
1. Introduction

One of the objectives of an efficient

management plan in a port is to reduce the

berthing time of vessels. The port efficiency is

determined by the main container terminal

operations, namely the vessel berthing

operation, (quay or yard) crane

unloading/loading operations and container

shifting and storage operations.

In order to develop better operational strategies

and investment plans, researches identified

several optimization problems along the years

and developed different tools based on

intelligent techniques in order to achieve

optimal solutions (Figure 1).

Figure 1. The most common optimization problems

in container terminals

The Container Stacking Problem(CSP)

consists in relocating the containers to ensure

easy access to them so that the yard cranes

don't have to do further reshuffles at the

expected time of transfer (e.g. [3], [10]). The

CSP is classified as a three dimensional bin

packing problem in [6], and a genetic

algorithm is proposed to solve it. The Berth

Allocation Problem (BAP) and the Quay

Crane Assignment Problem (QCAP) refer to

the allocation of docks and quay cranes to

incoming vessels under several constraints

and priorities (see [11], where the CSP, BAP

and QCAP problems are considered and a

computer-based decision support system that

integrates the solution of the three problems

is provided).

The Quay Crane Scheduling Problem (QCSP)

main objectives are first to find the assignment

of tasks to quay cranes and then to determine

the tasks sequence for each quay crane in order

to minimize the handling time while respecting

certain constraints (a feasible solution to this

problem is found in [8] using a probabilistic

technique inspired from ants behaviour). An

extension of QCSP is the Integrated Quay

Cranes, Vehicles and Platforms Scheduling

Problem (IQCVPSP) considered in a split-

platform automated storage/retrieval system

(see [5], where a genetic algorithm is proposed

to solve it).

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 123

Optimization of Container Stowage in a Yard Block

Using a Genetic Algorithm

Cristina SERBAN1, Doina CARP2

1 Ovidius University of Constanta,

Mamaia Bld. 124, Constanta, 900527, Romania,

cgherghina@gmail.com

2 Constanta Maritime University,

Mircea cel Batran Str. 104, Constanta, 900663, Romania,

doina.carp@gmail.com

Abstract: One indicator for efficient management in a port is the time spent by a ship in the port quays. The time allowed

for loading-unloading into a specialized quay is mentioned in the management contract. Because the cost of the overtime

is very high, it is very important to have a special plan to unload the container ship in a short time. Given the number of

containers to be unloaded from a vessel and the initial state (in regards of number of slots) of a block, the genetic

algorithm that we propose in this paper finds the plan of container stacking in the block, whilst the objective function is to

minimize summation of handling time of yard crane in placing the containers in the available storage cells of the stacking

area. The performance of the proposed method is evaluated through several sets of tests on control parameters of the

algorithm.

Keywords: containers, cranes, stacking, genetic algorithms

In this paper we consider a Stowage Planning

Problem which occurs during the unloading

task of a vessel. In this respect, a genetic

algorithm is proposed and optimal solutions for

this problem are found in relatively low

computational time.

Section 2 gives the main features of the

problem considered. In Section 3 we briefly

describe the basic principles of genetic

algorithms, then we thoroughly depict the one

that we proposed. This section also states the

results of the several tests that we have been

executed on the control parameters of the

proposed genetic algorithm. Conclusion

remarks and recommendations for further

research directions are presented in Section 4.

2. Problem Definition

The unloading task is the set of operations

performed by cranes and vehicles to unload a

container from the vessel and discharge it into a

slot of a bay in the container yard. The quay

crane moves from its dwell point to the vessel,

picks up the desired container and shifts it

ashore to be loaded on a land vehicle (train or

truck). The vehicle moves to the yard (Figure

2) which consists of several blocks, each one

having several bays; each bay contains a set of

rows, and each row consists of a set of tiers

(usually 4 or 5). The destination of the

container is a slot in a row of a bay in a

particular block. The loaded vehicle travels to

the load/unload station of the dedicated block

and transfers the container to the yard crane.

The yard crane moves the container to the

predetermined row and places the container in

the slot (Figure 3).

Our approach attempts to optimize the

container stacking in the block by minimizing

the handling time of the yard crane while

placing the containers in the slots of the

stacking area.

