) 

Solving (47) for q+, one obtains q+ ≤ q, which 
means that if s(kT) > q, the system state is 
either confined to the band (44) in finite time 
or, in the worst possible case, asymptotically 
approaches the band. ฀   

As stated at the beginning of this section,                  
it is required that after a certain finite amount 
of steps, the queue length y(kT) is strictly 
greater than 0 to guarantee that the available  
bandwidth is fully utilized in every step.               
This property is ensured by the appropriate 
choice of target queue length yd as stated in the 
following theorem. 

Theorem 5: If k > max(RTTj /T) and 

max
2

,
n

d i

i

y u c q


   (48) 

then y(kT) is always strictly greater than 0. 

Proof: Let k be any natural number greater 
than max(RTTj /T). It will be shown that 
y(kT) > 0. Two cases will be considered: for 
s(kT) outside and inside the band (44).  

Case 1: First let s(kT) > q. Theorem 4 states 
that s(lT) > s(kT) for each l = 0, …, k – 1. 
Furthermore, since f[s(kT)]sgn[s(kT)] is 
increasing with respect to s(kT), one obtains 

 

 
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   
 

        
   



 

(49) 

for l = 0, …, k – 1. Moreover, relation (7) implies 

1

1

( ) [( 1) ] [( 1) ]

( ) ( ).
n

r

r

y kT y k T h k T

kT u kT rT




   

 
 (50) 

Since k > max(RTTj /T) = n – 1, all elements 
u(kT – rT) in relation (50) are lower bounded      
as stated in (49). Furthermore, it is known      
from (1) that h[(k – 1)T] is upper bounded                 
by dmax. Finally, the queue length y[(k – 1)T]                 
is always non-negative. Consequently,                 
relation (50) implies 

11 1

max max
1 1

11 1

min max max
1 1

( ) 2 ( )

2 .

n n

r r
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 
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 

       

     
  

 

 
 (51) 

Substituting F from (20) into (51) and further 
substituting βrmin from (8) into (51), one obtains 

11 1

max min max max
1 1
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min max max
1 1 1
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  (52) 

Relation (52), together with (4), give 
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 

 
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   (53) 

0.    

Thus, when s(kT) > q for k > max(RTTj/T), the 
queue length is always strictly positive.  

Case 2: Now let s(kT) ≤ q. Relation (15) gives 
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2

( ) [( 1) ] .
n
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i

y y kT c u k n i T q


       (54) 

Theorem 1 states that for the selected s0, 
control signal is always upper bounded by umax. 
Therefore, relation (54) yields 

2
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( ) [( 1) ]

.

n

d i

i

n

d i

i

y kT y c u k n i T q

y u c q





     

  




 (55) 

When inequality (48) is satisfied, the right hand 
side of relation (55) is always strictly positive. 
In conclusion, if  yd is selected according to 
(48), then bottleneck queue length y(kT) is 
strictly positive for all k > max(RTTj/T). ฀   

Finally, the problem of limited data buffer size 
will be considered. Since one of the objectives 
is to prevent the loss of data at the bottleneck 
link, the strategy must ensure that the queue 
length is upper bounded for all time instants. 
That property will be demonstrated in the 
following theorem. 

Theorem 6: For any k ≥ 0, the following 
inequality is satisfied 

( ) ,dy kT y q    (56) 

Proof: Substitution of s(kT) from (15)                  
into  (29) yields 

2

( ) [( 1) ] .
n

d i

i

y kT y c u k n i T q


       (57) 

Remark 1 states that u(kT) is always non-
negative. Therefore 

( ) .dy kT y q   (58) 

Thus, inequality (55) is always satisfied. ฀   

4. Simulation Example 

The effectiveness of the proposed method will 
be demonstrated by means of a simulation 
example. The strategy will be applied to a 
network consisting of 4 data sources.  

Parameters of the sources are shown in           
Table I. The sampling period T = 0.1ms. Total 
amount of data that can be sent by all sources 
during the selected sampling period is 
umax = 10Mb. The available data buffer 
capacity, i.e. the maximum amount of data 

queued at the bottleneck equals 40Mb. For 
each j, the fraction of data that actually arrives 
at the bottleneck link is 

/50max min max min

( )

( 1) .
2 2

j

kTj j j j

kT

      
 

   
 (59) 

The maximum amount of data that can leave 
the bottleneck link buffer at any given time 
dmax = 6Mb (which satisfies (4)). The available 
bandwidth is described by 

/50 /25

( )

3 1.5 ( 1) 1.5 ( 1) .kT kT

d kT

            
 (60) 

Naturally, the actual disturbance h(kT) will be 
equal to its upper bound d(kT) unless the 
amount of data at the bottleneck link is            
smaller than d(kT). However, according to 
Theorem 5, this can only occur in the first 3 
time instants. Sources with the same round 
trip times are grouped together according to 
(6). Then, coefficients βr are calculated 
according to (8) for r = 1, 2, 3. The results are 
shown in Table 2.  

