
1. Introduction

One  of  the  objectives  of  an  efficient

management  plan  in  a  port  is  to  reduce  the

berthing time of vessels. The port efficiency is

determined  by  the  main  container  terminal

operations,  namely  the  vessel  berthing

operation,  (quay  or  yard)  crane

unloading/loading  operations  and  container

shifting and storage operations. 

In order to develop better operational strategies

and  investment  plans,  researches  identified

several optimization problems along the years

and  developed  different  tools  based  on

intelligent  techniques  in  order  to  achieve

optimal solutions (Figure 1).

Figure 1. The most common optimization problems

in container terminals

The  Container  Stacking  Problem(CSP)

consists in relocating the containers to ensure

easy access  to  them so that  the  yard  cranes

don't  have  to  do  further  reshuffles  at  the

expected time of transfer (e.g. [3], [10]). The

CSP is classified as a three dimensional  bin

packing  problem  in  [6],  and  a  genetic

algorithm is proposed to solve it.  The Berth

Allocation  Problem  (BAP)  and  the  Quay

Crane Assignment Problem (QCAP) refer  to

the  allocation  of  docks  and  quay  cranes  to

incoming  vessels  under  several  constraints

and priorities (see [11], where the CSP, BAP

and  QCAP  problems  are  considered  and  a

computer-based decision support system that

integrates the solution of the three problems

is provided).

The Quay Crane Scheduling Problem (QCSP)

main objectives are first to find the assignment

of tasks to quay cranes and then to determine

the tasks sequence for each quay crane in order

to minimize the handling time while respecting

certain  constraints  (a  feasible  solution  to  this

problem is  found in  [8]  using  a  probabilistic

technique  inspired  from  ants  behaviour).  An

extension  of  QCSP  is  the  Integrated  Quay

Cranes,  Vehicles  and  Platforms  Scheduling

Problem  (IQCVPSP)  considered  in  a  split-

platform  automated  storage/retrieval  system

(see [5], where a genetic algorithm is proposed

to solve it).
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In this paper we consider a Stowage Planning

Problem  which  occurs  during  the  unloading

task  of  a  vessel.  In  this  respect,  a  genetic

algorithm is proposed and optimal solutions for

this  problem  are  found  in  relatively  low

computational time.

Section  2  gives  the  main  features  of  the

problem considered.  In  Section  3  we  briefly

describe  the  basic  principles  of  genetic

algorithms, then we thoroughly depict the one

that we proposed. This section also states the

results  of  the several  tests  that  we have been

executed  on  the  control  parameters  of  the

proposed  genetic  algorithm.  Conclusion

remarks  and  recommendations  for  further

research directions are presented in Section 4.

2. Problem Definition

The  unloading  task  is  the  set  of  operations

performed by cranes and vehicles to unload a

container from the vessel and discharge it into a

slot of  a bay in the container yard.  The quay

crane moves from its dwell point to the vessel,

picks  up  the  desired  container  and  shifts  it

ashore to be loaded on a land vehicle (train or

truck). The vehicle moves to the yard (Figure

2) which consists of several blocks, each one

having several bays; each bay contains a set of

rows,  and each row consists  of  a  set  of  tiers

(usually  4  or  5).  The  destination  of  the

container  is  a  slot  in  a  row  of  a  bay  in  a

particular block. The loaded vehicle travels to

the load/unload station of the dedicated block

and transfers  the container  to  the yard crane.

The  yard  crane  moves  the  container  to  the

predetermined row and places the container in

the slot (Figure 3). 

Our  approach  attempts  to  optimize  the

container stacking in the block by minimizing

the  handling  time  of  the  yard  crane  while

placing  the  containers  in  the  slots  of  the

stacking area.