While considering some block in the container

yard, the following assumptions were considered:

1. Transportation times of loaded and empty

yard crane are the same

2. Transferring time between yard crane and

vehicles is assumed small enough to be

ignored

3. The load/unload station of the block is

predetermined and fixed

4. The bays are numbered as in Figure 3 (bay

no.1 is the one near the load/unload station)

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016124

Figure 2. Layout of a yard in a container terminal

Figure 3. Layout of a block in a container terminal

5. The dwell point policy for the yard crane is

"return to start" (to the load/unload station)

6. The initial state of the block, i.e. the

number of available cells in each row of the

bays in the block, is known before the start

of the unloading task

7. The number of containers to be unloaded

from a vessel is known; it may be less,

equal or greater than the capacity of storage

of the block considered

8. The terminal operators ultimately decide

which solution is the most appropriate for a

particular block in relation to a multi-

objective problem: optimization of

handling time upon that block or meeting

the requirement to storage in that block as

many containers as possible.

3. The Proposed Genetic Algorithm

In our model, the yard crane picks up a

container from the vehicle and transfers it in a

slot at the top of a row (each row has up to 5

tiers) in a block. We assumed that a row could

be completed or not, the number of missing

containers (up to 5) being retained for each

row. We want to find the plan of container

stacking in the block, and a genetic algorithm is

proposed to find optimal solutions for this

problem in a reasonable computational time.

3.1 Basic principles of genetic algorithms

Genetic Algorithms (GAs) are adaptive

heuristic search algorithms. Having a highly

modular nature, they are used in a wide area of

practical problems in science and industry, e.g.

optimization, machine learning, economics or

population genetic problems (e.g. [1], [2], [7],

[9]). GAs are specially designed to find good

solutions to problems that were otherwise

computationally unsolvable: the solution sets

are finite but so large that brute-force

evaluation of all possible solutions is not

computationally feasible.

GAs are based on the evolutionary ideas of

natural selection, applying the principle of

'survival of the fittest' on a population of

potential solutions encoded as chromosomes,

selecting individuals according to their level of

fitness, and mating them together using some

recombination operators to produce better

approximations to a solution (see [4], [12]).

Solving a problem with GAs means to search a

solution in the space of all potential solutions

using a population of agents. The search

process is based on two mechanisms:

exploration (go through different regions in

space of solutions and gather information) and

exploitation (refine the solution, i.e. the

information collected through exploration

process). The search is guided through a

function called fitness, which measures the

closeness to the solution.

An implementation of a genetic algorithm

begins with a population of random

chromosomes, which are string representations

of solutions to a particular problem. A

chromosome is composed of genes whose

values can be either bit-strings, real numbers,

symbols or characters, the interpretation of

these strings being entirely problem dependent.

The size of population depends on the problem

and the type of encoding used and must be

chosen with care because it affects greatly the

efficiency of a GA (see [12]): if it was too

small, the GA would have only a few

possibilities to perform crossover, so only a

small part of the search space would be

explored, and if it was too large, the GA would

slow down. The most common size for a

population is between 30 and 100 individuals.

The objective function f provides a measure

of individuals performance with respect to the

problem domain. This performance is

transformed by the fitness function F into a

measure of allocation of reproductive

opportunities for individuals in a GA. The

fitness function is problem specific and is

derived from the objective function.

For unconstrained optimization problems:

– maximization problems: the fitness

function can be considered to be the same

as the objective function

– minimization problems: the most fit

individuals will have the smallest

numerical value of the corresponding

objective function; moreover, due to the

fact that some operators need non-negative

values of the fitness, it is necessary to map

the underlying natural objective function to

fitness function form. A most commonly

adopted fitness mapping is the one from

relation (1), which does not alter the

location of the minimum, but converts a

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 125

minimization problem to an equivalent

maximization one.

F (x)=
1

1+ f (x)
(1)

For constrained optimization problems, one

must add penalty functions to the objective

function, so problem (2)

min f (x) (2)

subject to

{g i
(x)=0, i=1,…, m

h j (x)≤0, j=m+1,…, q

turns into problem (3),

min p (x) (3)

p (x)= f (x)+∑
i=1

m

aiφ (gi (x))+ ∑
j=m+1

q

b jψ (h j (x))

where φ , ψ are penalty functions

φ (u)={0,u=0

∞ ,u≠0
ψ (u)={0,u ≤0

∞ ,u>0
(4)

and ai , b j
>0 are penalty parameters.

Genetic operators used in GAs maintain genetic

diversity and are analogous to those which

occur in the natural world: selection (or

reproduction), crossover (or recombination)

and mutation. These operators are implemented

to produce new offspring, which are in charge

of exploration and exploitation of the feasible

solution space.

Selection determines the number of times a

particular individual is chosen for reproduction,

i.e. the number of offspring that an individual

will produce. Chromosomes evaluated with

higher fitness values will most likely be

selected as the parents of a pair of offspring,

whereas, those with low values will be

discarded from the current population.