Table 1. Parameters of the Sources 

Parameter 
Source 

1 
Source 

2 
Source 

3 
Source 

4 
ujmax  3 2 3 2 
TjF  0.03 0.05 0.07 0.08 
TjB  0.07 0.15 0.13 0.22 

RTTj  0.1 0.2 0.2 0.3 
αjmin 0.6 0.6 0.7 0.5 
αjmax 1 0.8 0.9 1 

 

Table 2. Virtual Connection Coefficients 

Parameter VC1 VC2 VC3 
βrmax 0.3 0.43 0.2 
βrmin 0.18 0.33 0.1 
βr 0.24 0.38 0.15 
δβr 0.06 0.05 0.05 

 

Matrix A (dimA = 4×4) is defined as shown in 
(11) and vector c is selected according to (16). 
Coefficient F, calculated according to (19), 
equals 4.6Mb. Theorem 1 determines 
s0 = 4.7Mb > F. Consequently from (29) we get 
q = 9.2222Mb. The choice of the demand queue 
length yd is restricted by (48), which means that 
yd > 30.1222Mb. On the other hand, Theorem 6 
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states that the queue length is upper bounded by 
yd + q. Since in this example that sum must not 
exceed 40Mb, the demand queue length is set to 
yd = 40Mb – q = 30.7778Mb. Finally, control 
law (23) determines the amount of data sent in 
each sampling instant. Figure 2 illustrates the 
evolution of the sliding variable, Figure 3 shows 
the bottleneck queue length and Figure 4 
presents the control signal.  

 

Figure 2. Sliding Variable 

 
Figure 3. Bottleneck Queue Length 

 
Figure 4. Control Signal 

It can be seen from Figure 2 that the sliding 
variable quickly enters the band (44) presented 
with black dashed lines and remains inside it in 
all subsequent sampling instants. Figure 3 shows 
that bottleneck queue length is always positive 
and upper bounded by 40Mb, which means that 
the available bandwidth is fully utilized and no 
data is lost at the bottleneck link. Finally, it can be 
seen from Figure 4 that the control signal never 
exceeds 10Mb and is always non-negative. 

5. Conclusions 

In this paper, a new reaching law for 
connection oriented communication networks 
has been proposed. Then, the reaching law has 
been utilized to obtain a sliding mode control 
strategy for the considered networks. It has 
been demonstrated that the proposed strategy 
ensures full utilization of the available 
bandwidth. Furthermore, the strategy 
guarantees that data transmission capabilities of 
the sources are not exceeded and that no data is 
lost at the bottleneck link. 

Appendix 1 

Proof of Lemma 1: It will be shown that for 
the matrix A defined by (11) and vector c 
defined by (17), equality c

T
Ax(kT) = cT

x(kT) 
holds for any x(kT). Left hand side of the 
equality is first expressed as 

 

T

T T

( )

( ) ( ).n

kT

kT kT  

c Ax

c A I x c x
 (61) 

Relation (11) implies 

 
 

T

1 1max 2 1 1max 10 .

n

n n nc c c c c  



   

c A I


9(62) 

Substituting values of ci from (17) into (62), 
one obtains 

   T 0 0 0 0 .n c A I   (63) 

Therefore, the right hand side of (61) becomes 
c

T
x(kT). ฀   

Appendix 2 

Proof or Lemma 2: It will be shown that the 
function g(z) = z – s0f(z)sgn(z) is always 
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increasing with respect to z. It is sufficient                  
to show that 

2

2
0 0

( ) 1 2 exp sgn( )
d z z

g z z
dz s s

 
   

 
 (64) 

is always strictly greater than 0. To that end, it 
will be demonstrated that the global minimum 
of (64) is positive. The only points where the 
minima can occur are the solutions of 

 

2

2

2
2 2

03 2
0 0

( )

2
2 exp sgn( ) 0,

d
g z

dz

z
z s z

s s

 
    

 

 (65) 

which are 2/0sz  . Indeed, since 

3

03 2 2
0

4 2
( / 2) 0,

d
g s

dz e s
    (66) 

global minima exist in both of those points. 
Furthermore, 

0( / 2) 0.1422 0
d

g s
dz

    (67) 

and it can be concluded that (63) is always 
positive. Consequently, function g(z) is always 
increasing with respect to z. 
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