While considering some block in the container

yard, the following assumptions were considered:

1. Transportation times of loaded and empty

yard crane are the same

2. Transferring time between yard crane and

vehicles  is  assumed  small  enough  to  be

ignored

3. The  load/unload  station  of  the  block  is

predetermined and fixed

4. The bays are numbered as in Figure 3 (bay

no.1 is the one near the load/unload station)
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Figure 2. Layout of a yard in a container terminal

Figure 3. Layout of a block in a container terminal



5. The dwell point policy for the yard crane is

"return to start" (to the load/unload station) 

6. The  initial  state  of  the  block,  i.e.  the

number of available cells in each row of the

bays in the block, is known before the start

of the unloading task

7. The number of containers to be unloaded

from a  vessel  is  known;  it  may  be  less,

equal or greater than the capacity of storage

of the block considered

8. The  terminal  operators  ultimately  decide

which solution is the most appropriate for a

particular  block  in  relation  to  a  multi-

objective  problem:  optimization  of

handling time upon that block or meeting

the requirement to storage in that block as

many containers as possible.

3. The Proposed Genetic Algorithm

In  our  model,  the  yard  crane  picks  up  a

container from the vehicle and transfers it in a

slot at the top of a row (each row has up to 5

tiers) in a block. We assumed that a row could

be  completed  or  not,  the  number  of  missing

containers  (up  to  5)  being  retained  for  each

row.  We want  to  find  the  plan  of  container

stacking in the block, and a genetic algorithm is

proposed  to  find  optimal  solutions  for  this

problem in a reasonable computational time.

3.1 Basic principles of genetic algorithms

Genetic  Algorithms  (GAs)  are  adaptive

heuristic  search  algorithms.  Having  a  highly

modular nature, they are used in a wide area of

practical problems in science and industry, e.g.

optimization,  machine  learning,  economics  or

population genetic problems (e.g. [1], [2], [7],

[9]).  GAs are specially designed to find good

solutions  to  problems  that  were  otherwise

computationally  unsolvable:  the  solution  sets

are  finite  but  so  large  that  brute-force

evaluation  of  all  possible  solutions  is  not

computationally feasible.

GAs  are  based  on  the  evolutionary  ideas  of

natural  selection,  applying  the  principle  of

'survival  of  the  fittest'  on  a  population  of

potential  solutions  encoded  as  chromosomes,

selecting individuals according to their level of

fitness, and mating them together using some

recombination  operators  to  produce  better

approximations to a solution (see [4], [12]).

Solving a problem with GAs means to search a

solution in the space of all potential solutions

using  a  population  of  agents.  The  search

process  is  based  on  two  mechanisms:

exploration  (go  through  different  regions  in

space of solutions and gather information) and

exploitation  (refine  the  solution,  i.e.  the

information  collected  through  exploration

process).  The  search  is  guided  through  a

function  called  fitness,  which  measures  the

closeness to the solution.

An  implementation  of  a  genetic  algorithm

begins  with  a  population  of  random

chromosomes, which are string representations

of  solutions  to  a  particular  problem.  A

chromosome  is  composed  of  genes  whose

values can be either bit-strings, real  numbers,

symbols  or  characters,  the  interpretation  of

these strings being entirely problem dependent.

The size of population depends on the problem

and  the  type  of  encoding  used  and  must  be

chosen with care because it affects greatly the

efficiency of  a  GA (see  [12]):  if  it  was  too

small,  the  GA  would  have  only  a  few

possibilities  to  perform  crossover,  so  only  a

small  part  of  the  search  space  would  be

explored, and if it was too large, the GA would

slow  down.  The  most  common  size  for  a

population is between 30 and 100 individuals.

The objective function  f provides a measure

of individuals performance with respect to the

problem  domain.  This  performance  is

transformed by the fitness function  F  into a

measure  of  allocation  of  reproductive

opportunities  for  individuals  in  a  GA.  The

fitness  function  is  problem  specific  and  is

derived from the objective function. 

For unconstrained optimization problems:

– maximization  problems:  the  fitness

function can be considered to be the same

as the objective function

– minimization  problems:  the  most  fit

individuals  will  have  the  smallest

numerical  value  of  the  corresponding

objective  function;  moreover,  due  to  the

fact that some operators need non-negative

values of the fitness, it is necessary to map

the underlying natural objective function to

fitness  function  form.  A most  commonly

adopted  fitness  mapping  is  the  one  from

relation  (1),  which  does  not  alter  the

location  of  the  minimum,  but  converts  a
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minimization  problem  to  an  equivalent

maximization one.