Recombination is the process by which

chromosomes selected from a source

population are recombined to form members

of a successor population. After selection has

been carried out, the crossover operator is

applied to two individuals, randomly paired

with a user-definable probability, pc, called

crossover rate. The recombination operation

produces two offspring that inherit traits of

both parents and are inserted, one or both of

them, into the next population.

Mutation alters one or more gene values in a

randomly chosen chromosome with a user-

definable probability, pm, called mutation rate,

and produces a new genetic individual. This

operator is used to maintain genetic diversity

from one generation of a population to the next,

and has two roles, firstly to recover good

genetic material that may be lost through

selection and crossover, and secondly, to

provide the genes that were not present in the

initial population.

Evaluation, selection, crossover and mutation

(Figure 4) forms one generation in the

execution of a GA. After several generations,

the best individual (solution) is obtained. In

cases where the problem to be solved does not

have one individual solution, as is the case in

multi-objective optimization and scheduling

problems, the GA is useful for providing a

number of potential solutions at once, letting

the user to choose the best one.

Figure 4. The proposed GA flowchart

3.2 Encoding and initialisation

In our model, the rows in the block are

numbered from 1 to n. A chromosome is a

feasible sequence of the rows in the block and

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016126

is encoded using an integer array having size

equal to n; each element of this array denotes

the number of containers missing in that row

(maximum number of containers that may be

stack in a row is 5). For our problem, we

suppose we have a block with 3 bays, each with

4 rows (Figure 5).

The following chromosome: [0 5 3 4 5 1 0 0 2

3 0 1] indicates that the first row is completed,

the second is empty and the third has 3

containers missing.

The initial population of size s is constructed

by randomly generating n⋅s integers ranging

from 0 to 5. We also set the chromosome,

denoted by initChrom, that will show the initial

state of rows in the block (e.g. initChrom = [4 2

0 1 0 5 2 1 0 0 2 0]).

3.3 Evaluation

We denote by M the number of slots in block,

by n the number of rows in block and by xi the

number of containers missing in a row,
x
i
∈ {0,1, 2,3, 4, 5 } , i∈{1, 2…n} . Let Ti be

the time needed for yard crane to move to row

i. We will also consider tk as the time needed

for yard crane to shift from one tier to another,

k ∈{1,2, 3, 4,5 } . Let xiniti∈{0,1, 2, 3, 4,5} be

the number of containers missing in the initial

state of the block (values of initChrom genes).

The goal is to

minimize

f (x)=∑
i=1

n

∑
k=xi+1

xiniti

(2T i+tk) (5)

subject to

∑
i=1

n

(xiniti−xi)≤M (6)

The objective function represents the

summation of the time needed by the yard

crane to pick the container from the

load/unload station, place it in a slot and then

return to the station. Constraint (6) imposes that

the number of containers stacked in a block

shouldn't exceed the capacity of that block.

Being a constrained optimization problem, we

must add penalty functions to the objective

function (5)

ψ (u)={ 0,u≤ 0

−u , u>0
(7)

(without penalty if restriction is met; the

penalty corresponds to the level the restriction

is unmet), so the new objective function will be

(according to (3) and (7)):

p (x)=

{ f (x) , if ∑
i=1

n

(x
initi

−x
i
)≤M

af (x)−b(∑
i=1

n

(x
init i

−x
i
)−M) , otherwise

(8)

where the penalty parameters a , b>0 ; a+b=1

control the weights of the two components of

the problem: optimization of the objective

function or meeting the restriction.

The fitness function will be given by relation (1).

3.4 Selection, crossover and

mutation operators

The chromosomes are evaluated by using the

fitness function and the current population is

sorted in ascending mode. According to the

crossover rate, some of the least fitted

individuals will be replaced by a new set of

offspring. The parents were selected by one of

the most commonly used selection methods,

namely the roulette-wheel selection, also

known as the fitness proportionate selection.

Conceptually, this method can be thought as a

game of Roulette, each individual getting a

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 127

Figure 5. The proposed layout of a block

slice of the roulette wheel equal in area to its

fitness. The wheel is spun and on each spin, the

individual under wheel's arrow is selected to be

parent (see Table 1).