F ( x )=
1

1+ f ( x )
(1)

For  constrained  optimization  problems,  one

must  add  penalty  functions  to  the  objective

function, so problem (2)

min f ( x) (2)

subject to

{g i
(x)=0, i=1,…, m

h j (x)≤0, j=m+1,…, q

turns into problem (3),

min p ( x) (3)

p ( x )= f (x )+∑
i=1

m

aiφ (gi ( x ))+ ∑
j=m+1

q

b jψ (h j ( x ) )

where φ , ψ  are penalty functions

φ (u)={0,u=0

∞ ,u≠0
ψ (u )={0,u ≤0

∞ ,u>0
(4)

and ai , b j
>0  are penalty parameters.

Genetic operators used in GAs maintain genetic

diversity  and  are  analogous  to  those  which

occur  in  the  natural  world:  selection  (or

reproduction),  crossover  (or  recombination)

and mutation. These operators are implemented

to produce new offspring, which are in charge

of exploration and exploitation of the feasible

solution space.

Selection  determines  the  number  of  times  a

particular individual is chosen for reproduction,

i.e. the number of offspring that an individual

will  produce.  Chromosomes  evaluated  with

higher  fitness  values  will  most  likely  be

selected as the parents of a pair  of  offspring,

whereas,  those  with  low  values  will  be

discarded from the current population.

Recombination  is  the  process  by  which

chromosomes  selected  from  a  source

population  are  recombined to form members

of a successor population. After selection has

been  carried  out,  the  crossover  operator  is

applied  to  two  individuals,  randomly  paired

with  a  user-definable  probability,  pc,  called

crossover  rate.  The  recombination  operation

produces  two  offspring  that  inherit  traits  of

both parents and are inserted, one or both of

them, into the next population.

Mutation alters one or more gene values in a

randomly  chosen  chromosome  with  a  user-

definable probability, pm, called mutation rate,

and  produces  a  new  genetic  individual.  This

operator  is  used to  maintain genetic  diversity

from one generation of a population to the next,

and  has  two  roles,  firstly  to  recover  good

genetic  material  that  may  be  lost  through

selection  and  crossover,  and  secondly,  to

provide the genes that were not present in the

initial population.

Evaluation,  selection,  crossover  and  mutation

(Figure  4)  forms  one  generation  in  the

execution of a GA. After  several  generations,

the  best  individual  (solution)  is  obtained.  In

cases where the problem to be solved does not

have one individual solution, as is the case in

multi-objective  optimization  and  scheduling

problems,  the  GA  is  useful  for  providing  a

number  of  potential  solutions  at  once,  letting

the user to choose the best one.

Figure 4. The proposed GA flowchart

3.2 Encoding and initialisation

In  our  model,  the  rows  in  the  block  are

numbered  from  1  to  n.  A chromosome  is  a

feasible sequence of the rows in the block and
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is  encoded using an integer array having size

equal to  n; each element of this array denotes

the number of containers missing in that  row

(maximum number of  containers that  may be

stack  in  a  row  is  5).  For  our  problem,  we

suppose we have a block with 3 bays, each with

4 rows (Figure 5).

The following chromosome: [0 5 3 4 5 1 0 0 2

3 0 1] indicates that the first row is completed,

the  second  is  empty  and  the  third  has  3

containers missing.

The initial  population of size  s is constructed

by randomly generating  n⋅s  integers ranging

from  0  to  5.  We  also  set  the  chromosome,

denoted by initChrom, that will show the initial

state of rows in the block (e.g. initChrom = [4 2

0 1 0 5 2 1 0 0 2 0]).

3.3 Evaluation

We denote by M the number of slots in block,

by n the number of rows in block and by xi the

number  of  containers  missing  in  a  row,
x
i
∈ {0,1, 2,3, 4, 5 } ,  i∈{1, 2…n} .  Let  Ti be

the time needed for yard crane to move to row

i.  We will also consider  tk as the time needed

for yard crane to shift from one tier to another,

k ∈{1,2, 3, 4,5 } . Let  xiniti∈{0,1, 2, 3, 4,5}  be

the number of containers missing in the initial

state of the block (values of initChrom genes).

The goal is to 

minimize

f (x)=∑
i=1

n

∑
k=xi+1

xiniti

(2T i+tk ) (5)

subject to

∑
i=1

n

( xiniti−xi )≤M (6)

The  objective  function  represents  the

summation  of  the  time  needed  by  the  yard

crane  to  pick  the  container  from  the

load/unload station, place it in a slot and then

return to the station. Constraint (6) imposes that

the  number  of  containers  stacked  in  a  block

shouldn't exceed the capacity of that block.

Being a constrained optimization problem, we

must  add  penalty  functions  to  the  objective

function (5)

ψ (u )={ 0,u≤ 0

−u , u>0
(7)

(without  penalty  if  restriction  is  met;  the

penalty corresponds to the level the restriction

is unmet), so the new objective function will be

(according to (3) and (7)):

p ( x)=

{ f ( x) , if ∑
i=1

n

( x
initi

−x
i
)≤M

af ( x )−b(∑
i=1

n

( x
init i

−x
i
)−M ) , otherwise

(8)

where the penalty parameters a , b>0 ; a+b=1

control the weights of the two components of

the  problem:  optimization  of  the  objective

function or meeting the restriction.

The fitness function will be given by relation (1).

3.4 Selection, crossover and

mutation operators

The chromosomes are  evaluated by using the

fitness  function  and the  current  population  is

sorted  in  ascending  mode.  According  to  the

crossover  rate,  some  of  the  least  fitted

individuals  will  be  replaced  by a  new set  of

offspring. The parents were selected by one of

the  most  commonly  used  selection  methods,

namely  the  roulette-wheel  selection,  also

known  as  the  fitness  proportionate  selection.

Conceptually, this method can be thought as a

game  of  Roulette,  each  individual  getting  a
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Figure 5. The proposed layout of a block



slice of the roulette wheel equal in area to its

fitness. The wheel is spun and on each spin, the

individual under wheel's arrow is selected to be

parent (see Table 1).

Table 1. Pseudo-code of selection operator

Sum the fitness  F of all individuals

in the population (we call it FSum)

Compute  the  probability  for  each

individual i:

P (i)=
F (i)

FSum

Compute  the  cumulative  probability

for each individual i:

 

CP(i)=∑
k=1

i

P(k )

for i = 1:s do 

  Choose a random integer between 0

and 1  

  (we call it sLimit)

    if CP(i) >= sLimit then 

       select chromosome i 

end

Next,  we  propose  both  a  crossover  and  a

mutation operator, dependent of the nature of

our  problem  and  designed  taking  into

consideration the restriction (9): the number of

containers that may be stack in a row during the

unloading task can not be higher than the initial

number of containers missing from that row.

x
i
≤ x

init i
, ∀ i=1,…,n (9)

The  crossover  operator  randomly selects  two

parents and breeds the offspring by setting in

the offspring gene a value less than or equal to

that of  initChrom on the matching position, so

that the offspring will not have greater values

(i.e.  more  containers  missing)  than  the  initial

chromosome.  The  offspring  created  replaces

one  of  the  parents,  randomly  selected  (see

Table 2).

In next step of the GA, we used a version of the

uniform mutation  operator  in  which  some  of

the  chromosomes  belonging  to  the  current

population and one gene of each of them are

randomly  selected;  the  uniform  operator

replaces  the value of the chosen gene with a

uniform random integer  selected  between the

upper and lower bounds for that gene (0 and 5,

respectively).  In  addition,  the  proposed

mutation  operator  is  performed  only  if

replacing the selected gene does not violate the

constraint given by relation (9) (see Table 3).

Table 3. Pseudo-code of mutation operator

Compute number of mutations:

noM= pm ∙ s

Compute total number of genes in 

population:

 

noG=n∙ s
while noM > 0 do

    Choose a random integer between 1 

and noG (we call it mLimit)