Table 1. Pseudo-code of selection operator

Sum the fitness F of all individuals

in the population (we call it FSum)

Compute the probability for each

individual i:

P (i)=
F (i)

FSum

Compute the cumulative probability

for each individual i:

CP(i)=∑
k=1

i

P(k)

for i = 1:s do

 Choose a random integer between 0

and 1

 (we call it sLimit)

 if CP(i) >= sLimit then

 select chromosome i

end

Next, we propose both a crossover and a

mutation operator, dependent of the nature of

our problem and designed taking into

consideration the restriction (9): the number of

containers that may be stack in a row during the

unloading task can not be higher than the initial

number of containers missing from that row.

x
i
≤ x

init i
, ∀ i=1,…,n (9)

The crossover operator randomly selects two

parents and breeds the offspring by setting in

the offspring gene a value less than or equal to

that of initChrom on the matching position, so

that the offspring will not have greater values

(i.e. more containers missing) than the initial

chromosome. The offspring created replaces

one of the parents, randomly selected (see

Table 2).

In next step of the GA, we used a version of the

uniform mutation operator in which some of

the chromosomes belonging to the current

population and one gene of each of them are

randomly selected; the uniform operator

replaces the value of the chosen gene with a

uniform random integer selected between the

upper and lower bounds for that gene (0 and 5,

respectively). In addition, the proposed

mutation operator is performed only if

replacing the selected gene does not violate the

constraint given by relation (9) (see Table 3).

Table 3. Pseudo-code of mutation operator

Compute number of mutations:

noM= pm ∙ s

Compute total number of genes in

population:

noG=n∙ s
while noM > 0 do

 Choose a random integer between 1

and noG (we call it mLimit)

 Choose a chromosome:

chrom=
mLimit

n
 Choose a random gene

gen=mLimit % n

 The value of mutated gene is

replaced by a random number between 0

and 5 and smaller than the value in the

same position in initChrom

 noM = noM - 1;

end

The algorithm was implemented in Matlab

R2011a and the terminating condition was to

either a predefined number of generations

reached or 97% of the population had same

fitness value. The best solution is the one

with the smallest numerical value of the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016128

Table 2. Pseudo-code of crossover operator

for i = 1:s do

 Choose a random integer between 0 and 1

(we call it cLimit)

 if cLimit < pc then

 select chromosome i as parent

end

for k = 1:numberOfParents

 P1 = parents(k); P2 = parents(k+1);

 for i = 1:n do

 if P1(i) = P2(i) then

 offspring(i) = P1(i)

 else

 if P1(i) <= initChrom (i)

and P2(i) <= initChrom(i) then

 offspring(i)= min(P1(i),P2(i))

 else

 if P1(i) <= initChrom(i) then

 offspring(i) = P1(i)

 else

 if P2(i) <= initChrom(i) then

 offspring(i) = P2(i)

 else

 if P1(i) > initChrom i)

and P2(i) > initChrom(i) then

 offspring(i) = initChrom (i)

 end

end

objective function and, in addition, meets the

constraint (9).

Table 4 illustrates a solution found by the

proposed GA. Given the initial state of the

block, i.e. initChrom = [4 2 0 1 0 5 2 1 0 0 2 0],

one may interpret the solution as the plan of

container stacking, i.e. "stack 4 containers on

row 1, 1 container on row 4, 4 containers on

row 6" and so on.

Table 4. Best solution of the proposed GA

(an example)

0 2 0 0 0 1 0 0 0 0 0 0

The order of execution of tasks by the yard

crane is arbitrary, and, given the way the

objective function is defined, does not affect

the solution of the problem.

3.5 Results

Performance of the proposed GA was evaluated

through several test cases on the control

parameters of the GA: the population size and

the crossover/mutation rates. We used a small

size problem based on the design of a block

depicted in Figure 5 and an average operational

time for the yard crane, which we considered

was suitable for this problem. The most

important objective is to minimize the handling

time in tasks of yard cranes, so the weights a

and b were fixed to 0.7 and 0.3, respectively.

Different combinations of population size and

crossover/mutation rates have been tested, and

each of the test cases was solved using the

proposed GA for 30 replications. The mean of

the objective function values, the standard

deviation (SD) and the CPU time in seconds for

the test cases are recorded in Table 5. These

results indicate that the combination of 0.9 and

0.1 for crossover and mutation rates have the

best performance among all the tested

combinations, which can be interpreted as

breeding more offspring in each generation is

more efficient at obtaining better solutions than

exploring new search areas. The results also

demonstrates that 25 as the population size

shows the best performance among other

values. Moreover, the standard deviation values

are approximately 10% of the mean values for

this test case, which means that the GA can find

solutions close to each other in its various runs.

The table also shows the average number of

containers that may be stacked in a block with

maximum capacity of 25, in a period of time

given in minutes (e.g. 22 containers may be

stacked in 85.63 minutes).