    Choose a chromosome:

chrom=
mLimit

n
    Choose a random gene

gen=mLimit  % n
   

    The value of mutated gene is 

replaced by a random number between 0 

and 5 and smaller than the value in the 

same position in initChrom

            noM = noM - 1;

end

The  algorithm  was  implemented  in  Matlab

R2011a and the terminating condition was to

either  a  predefined  number  of  generations

reached or  97% of the population had same

fitness  value.  The  best  solution  is  the  one

with  the  smallest  numerical  value  of  the
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Table 2. Pseudo-code of crossover operator

for i = 1:s do 

 Choose a random integer between 0 and 1

(we call it cLimit)

 if cLimit < pc then 

    select chromosome i as parent

end

for k = 1:numberOfParents

 P1 = parents(k); P2 = parents(k+1);

 for i = 1:n do 

  if P1(i) = P2(i) then 

     offspring(i) = P1(i)

  else

    if P1(i) <= initChrom (i) 

and P2(i) <= initChrom(i) then 

       offspring(i)= min(P1(i),P2(i))

    else 

      if P1(i) <= initChrom(i) then 

         offspring(i) = P1(i)

      else 

        if P2(i) <= initChrom(i) then 

           offspring(i) = P2(i)

        else 

          if P1(i) > initChrom i) 

and P2(i) > initChrom(i) then 

           offspring(i) = initChrom (i)

  end 

end



objective function and, in addition, meets the

constraint (9).

Table  4  illustrates  a  solution  found  by  the

proposed  GA.  Given  the  initial  state  of  the

block, i.e. initChrom = [4 2 0 1 0 5 2 1 0 0 2 0],

one may interpret  the solution as the plan of

container stacking,  i.e.  "stack 4 containers on

row 1, 1 container on row 4, 4 containers on

row 6" and so on.

Table 4. Best solution of the proposed GA

(an example)

0    2    0    0    0    1    0    0     0     0    0     0

The  order  of  execution  of  tasks  by  the  yard

crane  is  arbitrary,  and,  given  the  way  the

objective  function  is  defined,  does  not  affect

the solution of the problem.

3.5 Results

Performance of the proposed GA was evaluated

through  several  test  cases  on  the  control

parameters of the GA: the population size and

the crossover/mutation rates. We used a small

size  problem based on  the  design  of  a  block

depicted in Figure 5 and an average operational

time for the yard crane, which we considered

was  suitable  for  this  problem.  The  most

important objective is to minimize the handling

time in tasks of yard cranes, so the weights  a

and b were fixed to 0.7 and 0.3, respectively. 

Different combinations of population size and

crossover/mutation rates have been tested, and

each  of  the  test  cases  was  solved  using  the

proposed GA for 30 replications. The mean of

the  objective  function  values,  the  standard

deviation (SD) and the CPU time in seconds for

the  test  cases  are  recorded in  Table  5.  These

results indicate that the combination of 0.9 and

0.1 for crossover and mutation rates have the

best  performance  among  all  the  tested

combinations,  which  can  be  interpreted  as

breeding more offspring in each generation is

more efficient at obtaining better solutions than

exploring  new  search  areas.  The  results  also

demonstrates  that  25  as  the  population  size

shows  the  best  performance  among  other

values. Moreover, the standard deviation values

are approximately 10% of the mean values for

this test case, which means that the GA can find

solutions close to each other in its various runs.

The  table  also  shows the  average  number  of

containers that may be stacked in a block with

maximum capacity of 25, in a period of time

given  in  minutes  (e.g.  22  containers  may  be

stacked in 85.63 minutes).

4. Conclusion

In this paper, we approach a Stowage Planning

problem  and  propose  a  genetic  algorithm  to

optimize the container stacking in a block. The

results of the algorithm may be considered as

the plan of the container stacking and used to

reduce  the  time  spent  by  a  ship  in  the  port

quays, by unloading it in a short time. As future

work, we intend to refine the objective function

based on observations from real case situations

and introduce into the objective function more

parameters related to the stacking options, like

the size, priorities or type of the containers.
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Table 5. The proposed GA results

Pop.

Size

Cross./

Mutat. rate

Mean

(minutes)

SD CPUtime(s) Containers

stacked

(average)

25 0.9/0.1 85.63 8.12 19.51 22

25 0.9/0.01 79.29 20.24 7.16 20

25 0.7/0.1 73.66 23.36 33.87 20

50 0.9/0.1 85.78 10.20 40.16 22

50 0.9/0.01 71.68 29.73 13.22 18

50 0.7/0.1 67.04 27.88 76.79 18

100 0.9/0.1 78.35 22.90 84.66 20

100 0.9/0.01 80.33 26.84 90.65 17

100 0.7/0.1 47.02 36.51 143.17 13
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