4. Conclusion

In this paper, we approach a Stowage Planning

problem and propose a genetic algorithm to

optimize the container stacking in a block. The

results of the algorithm may be considered as

the plan of the container stacking and used to

reduce the time spent by a ship in the port

quays, by unloading it in a short time. As future

work, we intend to refine the objective function

based on observations from real case situations

and introduce into the objective function more

parameters related to the stacking options, like

the size, priorities or type of the containers.

Studies in Informatics and Control, Vol. 25, No. 1, March 2016 http://www.sic.ici.ro 129

Table 5. The proposed GA results

Pop.

Size

Cross./

Mutat. rate

Mean

(minutes)

SD CPUtime(s) Containers

stacked

(average)

25 0.9/0.1 85.63 8.12 19.51 22

25 0.9/0.01 79.29 20.24 7.16 20

25 0.7/0.1 73.66 23.36 33.87 20

50 0.9/0.1 85.78 10.20 40.16 22

50 0.9/0.01 71.68 29.73 13.22 18

50 0.7/0.1 67.04 27.88 76.79 18

100 0.9/0.1 78.35 22.90 84.66 20

100 0.9/0.01 80.33 26.84 90.65 17

100 0.7/0.1 47.02 36.51 143.17 13

REFERENCES

1. BARBULESCU, A., E. BAUTU,

Alternative Models in Precipitation

Analysis, An. St. Univ. Ovidius Constanta,

Ser. Mat., ISSN 1224-1784, 17(3), 2009,

pp. 45-68.

2. EL-SEHIEMY, R. A., M. A. EL-

HOSSEINI, A. E. HASSANIEN,

Multiobjective Real-Coded Genetic

Algorithm for Economic/Environmental

Dispatch Problem, Studies in Informatics

and Control, ISSN 1220-1766, vol. 22(2),

2014, pp. 113-122.

3. GHEITH, M. S., A. B. EL-TAWIL, N. A.

HARRAZ, A Proposed Heuristic for

Solving the Container Pre-marshalling

Problem, In the 19th International

Conference on Industrial Engineering and

Engineering Management, edited by Ershi

Qi, Jiang Shen and Runliang Dou, Springer

Berlin Heidelberg, 2013, pp. 955-964.

4. HAUPT, R. L., S. E. HAUPT, Practical

Genetic Algorithms, John Wiley & Sons,

Inc. New York, NY, USA, 1998.

5. HOMAYOUNI, S. M., S. H. TANG, O.

MOTLAGH, A Genetic Algorithm for

Optimization of Integrated Scheduling of

Cranes, Vehicles, and Storage Platforms

at Automated Container Terminals,

Journal of Computational and Applied

Mathematics vol. 270, 2014, pp. 545-556.

6. KAMMARTI, R., I. AYACHI, M.

KSOURI, P. BORNE, Evolutionary

Approach for the Containers Bin-

Packing Problem, Studies in Informatics

and Control, ISSN 1220-1766, vol. 18(4),

2009, pp. 315-324.

7. LAGOS, C., B. CRAWFORD, R. SOTO, J.

M. RUBIO, E. CABRERA, F. PARADES,

Combining Tabu Search and Genetic

Algorithms to Solve the Capacitated

Multicommodity Network Flow

Problem, Studies in Informatics and

Control, ISSN 1220-1766, vol. 23(3), 2014,

pp. 265-276.

8. LAJJAMA, A., M. EL MEROUANI, Y.

TABAA, A. MEDOURI, A New Approach

for Sequencing Loading and Unloading

Operations in the Seaside Area of a

Container Terminal, International Journal

of Supply and Operations Management,

vol. 1(3), 2014, pp. 328-346.

9. NOROUZI, A., F. S. BABAMIR, A. H.

ZAIM, An Interactive Genetic Algorithm

for Mobile Sensor Networks, Studies in

Informatics and Control, ISSN 1220-1766,

vol. 22(2), 2013, pp. 213-218.

10. SALIDO, M. A., O. SAPENA, F.

BARBER, An Artificial Intelligence

Planning tool for the Container Stacking

Problem, In Proceedings of the 14th IEEE

International Conference on Emerging

Technologies & Factory Automation, edited

by IEEE Press Piscataway, NJ, USA, 22-25

September 2009, pp. 532-535.

11. SALIDO, M. A., M. RODRIGUEZ-

MOLINS, F. BARBER, F., A Decision

Support System for Managing

Combinatorial Problems in Container

Terminals, Knowledge-Based Systems,

vol. 29, 2012, pp. 63-74.

12. SIVANANDAM, S. N., S. N. DEEPA,

Introduction to Genetic Algorithms,

Springer Berlin Heidelberg, 2008.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 25, No. 1, March 2016130

